Microwave Gas Energizing Means (e.g., 2.45 Gigahertz, Microwave Plasma, Etc.) Patents (Class 118/723MW)
  • Patent number: 5868849
    Abstract: A surface processing device includes: a first gas supplying passage disposed near a surface of a wafer for supplying TEOS insusceptible to heating by microwave; a second gas supplying passage disposed near the wafer surface for supplying H.sub.2 O susceptible to heating by microwave; and a microwave generating unit disposed near the wafer surface for irradiating TEOS supplied from the first supplying passage and H.sub.2 O gas supplied from the second gas supplying passage with microwave and selectively heating only H.sub.2 O so that TEOS reacts with H.sub.2 O to form an SiO.sub.2 film on the wafer surface. Thus, a surface processing device capable of precisely controlling CVD reaction and thus forming a thin film having good step coverage is provided. A method of processing surfaces is also provided.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: February 9, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shuji Nakao
  • Patent number: 5851343
    Abstract: The present invention provides a protective shield for a plasma etcher. The protective shield 40 protects the chamber wall 30 around the etch detect window from plasma etching and electrical arcing. The invention comprises a plasma etcher 10 has a wall 30 surrounding a chamber 14. The wall has an opening 16. The wall 30 having an inside face 30A and an outside face 30B. An opening edge 30C defines the opening 16. A window 24 covers over the opening 16 and over a portion of the outside face 30B of the wall. The protective shield 40 covers the opening edge 30C around the opening 16 and a portion of the inside face 30A of the wall 30 around the opening 16. The shield 40 is composed of an electrically insulating and plasma resistant material whereby the protective shield 40 prevents the chamber from arching and generating particles and extends the lifetime of the wall 30.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: December 22, 1998
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Mao Hsu, Ching-Chung Wu
  • Patent number: 5837093
    Abstract: Disclosed herein are a dry etching method and a dry etching apparatus. The method comprises a step of applying an etching inhibiting gas to that portion of a workpiece where etching speed is high, while the workpiece is being etched with reactive-gas plasma. The apparatus comprises functions for holding a reactive etching gas, a first electrode located within the gas-holding functions, for supporting a workpiece, a second electrode located within the gas-holding functions and spaced apart from the first electrode by a predetermined distance, functions for supplying high-frequency power, thereby to convert the reactive etching gas into a plasma in the space between the first and second electrodes, and functions for supplying an etching inhibiting gas to that portion of the workpiece where etching speed is high.
    Type: Grant
    Filed: February 6, 1995
    Date of Patent: November 17, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Hasegawa, Atsuo Sanda
  • Patent number: 5827435
    Abstract: A plasma processing method is provided which suppresses the charge accumulation on a processing object such as a semiconductor substrate. An alternating excitation signal in the form of pulses for exciting the plasma is supplied to a reaction gas contained in a plasma chamber, each pulse having an on-period t.sub.on for supplying the excitation signal and an off-period t.sub.off for stopping the excitation signal. The off period ranges from 10 to 100 .mu.sec. The on-period may be determined as needed. An alternating bias signal for biasing the processing object is also applied to the object in the chamber. The bias signal has a frequency of at most 600 kHz. As a result, an increased number of positive and negative ions impinge the object thus increasing the processing rate and reducing the charge accumulation compared to prior art processes.
    Type: Grant
    Filed: October 26, 1995
    Date of Patent: October 27, 1998
    Assignee: NEC Corporation
    Inventor: Seiji Samukawa
  • Patent number: 5820947
    Abstract: In a vapor phase apparatus such as a plasma chemical vapor deposition (CVD) having a pair of electrodes, a surface of one of the electrodes has an uneven shape (concave portion and convex portion). An interval between the electrodes is 10 mm or less. A density of a convex portion is increased in a center portion of the electrode. An aspect ratio of the uneven shape is increased from a peripheral portion of the electrode to a center portion of the electrode. The aspect ratio represents a ratio (b/a) of a pitch (a) and a height (b) of the convex portion.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: October 13, 1998
    Assignee: Semicondutor Energy Laboratory Co., Ltd.
    Inventor: Kenji Itoh
  • Patent number: 5804923
    Abstract: A plasma processing apparatus includes a microwave introducing member, which is provided with a microwave transmission opening through which microwaves pass into a processing chamber. The microwave introducing member is also provided at a transmission opening with a dielectric member. Preferably, the dielectric member is formed to have a relative dielectric constant of 4 to 10 and an insulation resistance of 10.sup.8 to 10.sup.12 .OMEGA..
