Gas Or Vapor Blasts Or Currents Patents (Class 134/37)
  • Patent number: 8657961
    Abstract: Embodiments of the invention generally provide methods for cleaning a UV processing chamber. In one embodiment, the method includes flowing an oxygen-containing gas through a plurality of passages formed in a UV transparent gas distribution showerhead and into a processing region located between the UV transparent gas distribution showerhead and a substrate support disposed within the thermal processing chamber, exposing the oxygen-containing gas to UV radiation under a pressure scheme comprising a low pressure stage and a high pressure stage to generate reactive oxygen radicals, and removing unwanted residues or deposition build-up from exposed surfaces of chamber components presented in the thermal processing chamber using the reactive oxygen radicals.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: February 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Bo Xie, Alexandros T. Demos, Scott A. Hendrickson, Sanjeev Baluja, Juan Carlos Rocha-Alvarez
  • Publication number: 20140041692
    Abstract: An apparatus for cleaning a surface, such as the surface of a rotating disk, the apparatus comprising an articulating arm associated via a linkage to a rotating member driven by a motor. Rotation of the rotating member causes linkage to move the articulating arm in an oscillating pattern. A nozzle associated with the distal end of the articulating arm can convey pressurized air or liquid from a source to a surface in an oscillating pattern based on the construction of the arm, linkage, the rotating member and the speed of rotation.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: AQUARECYCLE, LLC
    Inventor: Harold Randolph Anderson
  • Patent number: 8647446
    Abstract: A method and system for cleaning a substrate in a multi-module cleaning assembly is provided. The method begins by receiving the substrate into the cleaning module. A cleaning chemistry, at a temperature elevated from an ambient temperature, is applied onto a top surface of the substrate. Concurrent with application of the cleaning chemistry, vapors are exhausted from the cleaning chemistry through a port located below a bottom surface of the substrate with the vapor exhaustion providing a negative pressure relative to a pressure external to the cleaning module. The application of the cleaning chemistry is terminated, followed by termination of the exhausting of the vapors. The substrate is dried after the flowing of inert gas is terminated.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 11, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Satbir Kahlon, Frank Ma
  • Patent number: 8641831
    Abstract: A method for removing the edge bead from a substrate by applying an impinging stream of a medium that is not a solvent for the material to be removed. The medium is applied to the periphery of the substrate with sufficient force to remove the material. Also, an apparatus to perform the inventive method.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 4, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Peter A. Benson
  • Publication number: 20140008180
    Abstract: A hood assembly is provided for a conveyor having a housing with an inlet opening, a belt or auger for transporting particulate material through the housing from the inlet end to the outlet end. The hood assembly includes a hood pivotally mounted to the housing for movement between a closed position substantially closing the inlet end and an open position substantially exposing the inlet end. When the hood is opened, the inlet end of the conveyor housing can be visually inspected and physically cleaned to remove particulate material remnants remaining in the inlet end after the conveyor is shut off. A hopper is provided on the hood to facilitate introduction of material into the conveyor.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 9, 2014
    Inventors: Jeffrey Alan Sivinski, David L. Christensen
  • Publication number: 20140007910
    Abstract: An apparatus for cross-flow purging for optical components in a chamber, including: a housing with first and second axial ends, a side wall extending in an axial direction and connecting the first and second axial ends, and the chamber formed by the first and second axial ends and the side wall; an optical component disposed within the chamber and fixed with respect to the housing via at least one connecting point on the optical component; an inlet port aligned with the side wall, between the first and second axial ends in the axial direction, in a radial direction orthogonal to the axial direction and arranged to inject a purge gas into the chamber and across the optical component in a radial direction orthogonal to the axial direction; and an exhaust port aligned with the side wall in the radial direction and arranged to exhaust the purge gas from the chamber.
