Abstract: A two-stroke internal combustion engine achieves high performance levels by using an innovatively timed sequence of injecting and igniting fuel and oxidant. The operating cycle of the engine does not utilize a compression process. This permits the injection of fuel and oxidant to be coordinated with the initiation of the combustion process in such a way that the engine achieves high efficiency and provides high torque, while at the same time producing low thermal loading of engine components and low levels of engine noise and vibration.
Abstract: A motorcycle having an internal combustion engine includes a cylinder arrangement in the form of a VR cylinder arrangement having rows of cylinders which are arranged in an offset manner and are nested into each other. The crank drive acts crosswise onto a crankshaft and a common cylinder head is provided. The inlet channels in the cylinder head are arranged in an identical manner for all of the cylinders. Alternatively, the inlet channels of the one row of cylinders are disposed adjacent to one of two or three camshafts and the inlet channels of the other row of cylinders are disposed on the other side of the camshaft.
Abstract: The horizontally opposed center fired engine improves on the traditional design of the horizontally opposed engines and center fired engines with a better engine geometry. The present invention utilizes four pairs of opposing pistons to compress a larger volume of air-fuel mixture within four different cylinders. The four different cylinders are radially positioned around a center axle in order to achieve a perfectly symmetric engine geometry. The center axle consists of two different shafts spinning in two different directions, which could drastically reduce engine vibrations in the present invention. Engine vibrations are caused by a change in engine speed and result in a loss of energy. Due to the design, the present invention will only experience energy loss in the form of entropy and friction. Thus, the present invention can convert a higher percentage of chemical energy into mechanical energy than any other internal combustion engine.
Abstract: An internal combustion engine having a cylinder crankcase and a v-shaped cylinder configuration and having a lubricant circuit which operates according to the dry sump principle and has a lubricant reservoir, wherein the lubricant reservoir is located within the cylinder crankcase in the space between the cylinders.
Abstract: An exhaust device of a six-cylinder engine includes first to sixth cylinders and a manifold extending from the first to sixth cylinders. The first to sixth cylinders are ignited in that order. The exhaust manifold can include first to sixth upstream exhaust pipes extending respectively from the first to sixth cylinders, first to third midway exhaust pipes extending respectively from a joined portion of extended ends of the first and fourth upstream exhaust pipes, a joined portion of extended ends of the second and fifth upstream exhaust pipes, and a joined portion of extended ends of the third and sixth upstream exhaust pipes, and a downstream exhaust pipe connecting extended ends of the first to third midway exhaust pipes to the ambient atmosphere.