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: September 8, 1998
    Assignee: Sumitomo Metal Industries Limited
    Inventors: Kouichi Iio, Kyouichi Komachi, Katsuo Katayama, Takeshi Akimoto
  • Patent number: 5804033
    Abstract: The present invention relates to a microwave plasma processing method and apparatus. According to the present invention, the microwaves are introduced into the electric discharge means in correspondence with only the traveling direction thereof, whereby uniformity in a plasma density distribution corresponding to the surface to-be-processed of the sample can be sharply enhanced, so that the sample processed by utilizing such plasma can attain an enhanced processing homogeneity within the surface to be processed. In addition, homogeneity and stability of the plasma are improved by inserting a cavity resonator between the microwave generator and plasma processing (plasma generating) chamber, and coupling the cavity resonator and plasma processing chamber such that microwaves substantially only of a desired mode (e.g., TE.sub.11) pass into the plasma processing chamber. Such coupling to provide microwaves substantially only of circular TE.sub.
    Type: Grant
    Filed: March 10, 1993
    Date of Patent: September 8, 1998
    Assignee: Hitachi, Ltd.
    Inventors: Saburo Kanai, Yoshinao Kawasaki, Kazuaki Ichihashi, Seiichi Watanabe, Makoto Nawata, Muneo Furuse, Tetsunori Kaji
  • Patent number: 5803975
    Abstract: For generating uniform high-density plasma over a large area with a low power thereby achieving high-quality plasma process at a high speed even at a low temperature, there is provided a microwave plasma processing apparatus comprising a plasma generation chamber having a periphery separated from the ambient air by a dielectric member, microwave introduction means utilizing an endless annular wave guide tube provided around the plasma generation chamber and provided with plural slots, a processing chamber connected to the plasma generation chamber, support means for a substrate to be processed provided in the processing chamber, gas introduction means for the plasma generation chamber and the processing chamber, and evacuation means for the plasma generation chamber and the processing chamber, wherein the circumferential length L.sub.g of the endless annular wave guide tube, the wavelength .lambda..sub.g of the microwave in the endless annular wave guide tube, the circumferential length L.sub.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: September 8, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobumasa Suzuki
  • Patent number: 5796079
    Abstract: A rapid thermal processing method for a ceramic thin film which is capable of carrying out a uniform heating of a large sized wafer, and of achieving a rapid temperature elevation, and of enhancing a crystallinity of a deposited thin film, wherein a thin film-coated material is disposed on a support to rapidly heat the thin film by the application of microwaves, the temperature is measured with a temperature measuring unit, and the generation of the microwaves is halted at a required temperature.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: August 18, 1998
    Assignee: Korea Institute of Science and Technology
    Inventors: Tae Song Kim, Hyung Jin Jung, Do Kyung Kim, Yoon Chang Kim
  • Patent number: 5793013
    Abstract: A microwave-driven plasma spraying apparatus can be utilized for uniform high-powered spraying. The plasma sprayer is constructed without a dielectric discharge tube, so very high microwave powers can be utilized. Moreover, the plasma sprayer is relatively free of contamination caused by deposits of heat-fusible material.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 11, 1998
    Assignee: Physical Sciences, Inc.
    Inventors: Michael E. Read, John F. Davis, III, Michael M. Micci
  • Patent number: 5753320
    Abstract: A process for forming a deposited film on a substrate according to the chemical vapor deposition method comprises previously forming excited species of a gas phase compound containing atoms which become constituents constituting said deposited film, supplying the excited species onto the surface of said substrate and effecting photoirradiation on said substrate surface, thereby forming the deposited film through the surface reaction.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: May 19, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuo Mikoshiba, Tadahiro Ohmi, Kazuo Tsubouchi, Kazuya Masu, Nobumasa Suzuki
  • Patent number: 5749966
    Abstract: An improved plasma enhanced chemical vapor deposition (CVD) reactor is provided for the synthesis of diamond and other high temperature materials such as boron nitride, boron carbide and ceramics containing oxides, nitrides, carbides and borides, or the like. An aspect of the present method enables a plasma to substrate distance to be optimized for a given surface. This has been found to enable a substantially uniform thin film coating of diamond or like material to be deposited over a substrate.
    Type: Grant
    Filed: October 14, 1994
    Date of Patent: May 12, 1998
    Assignee: Modular Process Technology Corp.
    Inventor: Steven C. Shates
  • Patent number: 5746835
    Abstract: A retractable probe system (12) senses in situ a plurality of predetermined process parameters of a wafer (24) fabrication environment (16) and includes a sensing device (47) for sensing the predetermined process parameters, a probe arm (46) for holding sensing device (47) and having sufficient length to extend sensing device (47) into a predetermined location of the fabrication environment (16). A housing (36) receives the sensing device (47) and probe arm (46). A locator mechanism (52, 42, and 44) controllably locates sensing device 47) and probe arm (46) within fabrication environment (16) and within housing (36). An isolator mechanism (34) isolates sensing device (47) and probe arm (46) within housing (36) and essentially out of gases communication with fabrication environment (16). Cleaning mechanism (54) cleanses sensing device (47) within housing (36) and permits sensing device (47) to be immediately thereafter located in fabrication environment (16).