    Type: Application
    Filed: July 5, 2013
    Publication date: January 9, 2014
    Inventors: Garry Rose, Gildardo Delgado, H. Steven Larson, Daniel R. Hennigan
  • Patent number: 8624210
    Abstract: A quartz window with an interior plenum is operable as a shutter or UV filter in a degas chamber by supplying the plenum with an ozone-containing gas. Pressure in the plenum can be adjusted to block UV light transmission into the degas chamber or adjust transmittance of UV light through the window. When the plenum is evacuated, the plenum allows maximum transmission of UV light into the degas chamber.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: January 7, 2014
    Assignee: Lam Research Corporation
    Inventors: Yen-Kun Victor Wang, Shang-I Chou, Jason Autustino
  • Patent number: 8608865
    Abstract: In order to produce a particularly efficient device for deburring and/or cleaning a work piece that is dipped in a fluid medium comprising a fluid discharge device for producing a high pressure fluid jet, it is proposed that the device should comprise a gas discharge device for the production of a gas flow which at least partially envelops the fluid jet.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: December 17, 2013
    Assignee: Dürr Ecoclean GmbH
    Inventor: Werner Karls
  • Publication number: 20130319478
    Abstract: A vacuum cleaner is provided, including a suction inlet, a dirt collection container, a filter device, a suction conduit, a suction unit, wherein the dirt collection container is in flow communication with the suction unit via the filter device and the suction conduit and wherein the filter device has a negative pressure applied to it by the suction unit, and including an external air valve device, wherein the filter device is capable of having external air applied thereto on the clean side thereof via the external air valve device and wherein for cleaning the filter device the external air valve device is capable of being brought from a closed valve position to an open valve position and back again from the open valve position to a closed valve position, characterized by a battery device for supplying energy to the external air valve device.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 5, 2013
    Applicant: Alfred Kärcher GmbH & Co. KG
    Inventors: Maic Hensel, Frank Fuchs, Julien Scholl
  • Patent number: 8591667
    Abstract: Methods and apparatus are provided for cleaning jacks in portable electronic components. In one embodiment of the present invention, an adaptor plug is designed having a hollow shaft and the end of the plug is designed with holes that communication with the hollow shaft. The plug can be inserted into a jack, which can operate to open one or more switches within the jack, thereby freeing any debris that may have accumulated under the switches. Compressed air can then be applied down the hollow shaft and out the holes in the plug to displace the debris and clean the jack. In another embodiment, the end of the plug can be constructed such that it rotates about an axis to increase the likelihood that the jack will be cleaned.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: November 26, 2013
    Assignee: Apple Inc.
    Inventors: Adam D. Mittleman, Stephen Zadesky
  • Patent number: 8591661
    Abstract: Improved methods for stripping photoresist and removing etch-related residues from dielectric materials are provided. In one aspect of the invention, methods involve removing material from a dielectric layer using a hydrogen-based etch process employing a weak oxidizing agent and fluorine-containing compound. Substrate temperature is maintained at a level of about 160° C. or less, e.g., less than about 90° C.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: November 26, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: David Cheung, Ted Li, Anirban Guha, Kirk Ostrowski
  • Patent number: 8585826
    Abstract: A method of web cleaning, particularly relatively soft polymeric webs, without using dipping baths or ultrasonic energy. The method includes conveying the web against a backup roller and spraying the web with a high pressure liquid while the web is supported by the backup roller. Thereafter, residual fluid from the high pressure stream is stripped from the web by a gas curtain while the web is supported by the backup roller. In many convenient embodiments, the web is contacted with a cleaning roller while the web is in contact with the backup roller.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: November 19, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Brian E. Schreiber, William B. Kolb, Keith R. Bruesewitz
  • Publication number: 20130298940
    Abstract: A method for removing species from a substrate includes arranging a purge ring in a chamber proximate to a pedestal. The purge ring includes an inlet portion and an exhaust portion. The inlet portion defines an inlet plenum and an inlet baffle. The inlet baffle includes a continuous slit that is substantially continuous around a peripheral arc not less than about 270°. The exhaust portion includes an exhaust channel that is located substantially opposite the inlet baffle. The method further includes supplying ozone to the inlet plenum; at least partially defining a ring hole space having a periphery using the inlet portion and the exhaust portion; conveying gas from the inlet plenum into the ring hole space using the inlet baffle; conveying gas and other matter out of a purge space using the exhaust portion; and inhibiting deposition of material evolved from the substrate during curing using the purge ring.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventors: Eugene Smargiassi, Stephen Yu-Hong Lau, George D. Kamian, Ming Xi