    Type: Grant
    Filed: June 2, 1994
    Date of Patent: May 5, 1998
    Assignee: Texas Instruments Incorporated
    Inventors: Terry R. Turner, James F. Belcher, Gary W. Andrews
  • Patent number: 5741364
    Abstract: The present invention relates to relates to a hydrogenated amorphous silicon carbide used as the surface protecting layer of the photosensitive member for electrohotographic apparatus. In view of not allowing generation of blurring of photosensitive member under the high humidity atmosphere, the content (x) of carbon in the hydrogenated amorphous silicon carbide expressed by the general formula a-Si.sub.1-x C.sub.x :H is in the range of 0.4.ltoreq.x.ltoreq.0.8 and a ratio (TO/TA) of the peak (TO) amplitude appearing in the vicinity of 480 cm.sup.-1 and the peak (TA) amplitude appearing in the vicinity of 150 cm.sup.-1 observed by the laser Raman spectroscopy measurement using the excitation laser of Ar.sup.+ 488 nm is set to 2.0 or higher.
    Type: Grant
    Filed: December 11, 1995
    Date of Patent: April 21, 1998
    Assignee: Fujitsu Limited
    Inventors: Jun Kodama, Shin Araki
  • Patent number: 5736818
    Abstract: A plasma (56, 333) generating apparatus (10, 320, 450) wherein a stage (250, 300, 300A, 350, 400, 425) is constructed to keep the plasma on the substrate (S). A pair of electrically, non-conductive tubes (252, 252A, 303, 305, 303A, 305A 403, 405) are mounted on a conductive base plate (253,306,406) having holes (255, 306B) for gas flow and one of the tubes supports a conductive support plate (251, 301, 351, 401) for a substrate (S). An electrically conductive disk (304, 404) between the tubes is provided. An outer conductive tube (307, 418) is preferably used with larger diameter chambers. The stage is designed to prevent the plasma from falling below conductive support plate which preferably mounts a graphite insert (302, 352, 402) which supports the substrate.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: April 7, 1998
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Michael J. Ulczynski, Donnie K. Reinhard, Jes Asmussen
  • Patent number: 5725674
    Abstract: An epitaxial growth system comprises a housing around an epitaxial growth chamber. A substrate support is located within the growth chamber. A gallium source introduces gallium into the growth chamber and directs the gallium towards the substrate. An activated nitrogen source introduces activated nitrogen into the growth chamber and directs the activated nitrogen towards the substrate. The activated nitrogen comprises ionic nitrogen species and atomic nitrogen species. An external magnet and/or an exit aperture control the amount of atomic nitrogen species and ionic nitrogen species reaching the substrate.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: March 10, 1998
    Assignee: Trustees of Boston University
    Inventors: Theodore D. Moustakas, Richard J. Molnar
  • Patent number: 5714010
    Abstract: A microwave plasma CVD method for continuously forming a large area and length functional deposited film, the method comprises: continuously moving a substrate web in the longitudinal direction by paying out it by a pay-out mechanism and taking up it by a take-up mechanism; establishing a substantially enclosed film-forming chamber by curving and projecting said moving substrate web to form a columnar portion to be the circumferential wall of said film forming chamber on the way moving from said pay-out mechanism toward said take-up mechanism; introducing a film-forming raw material gas through a gas feed means into said film-forming chamber; at the same time, radiating a microwave energy in said film-forming chamber by using a microwave applicator means, which is so designed that it can radiate a microwave energy in the direction parallel to the microwave propagating direction, to generate microwave plasma in said film-forming chamber, whereby continuously forming a deposited film on the inner wall face of s
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: February 3, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jinsho Matsuyama, Toshimitsu Kariya, Yasushi Fujioka, Tetsuya Takei, Katsumi Nakagawa, Masahiro Kanai, Hiroshi Echizen
  • Patent number: 5714009
    Abstract: An apparatus and method for generating a plasma within a volume containing a mixture of gaseous species. To generate the plasma, at least one large area applicator, which is a part of this invention, is employed. At least one microwave generator introduces microwave power into the applicator by means of suitable waveguides and couplers.
    Type: Grant
    Filed: January 11, 1995
    Date of Patent: February 3, 1998
    Assignee: Deposition Sciences, Inc.