  • Patent number: 8580039
    Abstract: A surface treatment method of a metal member according to an embodiment of the invention includes removing an oily substance on the metal member by using gas-liquid two fluids that are obtained by boiling heated and pressured water under ordinary pressure. A surface treatment device of a metal member for removing an oily substance on the metal member includes self-generation two fluids production means for producing gas-liquid two fluids by boiling heated and pressured water under ordinary pressure, and a surface treatment room carrying out a surface treatment by bringing the self-generation two fluids into contact with the metal member.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: November 12, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Tomonori Saeki, Yoshiyuki Ando
  • Patent number: 8580046
    Abstract: Semiconductor wafers are treated in a liquid container filled at least partly with a solution containing hydrogen fluoride, such that surface oxide dissolves, are transported out of the solution along a transport direction and dried, and are then treated with an ozone-containing gas to oxidize the surface of the semiconductor wafer, wherein part of the semiconductor wafer surface comes into contact with the ozone-containing gas while another part of the surface is still in contact with the solution, and wherein the solution and the ozone-containing gas are spatially separated such that they do not come into contact with one another.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: November 12, 2013
    Assignee: Siltronic AG
    Inventors: Guenter Schwab, Diego Feijoo, Thomas Buschhardt, Hans-Joachim Luthe, Franz Sollinger
  • Patent number: 8580044
    Abstract: A system and method for semiconductor processing chamber includes a housing that can cover an annular gap of a pedestal well of the semiconductor processing chamber. A cleaning nozzle is removably coupled to a compressed dry air (CDA) supply. The cleaning nozzle can inject the CDA into the pedestal well while the housing can contain a byproduct dust agitated by the injected CDA. The byproduct dust is evacuated by at least one vacuum port that is removably coupled to a vacuum source.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 12, 2013
    Assignees: Samsung Austin Semiconductor, L.P., Samsung Electronics Co., Ltd.
    Inventors: Eric McCormick, Rolando Mendez, Bradley May
  • Patent number: 8574371
    Abstract: A method for cleaning containers, in particular bottles of glass or plastics, and a cleaning machine with at least one cleaning medium, with the containers cleaned at least in one station preferential for the cleaning result and/or in a procedure step with at least essentially chemical-free cleaning media. The cleaning medium is advantageously a granular material, in particular granular ice, carried under pressure with compressed air or compressed water. The cleaning machine suited for carrying out the method includes downstream of an unpacking and presoaking station, a pre-cleaning station with a high pressure water blasting pre-cleaning section, and subsequently an intensive cleaning station with at least one intensive cleaning section to which a pressure blasting system for chemical-free, granular material and a carrier medium are associated, and a disinfection station following the intensive cleaning station.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: November 5, 2013
    Assignee: Krones AG
    Inventors: Cornelia Folz, Jan Momsen, Heinz Humele, Timm Kirchhoff, Klaus-Karl Wasmuht, Bernd Hansen, Thomas Islinger, Christoph Weinholzer
  • Publication number: 20130284214
    Abstract: A blowing assembly for a sealing unit of a packaging device is provided comprising a housing and at least one blowing element which is movable relative to said housing between a first position, in which it is lowered at least partially into said housing, and a second position in which it at least partially projects above a surface of said housing. Also provided is a method for removing excess packing material from a blowing assembly for a sealing unit being provided in a packaging device.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Applicant: Multivac Sepp Haggenmuller GmbH & Co. KG
    Inventors: Rainer Häring, Thomas Scheufele
  • Publication number: 20130276838
    Abstract: A device for cleaning wall surfaces, ground surfaces, track superstructures or tunnel walls is configured to be arranged on a rail vehicle that moves along a direction of travel. The device includes an aspirator opening and at least two air nozzles arranged in rows of air nozzles disposed on either side of the aspirator opening such that the aspirator opening is disposed between the rows of air nozzles. The rows of air nozzles are supplied with compressed air such that the pressure of the row of air nozzles disposed in front of the aspiration opening in the direction of travel of the rail vehicle is lower than the pressure of the other row of air nozzles.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 24, 2013
    Applicant: Rodinia Technologies Ltd.