    Inventor: Norman L. Boling
  • Patent number: 5707452
    Abstract: A method and apparatus are disclosed employing a microwave applicator for use with an electron cyclotron resonance (ECR) plasma source for applications including, but not limited to, etching and chemical vapor deposition. A magnetic field is generated by magnets circumferentially arranged about a chamber that is symmetrical about its longitudinal axis. The microwave applicator, which comprises one or more pairs of slotted antenna arrays, injects and distributes microwave power about the entire periphery of a plasma forming portion of the chamber. The antenna arrays include a plurality of radiating stubs for radiating microwave power. The stubs are positioned along the arrays at predetermined intervals for efficiently distributing microwave power uniformly about the periphery of the plasma forming portion. The position and orientation of the radiating stubs cause microwave power to be launched into the plasma in the form of propagating waves with a polarization suitable of electron cyclotron heating.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: January 13, 1998
    Assignee: Applied Microwave Plasma Concepts, Inc.
    Inventor: Raphael A. Dandl
  • Patent number: 5704983
    Abstract: A barrier coating is formed on a polymeric article, such as on the interior of a thermoplastic container. An oxidizing gas is converted to a plasma in a plasma chamber remote from the treatment chamber. The resulting plasma-activated oxidizing species are delivered to the interior of the container. An organosilicon reactant vapor is separately but simultaneously delivered to the interior of the container so that the organosilicon vapor and oxidizing active species mix within the container. An electric qfield is also applied to the container, so that the reaction products are deposited under the influence of the electrical field to form the barrier coating.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: January 6, 1998
    Assignee: Polar Materials Inc.
    Inventors: H. Ronald Thomas, Robert J Babacz, Robert R. Newton
  • Patent number: 5702530
    Abstract: A plasma reactor has plural dielectric gas injection tubes extending from a gas injection source and through a microwave guide and into the top of the reactor chamber. The semiconductor wafer rests near the bottom of the chamber on a wafer pedestal connected to a bias RF power source which is controlled independently of the microwave source coupled to the microwave guide. The microwaves from the waveguide ignite and maintain a plasma in each of the tubes. Gas flow through the tubes carries the plasmas in all the tubes into the chamber and into contact with the wafer surface.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: December 30, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Hongching Shan, Harald Herchen, Michael Welch
  • Patent number: 5700326
    Abstract: A microwave plasma processing apparatus comprises a vacuum processing chamber, a substrate disposed within the vacuum processing chamber, a microwave guide coupled to the vacuum processing chamber, and fins for dividing a microwave in the electric field direction. The length of fins are different such that the uniformity of the film thickness distribution on the substrate of large area can be improved.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: December 23, 1997
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazumasa Takatsu, Takashi Kurokawa, Hiroshi Echizen, Akio Koganei, Shuichiro Sugiyama, Toshio Adachi
  • Patent number: 5698036
    Abstract: A plasma processing apparatus comprises a processing container, a waveguide tube for guiding microwaves generated by a microwave generator, and a flat antenna member connected to the wave guide and disposed in the container to face a semiconductor wafer supported in the container. The antenna includes a plurality of short slits concentrically or spirally arranged in the antenna. The slits are spaced apart in the widthwise direction at intervals of 5% to 50% of a guide wavelength of the microwave, and each of the slits has a length of +30% of the guide wavelength centered with respect to half of the guide wavelength.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: December 16, 1997
    Assignees: Tokyo Electron Limited, Naohisa Goto, Makoto Ando, Junichi Takada, Yasuhiro Horike
    Inventors: Nobuo Ishii, Yasuo Kobayashi, Naohisa Goto, Makoto Ando, Junichi Takada, Yasuhiro Horike
  • Patent number: 5693238
    Abstract: For increasing the rate with which a workpiece is treated in a plasma enhanced chemical vapor deposition method and thereby lowering for coating treatment exposure of the coating to ion impact, there is maintained a non-vanishing dust particle density along the surface to be treated with a predetermined density distribution along this surface. The density distribution may be controlled by appropriately applying a field of force substantially in parallelism to the surface to be treated and acting on the dust particles entrapped in the plasma discharge.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: December 2, 1997
    Assignee: Balzers Aktiengesellschaft
    Inventors: Jacques Schmitt, Paul-Rene Muralt
  • Patent number: 5690745
    Abstract: A treatment chamber (1) evacuable by vacuum pumps (13,13') has a mounting (26,26', . . .) bearing the hollow body (4) in the treatment chamber (1), and a line (9,9') for the admission of a process gas into the treatment chamber (1). A microwave conductor (20,20' . . .) is connected with a generator (19,19' . . .) for igniting a plasma in the area of channels formed by a sheet-metal shroud (2,2') matching the configuration of the hollow body (4). A closure (7,7') is provided through which the filler opening (6, 6') of the hollow body (4) can be closed pressure-tight, and a line (9,9') for the process gas passes through the closure.