    Inventor: Albert Brock
  • Patent number: 8562751
    Abstract: A dry cleaning method of a substrate processing apparatus includes forming a metal oxide by oxidizing a metal film adhered to the inside of a processing chamber of the substrate processing apparatus; forming a complex by reacting the metal oxide with ?-diketone; and sublimating the complex to be removed. A cleaning gas containing oxygen and ?-diketone is supplied into the processing chamber while heating the inside of the processing chamber. A flow rate ratio of oxygen to ?-diketone in the cleaning gas is set such that a formation rate of the metal oxide is lower than a formation rate of the complex.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: October 22, 2013
    Assignees: Tokyo Electron Limited, Central Glass Company, Limited
    Inventors: Isao Gunji, Yusaku Izawa, Hitoshi Itoh, Tomonori Umezaki, Yuta Takeda, Isamu Mori
  • Patent number: 8557051
    Abstract: A system for cleaning a substrate with a foam performs a method for generating a cleaning foam. In the first operation of the method, the system pumps a fluid into a premix chamber. The premix chamber is a component of a male plug which fits into a female housing in the system. Then the system injects a gas into the premix chamber to initiate generation of the foam from the fluid. The foam flows from the premix chamber into a sealed helical channel formed by a helical indentation on an outside surface of the male plug and an inner surface of the female housing to allow the foam to reach a desired state along a length of the sealed helical channel. In the last operation of the method, the foam outputs from an exit end of the helical channel through the male plug to a component of the system.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 15, 2013
    Assignee: Lam Research Corporation
    Inventors: Arnold Kholodenko, Anwar Husain, Gregory A. Tomasch, Cheng-Yu (Sean) Lin
  • Patent number: 8545637
    Abstract: A cleaning device (1) performs a cleaning of an article by blowing a cleaning medium (5) by an air stream onto the article (4). The cleaning device (1) includes a cleaning tank (6) that forms a space for the cleaning medium (5) to be blown, which includes an opening; a holding unit (3) that holds the article (4) at the opening; a pool member (19) that is arranged on an outer edge of the opening with a clearance between the pool member (19) and the article (4); and a cleaning-medium collecting unit (8) that brings the cleaning medium (5) leaked out of the outer edge and accumulated in the clearance back into the cleaning tank (6).
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: October 1, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Akihiro Fuchigami, Tatsuya Satoh, Yoichi Okamoto, Yuusuke Taneda
  • Patent number: 8545640
    Abstract: In a substrate processing method according to the present invention, a cleaning liquid nozzle supplies a rinsing liquid to a central portion of a substrate and thereafter moves from a position corresponding to the central portion of the substrate to a position corresponding to a peripheral, edge portion thereof while supplying the rinsing liquid before stopping at the position corresponding to the peripheral edge portion. Next, a drying liquid nozzle moves from the position corresponding to the peripheral edge portion to the position corresponding to the central portion while supplying a drying liquid. Then, the drying liquid nozzle is kept stationary at the position corresponding to the central portion for a predetermined period of time while supplying the drying liquid. Thereafter, a gas nozzle moves from the position corresponding to the central portion to the position corresponding to the peripheral edge portion while supplying an inert gas.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 1, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Teruomi Minami, Naoyuki Okamura, Yosuke Kawabuchi
  • Publication number: 20130239998
    Abstract: The invention relates to a fitting for distributing a gas flow to two or more flow ducts, wherein the fitting has an inlet connecting piece (20) and two or more separate outlet connecting pieces (21, 22), wherein upstream of each outlet connecting piece (21, 22) there is arranged a disc valve, wherein the disc valve inserts (15, 16) of two or more disc valves are kinematically coupled, and to a method for cleaning filter elements (4) immersed in a basin (1), in particular diaphragm filters, by aeration of the filter elements by means of gas bubbles which are introduced into the basin (1) below the filter elements (4) via aerators (5), wherein a gas flow for aerating the filter elements (4) is generated by means of a blower (7), wherein the gas flow is distributed by means of a fitting to two or more aerators (5), wherein the distribution of the gas flow takes place discontinuously, such that a pulsed aeration of the filter elements (4) of varying duration takes place at irregular intervals.