    Type: Grant
    Filed: October 17, 1995
    Date of Patent: November 25, 1997
    Assignee: Leybold AG
    Inventors: Heinrich Grunwald, Hermann Kloberdanz, Roland Lacher, Siang-Hong Boll
  • Patent number: 5679412
    Abstract: A method of making a gas-impermeable, chemically inert container wall structure comprising the steps of providing a base layer of an organic polymeric material; conducting a pair of reactive gases to the surface of the base layer preferably by pulsed gas injection; heating the gases preferably by microwave energy pulses sufficiently to create a plasma which causes chemical reaction of the gases to form an inorganic vapor compound which becomes deposited on the surface, and continuing the conducting and heating until the compound vapor deposit on the surface forms a gas-impermeable, chemically inert barrier layer of the desired thickness on the surface. Various wall structures and apparatus for making them are also disclosed.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: October 21, 1997
    Assignee: Manfred R. Kuehnle
    Inventors: Manfred R. Kuehnle, Arno Hagenlocher, Klaus Schuegraf, Hermann Statz
  • Patent number: 5651825
    Abstract: A plasma material gas is introduced into a plasma producing chamber, and, if necessary, a processing gas is introduced into a processing chamber communicated with the plasma producing chamber. In the plasma producing chamber, a microwave is radiated to a sintered body of metal oxide forming a plasma source, so that plasma is generated from the plasma material gas. Ions generated thereby are accelerated and introduced into the processing chamber. Predetermined processing is performed on a work directly by the ions, or is performed in a plasma generated by the ions from the processing gas.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: July 29, 1997
    Assignee: Nissin Electric Co., Ltd.
    Inventors: Takahiro Nakahigashi, Hajime Kuwahara
  • Patent number: 5646489
    Abstract: A plasma processing apparatus has a waveguide along which microwaves are propagated from a microwave generator to a plasma-forming region in a low-pressure processing chamber. The waveguide has a large cross-sectional area, to enable a large region of plasma to be achieved. Uniformity and stability of the plasma are improved by a mode restrictor which inhibits mixing of propagation modes which is otherwise liable to occur in a wide waveguide. The mode restrictor consists of electrically conductive dividers which divide the waveguide cross-section into an array of sub-guides before the plasma-forming region.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: July 8, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Yutaka Kakehi, Yoshinao Kawasaki, Keizo Suzuki, Kazuo Nojiri, Hiromichi Enami, Tetsunori Kaji, Seiichi Watanabe, Yoshifumi Ogawa
  • Patent number: 5645645
    Abstract: A radiofrequency wave apparatus and method which provides a relatively high concentration of reactive species from a plasma for the treatment of a surface particularly of a substrate (31) with a complex geometry in a holder (62) which masks a portion of the substrate. The radiofrequency waves are preferably microwaves or UHF waves. The apparatus and method is particularly useful for rapid plasma assisted chemical vapor deposition of diamond on a portion of the substrate, particularly on surfaces of objects with complex geometries such as a drill (60) or a seal ring (64).
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: July 8, 1997
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Jie Zhang, Jes Asmussen
  • Patent number: 5645644
    Abstract: A plasma processing apparatus comprises means of supplying the microwave, a reaction chamber having a microwave lead-in opening, a microwave window for introducing the microwave provided by the microwave supply means into the reaction chamber through the microwave lead-in opening, and a supporting member having beams for supporting the microwave window. The apparatus has its microwave window divided in correspondence to areas of the supporting member divided by the beams. The apparatus can have a larger microwave window which is reinforced by the beams against the pressure at plasma generation, and is capable of processing large semiconductor substrates and glass substrates for liquid crystal display panels stably and uniformly.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: July 8, 1997
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroshi Mabuchi, Takahiro Yoshiki, Kyoichi Komachi, Tadashi Miyamura
  • Patent number: 5643365
    Abstract: A method and apparatus for efficiently depositing a dielectric film with a preselected thickness pattern, in particular, a homogeneous, uniform diamond or diamond-like film, on large area substrates through the use of opposing plasma torches and linearly superimposing of microwave modes within the reaction chamber creating and maintaining an extended linear plasma in close proximity to the substrate surfaces and utilizing laminar flow of the reactant gases in the plasma and over the surfaces. Substrate surfaces can be moved past the opposing torches permitting the coating of large area, rectangularly-shaped substrate surfaces in a simple manner. Alternatively, the plasma horn or horns can be moved across the substrate permitting coating of large area, rectangularly-shaped substrate surfaces.