    Type: Application
    Filed: November 30, 2011
    Publication date: September 19, 2013
    Applicant: AQUANTIS GmbH
    Inventors: Martin Brockmann, Jurgen Kunzel, Heribert Moslang, Norbert Wegmann
  • Publication number: 20130239997
    Abstract: A method of cooling a turbine having internal moving components to a predetermined temperature is disclosed. The method comprises taking the turbine offline. While the turbine is offline, nitrogen is flowed through the turbine until the turbine reaches the predetermined temperature while controlling the flow of nitrogen from at least one injection point to prevent damage to the moving components of the turbine by achieving uniform cooling of the internal moving components. Then the flow of nitrogen is stopped. A method and assembly for cleaning a turbine having a deposit formed on an internal surface of the turbine is also disclosed.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 19, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Steven J. Barber
  • Patent number: 8524009
    Abstract: A substrate processing method comprising: holding a substrate substantially horizontally by a rotatable substrate holding mechanism; supplying a rinsing liquid onto the top of the substrate held by the substrate holding mechanism at the substrate holding step; after the rinsing liquid supply step, spraying a gas onto the top of the substrate held by the substrate holding mechanism, by a gas knife mechanism, to form a gas spraying zone on the substrate top, and unidirectionally scanning the substrate top in its entirety by this gas spraying zone, without rotating the substrate; replenishing the rinsing liquid by supplying, in parallel to the gas knife spraying step, a rinsing liquid onto the substrate top at its area downstream in the gas-spraying-zone scanning direction rather than the gas spraying zone formed by the gas knife mechanism; and drying the substrate surface after the gas knife spraying step and the rinsing liquid replenishing step.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 3, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Hiroyuki Araki, Kentaro Tokuri
  • Publication number: 20130213435
    Abstract: Compositions and methods for improved cleaning using neutral cleaners are disclosed. In particular, neutral pH cleaning compositions according to the invention employ a synergistic combination of water insoluble surfactants and an anionic hydrotropes capable of forming a stable, low-foaming solution. The neutral cleaning solutions provide significant benefits over water insoluble microemulsions traditionally used for neutral cleaning compositions and provide at least equivalent cleaning efficacy as non-neutral cleaning compositions.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: ECOLAB USA INC.
    Inventors: Catherine Hanson, Andrew Wold, Traci Gioino, Kim R. Smith, Yvonne Marie Killeen
  • Patent number: 8506718
    Abstract: A polymer removing apparatus for use in removing polymer annularly adhered to a peripheral portion of a target substrate includes a processing chamber for accommodating the target substrate having the polymer annularly adhered to the peripheral portion thereof; a mounting table for mounting the target substrate thereon; and a laser irradiation unit for irradiating ring-shaped laser light at once to the whole polymer annularly adhered to the target substrate. The polymer removing apparatus further includes an ozone gas supply unit for supplying an ozone gas to the polymer annularly adhered to the target substrate and a gas exhaust unit for exhausting the ozone gas.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: August 13, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Takehiro Shindou, Masaki Kondo
  • Patent number: 8492736
    Abstract: A quartz window with an interior plenum is operable as a shutter or UV filter in a degas chamber by supplying the plenum with an ozone-containing gas. Pressure in the plenum can be adjusted to block UV light transmission into the degas chamber or adjust transmittance of UV light through the window. When the plenum is evacuated, the plenum allows maximum transmission of UV light into the degas chamber.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 23, 2013
    Assignee: Lam Research Corporation
    Inventors: Yen-Kun Victor Wang, Shang-I Chou, Jason Augustino
  • Patent number: 8480812
    Abstract: A process for quickly removing hydrocarbon contaminants and noxious gases in a safe and effective manner from catalytic reactors, other media packed process vessels and associated equipment in the vapor phase without using steam. The cleaning agent contains one or more solvents, such as terpenes or other organic solvents. The cleaning agent is injected into contaminated equipment, along with a carrier gas, in the form of a cleaning vapor.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: July 9, 2013
    Assignee: Refined Technologies, Inc.
    Inventors: Cody Nath, Barry Baker, Sean Sears
  • Patent number: 8470096
    Abstract: A method for cleaning a bell cup after its removal from a rotary paint atomizer. A device is provided that preferably includes an enclosure within which the bell cup is retained during the cleaning operation. Pressurized cleaning fluid is introduced into the enclosure where it flows over the bell cup and removes paint therefrom. The enclosure may be connected to the nozzle end of a paint spray gun that can be used to deliver the pressurized cleaning fluid thereto.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 25, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Charles C. Marks
  • Patent number: 8459277
    Abstract: Disclosed are methods and apparatus for cleaning heat exchangers and similar vessels by introducing chemical cleaning solutions and/or solvents while maintaining a target temperature range by direct steam injection into the cleaning solution. The steam may be injected directly into the heat exchanger or into a temporary side stream loop for recirculating the cleaning solution or admixed with fluids being injected to the heat exchanger. The disclosed methods are suitable for removing metallic oxides from a heat exchanger under chemically reducing conditions or metallic species such as copper under chemically oxidizing conditions. In order to further enhance the heat transfer efficiency of heating cleaning solvents by direct steam injection, mixing on the secondary side of the heat exchanger can be enhanced by gas sparging or by transferring liquid between heat exchangers when more than one heat exchanger is being cleaned at the same time.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: June 11, 2013
    Assignee: Dominion Engineering, Inc.