    Type: Grant
    Filed: July 25, 1996
    Date of Patent: July 1, 1997
    Assignee: Ceram Optec Industries Inc
    Inventors: L. M. Blinov, W. Neuberger, V. V. Pavlov
  • Patent number: 5639341
    Abstract: Sticking layer forming material is provided so as to be exposed to plasma, partially on an anti-deposition plate mounted on the inner wall of a process chamber of an ECR (or microwave) plasma etching system. The sticking layer forming material is refractory metal such as W or refractory metal silicide. After a wafer with a photoresist layer is set on a susceptor, a plasma process (aging process) is performed to form a sticking layer of low hardness on the inner wall of the process chamber, the sticking layer containing WCl.sub.5, WCl.sub.6, etc. and resist components. This sticking layer prevents Si oxyhalide from being scaled off the inner wall of the process chamber during the etching process of Si-containing material after the aging process. The sticking layer forming material may be provided on a wafer and the resist components may be supplied from gas. In this manner, particles are reduced which are otherwise generated more while Si-containing material such as silicide is etched.
    Type: Grant
    Filed: January 30, 1996
    Date of Patent: June 17, 1997
    Assignee: Yamaha Corporation
    Inventor: Suguru Tabara
  • Patent number: 5637150
    Abstract: A device for forming a microwave plasma including an ionizing chamber wherein a gas can be introduced so as to undergo excitation induced by the presence of a high frequency alternating electric field produced by a plurality of metal antennas. The device includes a gas-free volume wherein metal antennas are arranged parallel to one another and are distributed at the nodes of a regular plane array, an end of each antenna extending from the gas-free volume in the ionizing chamber and an induction loop producing microwaves in the gas-free volume.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: June 10, 1997
    Assignee: Plasmion
    Inventors: Louis Wartski, Jean Aubert
  • Patent number: 5629054
    Abstract: A method for continuously forming a functional deposited film of large area with a microwave plasma-assisted CVD method, characterized by including:continuously moving a strip member in a longitudinal direction, while forming halfway a columnar film formation space with said moving strip member as a side wall;introducing individually at least two or more kinds of source gases for the formation of deposited film having different compositions via a plurality of respective gas supply means into said film formation space;introducing source gases for the formation of deposited film via said gas supply means into said film formation space;at the same time exciting a microwave plasma within said film formation space by radiating or transmitting said microwave energy with microwave applicator means which allows the microwave energy to be radiated or transmitted directionally in one direction perpendicular to a propagating direction of microwave; andforming the deposited film having its composition controlled on a sur
    Type: Grant
    Filed: September 14, 1995
    Date of Patent: May 13, 1997
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masahiro Kanai
  • Patent number: 5628883
    Abstract: A method for generating plasma, comprising irradiating an electromagnetic wave to an energy converter capable of converting an irradiated electromagnetic wave to an electric energy and discharging said electric energy, in the presence of a rare gas in a chamber. A method for activating plasma, further comprising applying an electric cr magnetic field to said generated plasma, a process for treating a substrate, using the generated and optionally activated plasma, and apparatuses therefor are also disclosed.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: May 13, 1997
    Assignee: Japan Vilene Co. Ltd.
    Inventors: Kazuo Sugiyama, Hiroaki Yamazaki, Yasuhiro Hirose
  • Patent number: 5625259
    Abstract: A fluid-cooled plasma applicator for microwave absorbing fluids is described. The applicator includes a discharge tube substantially transparent to microwave energy and a cooling member surrounding the tube defining a channel and a medium. The channel is formed along an inner surface of the member and it encircles an outer surface of the tube for transporting a microwave absorbing cooling fluid over the outer surface of the tube. The medium adjacent to the channel allows an electric field to enter the tube and sustain a plasma in the tube while the fluid is flowing through the channel.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: April 29, 1997
    Assignee: Applied Science and Technology, Inc.
    Inventors: William M. Holber, Donald K. Smith, Matthew M. Besen, Matthew P. Fitzner, Eric J. Georgelis
  • Patent number: 5614025
    Abstract: A plasma processing apparatus for processing wafers or similar objects with neutral particles produced from plasma. A microwave is introduced into the apparatus via a dielectric path, or waveguide, having a broad radiation area. The microwave, therefore, generates uniform and dense plasma over a broad area. Neutral particles are produced from the plasma by two electrodes. As a result, an object is processed at a high speed by a beam of uniformly distributed neutral particles.
    Type: Grant
    Filed: December 7, 1994
    Date of Patent: March 25, 1997
    Assignee: NEC Corporation
    Inventor: Takeshi Akimoto
  • Patent number: 5611864
    Abstract: The plasma processing apparatus of the invention generates plasma from a reactive gas with microwave power so as to process a substrate. The plasma processing apparatus includes: a vacuum chamber having an evacuation means and reactive gas inlet ports; a means for holding the substrate to be processed which is disposed inside the vacuum chamber; a dielectric plate disposed at a position facing the substrate to be processed so as to form an integral part of the vacuum chamber; a metal conductor plate disposed on an outer plane of the dielectric plate not facing the vacuum chamber so as to face the substrate to be processed; and a means for supplying microwave power substantially inverse-radially from a circumferential side of the dielectric plate towards a center thereof.
    Type: Grant
    Filed: March 16, 1995
    Date of Patent: March 18, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tadashi Kimura, Yoshikazu Yoshida, Shinichi Mizuguchi, Yasunao Okazaki
  • Patent number: 5609683
    Abstract: Human-made diamond, as well as naturally found diamond, is a transparent, superhard, crystalline, and electrically nonconductive form of carbon. In this invention, an electrical current of supercritical density alone produces the transformation of graphite to diamond. The entire graphite-to-diamond transformation requires only a few millionths of a second. Using the principles of the invention, diamond can be produced in a variety of shapes, such as loose debris, rods, fibers, bars, dust, etc. In addition to diamond, Buckminster Fuller Balls, known also as C-60 carbon fullerines, are produced using the process and apparatus of the invention.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: March 11, 1997
    Inventor: Maciej J. Pike-Biegunski
  • Patent number: 5603771
    Abstract: Apparatus for plasma activated chemical vapor deposition, the apparatus comprising a microwave-excited plasma reactor with a reaction enclosure (10), a microwave generator (20), a waveguide (21) providing non-resonant coupling, and insertion means (40-54) for inserting at least one flow of a predetermined gaseous mixture into the enclosure; the insertion means comprise, in order: transformation means (40-43) for transforming the state of a precursor of a material to be deposited to bring it to the gaseous state, feed means (41, 42) for feeding a vector gas suitable for being charged with the gaseous precursor to constitute the above-mentioned predetermined gaseous mixture; and injection means (18) for injecting the predetermined gaseous mixture into the enclosure (10) and comprising an externally frustoconical nozzle provided with an injection orifice situated at one end and shaped as a function of the injection orifice and of the column configuration of the plasma formed, said nozzle having means for heating
    Type: Grant
    Filed: March 23, 1995
    Date of Patent: February 18, 1997
    Assignee: Office National d'Etudes et de Recherches Aerospatiales
    Inventors: Ghislaine Seiberras, Claude Indrigo, Remy Mevrel, Philippe LePrince, Michel Bejet, Claude Le Pennec
  • Patent number: 5597624
    Abstract: A method of fabrication of preforms for manufacturing of optical fibers based on surface plasma wave chemical vapor deposition (CVD) is proposed. A surface plasma wave of either the symmetric E.sub.01 or the hybrid HE.sub.11 type is excited on the outside surface of a dielectric starting body. The plasma leads to a CVD of doped or undoped silica layers to obtain the preform. The advantages of the method are the absence of any moving parts in the machinery, high deposition rates, minimal precursor gas usage. Equipment to carry out this process is described as well.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: January 28, 1997
    Assignee: Ceram Optic Industries, Inc.
    Inventors: Leonid Blinov, Wolfgang Neuberger
  • Patent number: 5595792
    Abstract: A method and apparatus for producing a magnetic recording medium in which production of flakes in a film-forming process and the occurrence of arc discharge in the film-forming surface of a substrate are prevented to thereby attain improvement in the quality of the resulting film and in producing efficiency. A web-like substrate is made to run in a vacuum chamber while the substrate is arranged opposite to a sheet-shaped plasma stream. At the same time, a reactive gas is supplied to the plasma stream while an electric field is generated in a direction crossing the plasma stream and the substrate, which are arranged opposite to each other to thereby form a thin film on the plasma stream side surface of the substrate. Accordingly, the production of flakes is prevented, so that the occurrence of arc discharge in the film-forming surface of the substrate is prevented.
    Type: Grant
    Filed: August 23, 1995
    Date of Patent: January 21, 1997
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Makoto Kashiwaya, Junji Nakada
  • Patent number: 5595793
    Abstract: A method and device is described to generate plasmas on the surface of dielectric filaments and--by a plasma chemical vapor deposition (CVD) mechanism--deposit dielectric films on the filaments as they move through the plasma zone. The plasma generated by plasma surface waves are located only in the vicinity of the filament thus reducing precursor gas consumption, deposition on chamber walls, power requirements. The method is particular suitable for manufacturing dielectric coated optical fibers.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: January 21, 1997
    Assignee: Ceram Optec Industries, Inc.