    Inventors: Robert D. Varrin, Jr., Michael J. Little
  • Patent number: 8460478
    Abstract: A semiconductor apparatus includes a first tank configured to accommodate a first fluid. A second tank is configured to receive overflow of the first fluid into an upper portion of the second tank and to accommodate a second fluid. A cycling system including a first conduit is configured between the first tank and the second tank. The first conduit has an end substantially below a surface of the second fluid. A fluid providing system including a second conduit is fluidly coupled to the second tank and configured to provide the second fluid into the second tank. The second conduit has an end substantially below the surface of the second fluid. An overflow system is coupled to the second tank and configured to remove an upper portion of the second fluid when the surface of the second fluid is substantially equal to or higher than a pre-determined level.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: June 11, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuang-Nian Tang, Yang-Kai Fan, Yu-Sheng Su, Ming-Tsao Chiang, Yu-Cheng Shih
  • Patent number: 8454761
    Abstract: An apparatus for cleaning the surface of a base, comprising: a base; a plurality of apertures flush with the surface of said base, said apertures being connected to a plurality of sub-channels and wherein said apertures are adapted to expel air; at least one air chamber operatively connected with said plurality of sub-channels; a main channel connected with said at least one air chamber; wherein said main channel is supplied from an air compressor; and a main valve located between said at least one air chamber and said main channel, wherein said main valve regulates the air flow from said main channel to said at least one air chamber, said valve being further adapted to close said main channel.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 4, 2013
    Inventor: Fermin Esson
  • Patent number: 8454752
    Abstract: A foreign substance removing apparatus includes a mounting table for mounting and rotating a substrate; and a laser beam irradiation unit for removing foreign substances attached to a surface of the substrate by irradiating foreign substance cleaning laser beam onto the substrate mounted and rotated on the mounting table. In the foreign substance removing apparatus, the laser beam irradiation unit irradiates laser beam having an elongate shaped irradiation cross section onto the surface of the substrate.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: June 4, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Masaki Kondo, Takehiro Shindou
  • Patent number: 8454756
    Abstract: Methods of extending the lifetime of pressure gauges coupled to process chambers are disclosed herein. In some embodiments, the methods may include isolating the pressure gauge from a processing volume of the process chamber, increasing a moisture content of the processing volume to above a desired moisture level while the pressure gauge is isolated from the processing volume of the process chamber, reducing a moisture content of the processing volume to a desired moisture level, wherein the processing volume has a leak rate of about 2 mTorr/min or less at the desired moisture level, and exposing the pressure gauge to the processing volume after reaching the desired moisture level. In some embodiments, the moisture content of the process chamber may be increased by performing a cleaning process in the process chamber or by allowing air to enter the processing volume.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: June 4, 2013
    Assignee: Applied Materials, Inc.
    Inventor: James P. Cruse
  • Patent number: 8435358
    Abstract: A conveyor dishwasher (2) has a control apparatus (50) for automatically setting the quantity of final rinse liquid sprayed in the final rinse zone (18) per unit time as a function of the conveying speed and/or as a function of the type of washware conveyed through the final rinse zone (18). A rinse aid metering apparatus (57) is also provided which is designed to add in a metered fashion a constant quantity of rinse aid per unit time to the fresh water provided for final rinsing purposes independently of the quantity of final rinse liquid sprayed in the final rinse zone (18) per unit time.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: May 7, 2013
    Assignee: Premark FEG L.L.C.
    Inventors: Harald Disch, Martin Schrempp, Norbert Litterst
  • Patent number: 8421046
    Abstract: In a method for keeping clean a sensor window of an optical sensor for detecting value documents and/or at least one property of value documents which is disposed with at least one portion in a beam path of the sensor, a gas film attached to a surface of the portion is generated on the portion of the sensor window from gas moving relative to the portion.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 16, 2013
    Assignee: Giesecke & Devrient GmbH
    Inventor: Karl-Heinz Leuthold
  • Patent number: 8419862
    Abstract: The invention is directed to a method for at least partially removing a contamination layer (15) from an optical surface (14a) of an EUV-reflective optical element (14) by bringing a cleaning gas into contact with the contamination layer. In the method, a jet (20) of cleaning gas is directed to the contamination layer (15) for removing material from the contamination layer (15). The contamination layer (15) is monitored for generating a signal indicative of the thickness of the contamination layer (15) and the jet (20) of cleaning gas is controlled by moving the jet (20) of cleaning gas relative to the optical surface (14a) using this signal as a feedback signal. A cleaning arrangement (19 to 24) for carrying out the method is also disclosed. The invention also relates to a method for generating a jet (20) of cleaning gas and to a corresponding cleaning gas generation arrangement.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: April 16, 2013
    Assignees: Carl Zeiss SMT GmbH, ASML Netherlands B.V.