    Inventors: Leonid Blinov, Wolfgang Neuberger
  • Patent number: 5589007
    Abstract: A photovoltaic element comprises a first non-monocrystalline silicon-containing semiconductor layer of a first-conductivity type, a first i-type non-monocrystalline silicon-containing semiconductor layer formed by microwave plasma CVD, a second i-type non-monocrystalline silicon-containing semiconductor layer formed by high-frequency plasma CVD, and a second non-monocrystalline silicon-containing semiconductor layer of a conductivity type opposite to the first-conductivity type, wherein the second semiconductor layer is formed by plasma doping.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: December 31, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Fujioka, Shotaro Okabe, Masahiro Kanai, Hideo Tamura, Atsushi Yasuno, Akira Sakai, Tadashi Hori
  • Patent number: 5587039
    Abstract: A microwave powered electron cyclotron resonance reactor employing a low pressure, high electron density plasma for rapid oxide etching using hydrogen and argon incorporates an alumina-coated quartz dielectric microwave window to couple microwave energy into an etch chamber while preventing oxygen in the window from contaminating the etch chamber or its contents. The etch chamber side of the dielectric microwave window is coated with alumina.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: December 24, 1996
    Assignee: Varian Associates, Inc.
    Inventors: Siamak Salimian, Michelangelo Delfino, Bu-Chin Chung
  • Patent number: 5587205
    Abstract: A plasma processing method for processing a thin film formed on a substrate or forming a thin film on a substrate within a vacuum vessel provides for supplying a gas into the vacuum vessel, producing a plasma in the vacuum vessel by applying a microwave to the gas, and creating a static magnetic field represented by magnetic lines of force parallel to the direction of propagation of the microwave in the vacuum vessel by a magnetic circuit. The field intensity of the static magnetic field is determined taking into consideration the frequency of the microwave so that the same is lower than the field intensity at which electron cyclotron resonance occurs.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: December 24, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Saito, Yasumichi Suzuki, Naoyuki Tamura
  • Patent number: 5587207
    Abstract: An improved vacuum arc coating apparatus is provided, having a tube defining reaction zone with a plasma channel defined within a series of aligned annular substrate holders, or between an outer wall of an axial chain of substrate holder blocks and the inner wall of the tube. The substrate holders thus act as a liner, confining an arc within the plasma channel. Carrier and plasma-creating gases and the reaction species are introduced into the tube, and the deposition process may be carried out at a pressure between 100 Torr and 1000 Torr. Magnetic coils may be used to create a longitudinal magnetic field which focuses the plasma column created by the arc, and to create a transverse magnetic field which is used to bias the plasma column toward the substrates. Substrates can thus be placed anywhere within the reaction zone, and the transverse magnetic field can be used to direct the plasma column toward the substrate, or the tube itself can be rotated to pass the substrate through the plasma column.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: December 24, 1996
    Inventor: Vladimir I. Gorokhovsky
  • Patent number: 5582648
    Abstract: A microwave plasma chemical vapor deposition apparatus for forming a functional deposited film on a plurality of Substrates which includes a substantially enclosed film-forming chamber comprising an outer wall having an end portion thereof provided with a microwave introducing window to which a waveguide extending from a microwave power source is connected, The film-forming chamber has a cylindrical discharge space encircled by a plurality of rotatable cylindrical substrate holders. Each of the cylindrical substrate holders has a substrate thereon. The cylindrical substrate holders are concentrically arranged in the film-forming chamber. The film forming chamber is provided with means for evacuating the film-forming chamber and means for supplying a raw material gas into the discharge space. The means for supplying the raw material gas comprises one or more gas feed pipes provided with a plurality of gas liberation holes capable of supplying a raw material gas radiately against each of the substrates.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: December 10, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroyuki Katagiri, Tetsuya Takei, Toshiyasu Shirasuna
  • Patent number: 5580387
    Abstract: A corrugated waveguide is disclosed comprising a cylindrical body with outer and inner surfaces. The inner surface is provided with plurality of ridges uniformly spaced around the inner surface. Presence of 2n ridges secures the formation of microwaves with stable TE.sub.n1 modes where n is an integer and n>1. Disclosed also is an electron cyclotron resonance system for plasma processing of which system the corrugated waveguide described in the above is a part.
    Type: Grant
    Filed: June 28, 1995
    Date of Patent: December 3, 1996
    Assignee: Electronics Research & Service Organization
    Inventor: Chi-Nan Chen
  • Patent number: 5571749
    Abstract: A plasma CVD method adapted to a roll-to-roll process or the like wherein the change rate of the temperature of the substrate before and after an i-type semiconductor layer is deposited is made rapid so as to prevent diffusion of impurities occurring due to annealing, by constituting the apparatus structure in such a manner that the deposited film is formed on an elongated substrate by the plasma CVD method while heating the elongated substrate moving in an i-layer forming discharge chamber at a rate of 4.degree. C./second or higher immediately in front of an inlet to the discharge chamber and cooling the same at a rate of 4.degree. C./second or higher immediately at the outlet of the discharge chamber so that a stacked-layer type photovoltaic device having a large area and free from scattering of the characteristics is continuously formed without deterioration of the characteristics occurring due to dopant diffusion.
    Type: Grant
    Filed: December 28, 1994
    Date of Patent: November 5, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koichi Matsuda, Takaharu Kondo, Yusuke Miyamoto