    Inventors: Dirk Heinrich Ehm, Arnold Storm, Johannes Hubertus Josephina Moors, Bastiaan Theodoor Wolschrijn, Thomas Stein, Edwin te Sligte
  • Patent number: 8414708
    Abstract: Provided is a method and apparatus for cleaning a photomask. The photomask including a first region and a second region surrounding the first region, a pattern to be protected disposed on the first region, and a material to be removed exists on the second region. A cleaning liquid is sprayed from an inside region of the second region toward an outer region of the second region to remove the material, and a gas is blown from the first region toward the second region to protect the pattern.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: April 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-song Jeong, Hyung-ho Ko, Sung-jae Han, Kyung-noh Kim, Chan-uk Jeon
  • Patent number: 8409364
    Abstract: The invention relates to a method for removing at least part of at least one layer of a composite coating that is formed of fibers and at least one resin that is present on the surface of the body of a gas cartridge. In said method, at least one liquid nitrogen stream is dispensed at a temperature less than ?100 DEG C at a pressure of at least 00 bars upon contact with said coating so as to remove at least part of said coating layer present on the body of the gas cartridge.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 2, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude el l'Exploitation des Procedes Georges Claude
    Inventors: Jacques Quintard, Frederic Richard, Charles Truchot
  • Patent number: 8404052
    Abstract: A method for cleaning the surface of a silicon substrate, covered by a layer of silicon oxide includes: a) exposing the surface for 60 to 900 seconds to a radiofrequency plasma, generated from a fluorinated gas, to strip the silicon oxide layer and induce the adsorption of fluorinated elements on the substrate surface, the power density generated using the plasma being 10 mW/cm2 to 350 mW/cm2, the fluorinated gas pressure being 10 mTorrs to 200 mTorrs, and the substrate temperature being lower than or equal to 300° C.; and b) exposing the surface including the fluorinated elements for 5 to 120 seconds to a hydrogen radiofrequency plasma, to remove the fluorinated elements from the substrate surface, the power density generated using the plasma being 10 mW/cm2 to 350 mW/cm2, the hydrogen pressure being 10 mTorrs to 1 Torr, and the substrate temperature being lower than or equal to 300° C.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: March 26, 2013
    Assignees: Centre National de la Recherche Scientifique, Ecole Polytechnique
    Inventors: Pere Roca I Cabarrocas, Mario Moreno
  • Publication number: 20130061886
    Abstract: A powder spray for lengthy parts includes a booth wall structure comprised primarily of doors. A moveable roof may be raised and lowered to clean powder overspray from the interior surfaces of the booth. A cleaning process may be performed with a sideways extraction mode and a downward extraction mode. The mode change occurs when a bulkhead that travels with the moveable roof blocks the inlet duct to the recovery system. The recovery system may be a cyclone system for example. The doors of the booth are hinged so that they can be positioned for spraying operations and cleaning operations. Live hinge designs are provided and hose stress relief designs are also provided. The roof may carry accumulators for pressurized air that feed cleaning nozzles as the roof descends. In addition, exhaust air may be used to assist cleaning the interior surfaces as the roof descends. All of the energy provided for cleaning and color change may be provided by accumulators.
    Type: Application
    Filed: October 23, 2012
    Publication date: March 14, 2013
    Applicant: NORDSON CORPORATION
    Inventor: Nordson Corporation
  • Publication number: 20130056038
    Abstract: A method controllably and sustainably creates an upwardly directed gradient of dropping temperatures in a wet treatment tank between a cooled and face down workpiece (e.g., an in-process semiconductor wafer) and a lower down heat source. A thermal fluid upwell containing thermally collapsible bubbles is then directed from the heat source to the face down workpiece. In one class of embodiments, bubble collapse energy release and/or bubble collapse locations are controlled so as to avoid exposing delicate features of the to-be-treated surface to damaging forces. In one class of embodiments the wet treatment includes ultra-cleaning of the work face. Cleaning fluids that are essentially free of predefined contaminates are upwelled to the to-be-cleaned surface and potentially contaminated after-flows are convectively directed away from the workpiece so as to prevent recontamination of the workpiece.
    Type: Application
    Filed: June 22, 2012
    Publication date: March 7, 2013
    Inventor: Yehiel Gotkis
  • Publication number: 20130056033
    Abstract: A substrate cleaning method includes removing a foreign material attached to a substrate while preventing deterioration of the substrate and any film formed on or above the substrate. A cleaning gas at a pressure between 0.3 MPa and 2.0 MPa is sprayed towards a wafer W with attached foreign material 22 placed in a near-vacuum, producing clusters 21 made up of a multitude of gas molecules 20, and the clusters 21 collide with the wafer W without undergoing ionization.
    Type: Application
    Filed: February 3, 2011
    Publication date: March 7, 2013
    Applicants: Iwatani Corporation, Tokyo Electron Limited
    Inventors: Hidefumi Matsui, Tsuyoshi Moriya, Masaki Narushima
  • Publication number: 20130048032
    Abstract: A method for removing painted markings is provided that includes the step of applying a paint removal agent to a painted marking on a surface. A covering may be applied to the paint removal agent. Further, a fluid may be applied to the covering as the covering covers the paint removal agent to effect removal of the painted marking, the paint removal agent, and the covering.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Inventor: Jesse Duane Johnson
  • Patent number: 8382909
    Abstract: The present invention relates to vacuum processing systems in which process gases are introduced in a process chamber and are exhausted through a vacuum processing system exhaust path. Deposits made by the exhausted gas are reduced or eliminated by introducing a reactive gas upstream of the device affected by deposits. The amount of introduced reactive gas is controlled by measuring gas phase concentrations of exhausted gas components upstream and downstream of the affected device, and, from those measurements, determining whether the components are being consumed in deposits on the affected device.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: February 26, 2013
    Assignee: Edwards Limited
    Inventor: Kenneth Allen Aitchison
  • Patent number: 8377216
    Abstract: A vacuum processing apparatus includes a vacuum chamber for performing a plasma process and a cleaning process unit for performing a cleaning process to apply a plasma process to a wafer on which a single layer or a laminated film containing a metallic film is formed by using a corrosive gas, and a control unit having a sequence to abort the plasma process when an abnormality occurs in the vacuum chamber and transfer the wafer subjecting to the aborting of the plasma process to the cleaning process unit, after elapsing a predetermined time, to perform the cleaning process.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masakazu Okai, Kenji Tamai, Toru Ueno
  • Patent number: 8377225
    Abstract: A membrane separation method is useful in purifying clear water, sewage, etc. and can reliably remove obstruction of an air diffusing apparatus by opening and closing valves, a submerged membrane separation apparatus to be used for the same, and a method for cleaning an air diffusing apparatus. The submerged membrane separation apparatus includes a separation membrane module, an air diffusing apparatus, and a gas supplying apparatus, wherein an air diffusing apparatus is arranged in one treatment tank, two header pipes (A and B) are placed as the gas supplying pipes, the connecting port a and the header pipe A and the connecting port b and the header pipe B for each of the air diffusing apparatuses are respectively connected, on-off valves are arranged in four parts, and the header pipes A and B each have an open end.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: February 19, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Junichi Baba, Toshitsugu Onoe, Makoto Ichinose
  • Patent number: 8372212
    Abstract: According to one embodiment, a supercritical drying method comprises cleaning a semiconductor substrate with a chemical solution, rinsing the semiconductor substrate with pure water after the cleaning, changing a liquid covering a surface of the semiconductor substrate from the pure water to alcohol by supplying the alcohol to the surface after the rinsing, guiding the semiconductor substrate having the surface wetted with the alcohol into a chamber, discharging oxygen from the chamber by supplying an inert gas into the chamber, putting the alcohol into a supercritical state by increasing temperature in the chamber to a critical temperature of the alcohol or higher after the discharge of the oxygen, and discharging the alcohol from the chamber by lowering pressure in the chamber and changing the alcohol from the supercritical state to a gaseous state. The chamber contains SUS. An inner wall face of the chamber is subjected to electrolytic polishing.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 12, 2013
    Assignees: Kabushiki Kaisha Toshiba, Tokyo Electron Limited
    Inventors: Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Yukiko Kitajima, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii