Silicon Or Germanium Containing Patents (Class 136/261)
  • Publication number: 20140000713
    Abstract: A device includes a plurality of wires of nanometric or micrometric dimensions formed by a semiconductor material chosen from silicon, germanium and a silicon and germanium alloy. The device further includes pellets enhancing the mechanical strength and the optical absorption properties of the device. The pellets have a diameter between 100 nm and 1 ?m and are formed by spherical agglomerates of zinc oxide particles with a diameter between 10 mn and 200 nm. The pellets are in particular obtained by immersing the wires in a bath containing an alcohol-based solvent and zinc acetate under temperature and pressure conditions keeping the alcohol-based solvent in the liquid state and by thermal annealing of the wires transforming the zinc acetate into zinc oxide.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 2, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: David Kohen, Nicolas Karst, Simon Perraud
  • Patent number: 8613872
    Abstract: A charge-carrier transport layer for an electro-optical component includes an organic charge-carrier transport material. A plurality of first particles having a diameter ranging from 1 nm to 100 nm is incorporated in the organic charge-carrier transport material and contains a first transparent oxide. A plurality of second particles having a diameter between 100 nm and 1000 nm is also incorporated into the organic charge-carrier transport material and contains a second transparent oxide. The index of refraction of the plurality of second particles differs from the index of refraction of the organic charge-transport material.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: December 24, 2013
    Assignee: Karlsruher Institut fuer Technologie
    Inventors: Uli Lemmer, Julian Hauss, Boris Riedel, Martina Gerken
  • Patent number: 8614396
    Abstract: A method for processing iron disilicide for manufacture photovoltaic devices. The method includes providing a first sample of iron disilicide comprising at least an alpha phase entity, a beta phase entity, and an epsilon phase entity. The method includes maintaining the first sample of iron disilicide in an inert environment and subjects the first sample of iron disilicide to a thermal process to form a second sample of iron disilicide. The second sample of iron disilicide comprises substantially beta phase iron disilicide and is characterized by a first particle size. The method includes introducing an organic solvent to the second sample of iron disilicide, forming a first mixture of material comprising the second sample of iron disilicide and the organic solvent. The method processed the first mixture of material including the second sample of iron disilicide using a grinding process.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: December 24, 2013
    Assignee: Stion Corporation
    Inventors: Frederic Victor Mikulec, Bing Shen Gao, Howard W. H. Lee
  • Patent number: 8604330
    Abstract: In various embodiments, an array of discrete solar cells with associated devices such as bypass diodes is formed over a single substrate. In one instance, a method of forming a solar-cell array with integrated bypass diodes comprising: providing a semiconductor substrate, a first cell comprising a SiGe p-n junction or SiGe p-i-n junction, one or more second cells each comprising a III-V semiconductor p-n junction or III-V semiconductor p-i-n junction; forming a bypass diode that is discrete and laterally separate from its associated solar cell and comprises an unremoved portion of the first cell, the formation comprising removing an unremoved portion of the one or more second cells thereover.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: December 10, 2013
    Assignee: 4Power, LLC
    Inventors: John J. Hennessy, Andrew C. Malonis, Arthur J. Pitera, Eugene A. Fitzgerald, Steven A. Ringel
  • Patent number: 8603849
    Abstract: The present invention provides a semiconductor based photovoltaic device and a manufacturing method thereof. The semiconductor based photovoltaic device is able to absorb light with a wide band wavelength, and has high photoelectric conversion efficiency since it has high electron-hole pair separation efficiency.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: December 10, 2013
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Kyung Joong Kim, Woo Lee, Yong Sung Kim, Young Heon Kim, Seung hui Hong, Wan Soo Yun, Sang Woo Kang
  • Publication number: 20130319526
    Abstract: The present invention is a dye-sensitized solar cell including a working electrode having a conductive substrate that is capable of transmitting light, and a porous oxide semiconductor layer that is provided on the conductive substrate; a counter electrode that is provided to face the porous oxide semiconductor layer of the working electrode; a photosensitizing dye that is supported in the porous oxide semiconductor layer of the working electrode; and an electrolyte that is disposed between the working electrode and the counter electrode, in which solar cell the average particle size of the entirety of the semiconductor particles that constitute the porous oxide semiconductor layer is 100 nm or less, the electrolyte contains inorganic particles and is gelled by the inorganic particles, and the reflectance of the electrolyte is higher than the reflectance of the porous oxide semiconductor layer.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 5, 2013
    Applicant: FUJIKURA LTD.
    Inventor: Daisuke MATSUMOTO
  • Patent number: 8592676
    Abstract: A solar cell in which an n-type fine silicon particle film is formed in a lamination layer on the surface of a transparent substrate via a transparent electrode, and the n-type fine silicon particle film is covalently bound to the transparent electrode via the first organic coating formed on the surface of the transparent electrode and the second organic coating formed on the surface of the n-type fine silicon particle film and the n-type fine silicon particle film is covalently bound to the p-type fine silicon particle film via the second organic coating formed on the surface of the n-type fine silicon particle film and the third organic coating formed on the surface of the p-type fine silicon particle film.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: November 26, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Kazufumi Ogawa
  • Patent number: 8592677
    Abstract: A substrate includes a semiconductor layer, a plurality of dielectric layers disposed on one side of the semiconductor layer and separated from each other and a photoactive layer disposed between the dielectric layers and including a compound of a Group III element and a Group V element. Also disclosed are a solar cell including the same and a manufacturing method thereof.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoung Gyun Suh, Dong Ho Kim, Ji Eun Chang
  • Patent number: 8592675
    Abstract: Photovoltaic devices and techniques for enhancing efficiency thereof are provided. In one aspect, a photovoltaic device is provided. The photovoltaic device comprises a photocell having a first photoactive layer and a second photoactive layer adjacent to the first photoactive layer so as to form a heterojunction between the first photoactive layer and the second photoactive layer; and a plurality of high-aspect-ratio nanostructures on one or more surfaces of the second photoactive layer. The plurality of high-aspect-ratio nanostructures are configured to act as a scattering media for incident light. The plurality of high-aspect-ratio nanostructures can also be configured to create an optical resonance effect in the incident light.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Oki Gunawan
  • Publication number: 20130306150
    Abstract: A method for manufacturing a thin-film photovoltaic device includes providing a glass substrate contained sodium species. The glass substrate comprising a surface region and a peripheral edge region surround the surface region. The method further includes forming a barrier material overlying the surface region and partially overlying the peripheral edge region and forming a conductor material overlying the barrier material. Additionally, the method includes forming at least a first trench in a vicinity of the peripheral edge region to remove substantially the conductor material therein and forming precursor materials overlying the patterned conductor material. Furthermore, the method includes thermally treating the precursor materials to transform the precursor materials into a film of photovoltaic absorber. The first trench is configured to maintain the film of photovoltaic absorber substantially free from peeling off the conductor material.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: Stion Corporation
    Inventors: Laila Dounas, Robert D. Wieting, Chester A. Farris, III
  • Patent number: 8586859
    Abstract: A method of forming a plurality of discrete, interconnected solar cells mounted on a carrier by providing a first semiconductor substrate; depositing on the first substrate a sequence of layers of semiconductor material forming a solar cell structure; forming a metal back contact layer over the solar cell structure; mounting a carrier on top of the metal back contact; removing the first substrate; and lithographically patterning and etching the solar cell structure to form a plurality of discrete solar cells mounted on the carrier.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 19, 2013
    Assignee: Emcore Solar Power, Inc.
    Inventor: Tansen Varghese
  • Publication number: 20130298984
    Abstract: Methods, structures and devices are provided in which a crystalline silicon surface is passivated by an ultra-thin silicon oxide layer and an outer passivating dielectric layer, where the ultra-thin silicon oxide layer has a thickness on an Angstrom scale. In some embodiments, both layers are formed by low temperature processes. The outer passivating layer may be formed according to a PECVD process that employs hydrogen-containing precursor gases, such that hydrogen is incorporated into one or both of the silicon oxide layer and the passivating dielectric layer. The present methods may be employed for the passivation of a wide variety of structures and devices, including photovoltaic cells, MOSFET devices, flash memory devices, and thin-film silicon substrates that may contain such devices.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 14, 2013
    Inventors: Nazir Pyarali KHERANI, A. K. M. Zahidur Rahim CHOWDHURY
  • Publication number: 20130298992
    Abstract: A method to improve CdTe-based photovoltaic device efficiency is disclosed. The CdTe-based photovoltaic device can include oxygen or silicon in semiconductor layers.
    Type: Application
    Filed: July 18, 2013
    Publication date: November 14, 2013
    Applicant: First Solar, Inc.
    Inventors: Gang Xiong, Rick C. Powell, Aaron Roggelin, Kuntal Kumar, Arnold Allenic, Kenneth M. Ring, Charles E. Wickersham
  • Publication number: 20130284258
    Abstract: A method is disclosed for making semiconductor films from a eutectic alloy comprising a metal and a semiconductor. Through heterogeneous nucleation said film is deposited at a deposition temperature on relatively inexpensive buffered substrates, such as glass. Specifically said film is vapor deposited at a fixed temperature in said deposition temperature where said deposition temperature is above a eutectic temperature of said eutectic alloy and below a temperature at which the substrate softens. Such films could have widespread application in photovoltaic and display technologies.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Applicant: SOLAR-TECTIC LLC
    Inventors: Karin Chaudhari, Ashok Chaudhari, Pia Chaudhari
  • Publication number: 20130284269
    Abstract: Improved silicon solar cells, silicon image sensors and like photosensitive devices are made to include strained silicon at or sufficiently near the junctions or other active regions of the devices to provide increased sensitivity to longer wavelength light. Strained silicon has a lower band gap than conventional silicon. One method of making a solar cell that contains tensile strained silicon etches a set of parallel trenches into a silicon wafer and induces tensile strain in the silicon fins between the trenches. The method may induce tensile strain in the silicon fins by filling the trenches with compressively strained silicon nitride or silicon oxide. A deposited layer of compressively strained silicon nitride adheres to the walls of the trenches and generates biaxial tensile strain in the plane of adjacent silicon fins.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Inventor: Paul A. Clifton
  • Publication number: 20130284268
    Abstract: A self-assembly nano-composite solar cell comprises a substrate, a first electrode layer, a composite absorption layer and a second electrode layer. The first electrode layer is formed on the substrate. The composite absorption layer is formed over the first electrode layer and includes a plurality of vertical nano-pillars, a plurality of gaps each formed between any two adjacent nano-pillars, and a plurality of bismuth sulfide nano-particles filled into the gaps and attached to the nano-pillars. The second electrode layer is formed over the composite absorption layer. Through etching and soaking in solutions, the composite absorption layer with nano-pillars and bismuth sulfide nano-particles is fabricated to form a self-assembly nano-composite solar cell having high power conversion efficiency.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Inventors: Che-Ning YEH, Chun-Te HO, Tri-Rung YEW
  • Publication number: 20130284247
    Abstract: A material is manufactured from a transformative process of heating a structure comprising a transparent conductive oxide disposed over a semiconductor material. The heating process causes a p-type dopant from the semiconductor material diffuses into the transparent conductive oxide, and causes the semiconductor material to transform into an intrinsic semiconductor layer over a bulk layer. The material manufactured exhibits photovoltaic properties because the layers formed during the transformative process create a p-i-n or a p-n junction having a band-gap difference between the top layer and the bulk layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 31, 2013
    Inventor: NUSOLA, INC.
  • Patent number: 8569098
    Abstract: A method for manufacturing a photoelectric conversion device including a first-conductivity-type crystalline semiconductor region, an intrinsic crystalline semiconductor region, and a second-conductivity-type semiconductor region that are stacked over an electrode is provided for a new anti-reflection structure. An interface between the electrode and the first-conductivity-type crystalline semiconductor region is flat. The intrinsic crystalline semiconductor region includes a crystalline semiconductor region, and a plurality of whiskers that are provided over the crystalline semiconductor region and include a crystalline semiconductor. The first-conductivity-type crystalline semiconductor region and the intrinsic crystalline semiconductor region are formed by a low pressure chemical vapor deposition method at a temperature higher than 550° C. and lower than 650° C.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: October 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8563853
    Abstract: A solar cell device is provided, including a transparent substrate, a transparent conductive layer disposed over the transparent substrate, a photovoltaic element formed over the composite transparent conductive layer, and an electrode layer disposed over the photovoltaic element. In one embodiment, the transparent conductive layer includes lithium and fluorine-co-doped tin oxides, and the lithium and fluorine-co-doped tin oxides includes a plurality of polyhedron grains, and the polyhedron grains have a polyhedron grain distribution density of 60-95%.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 22, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chin-Ching Lin, Mei-Ching Chiang, Hsiang-Chuan Chen, Jen-You Chu, Yi-Ping Chen, Pei-Chen Chuang
  • Publication number: 20130269777
    Abstract: A solar cell according to an embodiment of the invention includes a semiconductor substrate; an emitter layer formed at the semiconductor substrate, wherein the emitter layer includes a first portion of a first resistance and a second portion of a second resistance higher than the first resistance, wherein the first portion includes a first dopant and a second dopant having the same conductive type and the second portion including the second dopant; a passivation layer formed on the emitter layer, wherein the passivation layer includes the first dopant; and an electrode electrically connected to the first portion through the passivation layer.
    Type: Application
    Filed: February 14, 2013
    Publication date: October 17, 2013
    Applicant: LG ELECTRONICS INC.
    Inventors: Yoonsil JIN, Heejin NAM, Sangwook PARK
  • Patent number: 8558106
    Abstract: A solar cell device is provided, including a transparent substrate, a transparent conductive layer disposed over the transparent substrate, a photovoltaic element formed over the composite transparent conductive layer, and an electrode layer disposed over the photovoltaic element. In one embodiment, the transparent conductive layer includes lithium and fluorine-co-doped tin oxides, and the lithium and fluorine-co-doped tin oxides have a lithium doping concentration of about 0.2˜2.3% and a fluorine doping concentration of about 0.1˜2.5%.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 15, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chin-Ching Lin, Mei-Ching Chiang, Hsiang-Chuan Chen, Jen-You Chu, Yi-Ping Chen, Pei-Chen Chuang
  • Publication number: 20130247982
    Abstract: A solar cell may include a PN junction including a semiconductor substrate of a first conductivity and an emitter of a second conductivity, a passivation layer on an exposed surface of the semiconductor substrate, a first electrode connected to the semiconductor substrate, and a second electrode connected to the emitter. The passivation layer may be configured to apply stress to the exposed surface of the substrate such that a mobility of minority charge carriers in the semiconductor substrate is decreased in a first direction perpendicular to a boundary surface of the semiconductor substrate and the passivation layer.
    Type: Application
    Filed: June 25, 2012
    Publication date: September 26, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Cheol Do, Dong Kyun Kim, Yun Gi Kim, Chul Ki Kim, Yeon il Lee, Young Moon Choi
  • Publication number: 20130240026
    Abstract: The disclosure provides semiconductive material derived from group IV elements that are useful for photovoltaic applications.
    Type: Application
    Filed: September 1, 2012
    Publication date: September 19, 2013
    Applicant: THE CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Harry A. Atwater, Naomi Coronel, Lise Lahourcade
  • Publication number: 20130240038
    Abstract: A photovoltaic device comprises a microcrystalline silicon layer, wherein the microcrystalline silicon layer, when a maximum value of a crystallinity Xc along a film thickness direction is scaled to 1, shows increasing tendency of the crystallinity Xc along the film thickness direction, and has a high-nitrogen-concentration region (region a) of higher nitrogen concentration than other regions in the microcrystalline silicon layer in a range of the film thickness direction where the crystallinity Xc is 0.75 or more.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 19, 2013
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Mitsuoki HISHIDA, Hiroyuki UENO
  • Patent number: 8536445
    Abstract: A method of forming a multijunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell comprising providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on said substrate having a first band gap; forming a second solar subcell over said first subcell having a second band gap smaller than said first band gap; and forming a grading interlayer over said second subcell having a third band gap larger than said second band gap forming a third solar subcell having a fourth band gap smaller than said second band gap such that said third subcell is lattice mismatched with respect to said second subcell.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 17, 2013
    Assignee: Emcore Solar Power, Inc.
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Patent number: 8535574
    Abstract: This invention provides a transition metal complex of formula MXY2Z and a manufacturing method thereof, wherein M is selected from iron, ruthenium, and osmium; X represents a ligand shown in formula (II) wherein R1 and R1? are independently selected from COOH, PO3H2, PO4H2, SO3H2, SO4H2, and derivatives thereof; Y is selected from H2O, Cl, Br, CN, NCO, NCS, and NCSe; Z represents a bidentate ligand having at least two fluorinated chains. In addition, this invention also provides photovoltaic cells and a manufacturing method thereof.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: September 17, 2013
    Assignee: National Taipei University of Technology
    Inventors: Norman Lu, Jia-Sheng Shing, Wen-Han Tu
  • Publication number: 20130220420
    Abstract: A method for the wet-chemical etching of a solar cell emitter is provided. The method performs homogeneous etching using an alkaline etching solution containing at least one oxidizing agent selected from the group consisting of peroxodisulphates, peroxomonosulphates and hypochlorite.
    Type: Application
    Filed: September 2, 2011
    Publication date: August 29, 2013
    Applicant: SCHOTT SOLAR AG
    Inventors: Agata Lachowicz, Berthold Schum, Knut Vaas
  • Publication number: 20130206231
    Abstract: Electron-deficient fluorous porphyrin molecules may have dual functions of light harvesting and electron accepting or donating and may be ideally suited for use in organic solar cells. Methods of making electron-deficient fluorous porphyrin molecules are described.
    Type: Application
    Filed: August 25, 2011
    Publication date: August 15, 2013
    Applicant: The University of South Dakota
    Inventor: Haoran Sun
  • Patent number: 8507792
    Abstract: The present application is directed to a film they may be used as an adhesive for solar panels. For example, the present application is directed to a composition, for example an adhesive composition, comprising a low crystalline poly-alpha-olefin resin having and an alkoxysilane functional poly-alpha-olefin having a tensile strength of less than 500 MPa. The composition has a melt flow index of less than 30. The application is also directed to a panel comprising a front panel comprising a transparent barrier, a back panel and a photovoltaic material layer between the front panel and the back panel. An adhesive layer is between the front panel and the back panel, wherein the adhesive layer adheres the front panel to the back panel, and the adhesive layer comprises a low crystalline poly-alpha-olefin elastomer blended with an alkoxysilane functional polyolefin.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: August 13, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Linda M. Rivard, Jeffrey G. Linert, Howard S. Creel, James R. Peterson
  • Patent number: 8507787
    Abstract: A solar cell includes a base layer; an emitter layer disposed on one side of the base layer; a first electrode in electrical communication with the base layer; and a second electrode in electrical communication with the emitter layer, wherein the base layer has a higher doping concentration with increasing distance from the interface between the base layer and the emitter layer, and the base layer has a doping concentration change slope that is further decreased with increasing distance from the interface between the base layer and the emitter layer.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Myoung Gyun Suh
  • Patent number: 8502065
    Abstract: Disclosed is a photovoltaic device. The photovoltaic device includes: a first electrode and a second electrode; a first unit cell and a second unit cell which are placed between the first electrode and the second electrode and include a first conductive semiconductor layer, an intrinsic semiconductor layer and a second conductive semiconductor layer; and an intermediate reflector which is placed between the first unit cell and the second unit cell, and includes a hydrogenated amorphous carbon layer.
    Type: Grant
    Filed: January 9, 2011
    Date of Patent: August 6, 2013
    Assignee: KISCO
    Inventor: Seung-Yeop Myong
  • Publication number: 20130180565
    Abstract: A solar cell including a single crystal silicon substrate having electrical characteristic distribution, which is line-symmetric with respect to the center line in plan view, and in which portions equidistant from the center line have an electrical characteristic substantially uniform in an extending direction of the center line in the plan view, a semiconductor junction formed by using the single-crystal silicon substrate, and an electrode.
    Type: Application
    Filed: December 20, 2012
    Publication date: July 18, 2013
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Sanyo Electric Co. Ltd.
  • Patent number: 8487179
    Abstract: A system and method for increasing photovoltaic cell efficiency is provided, comprising a photovoltaic cell, a filter covering the photovoltaic cell at a first angle to the photovoltaic cell, and a mirror positioned adjacent to the filter at a second angle to the photovoltaic cell, the mirror operable to reflect light into the filter.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: July 16, 2013
    Inventor: Rebecca Grace Willmott
  • Patent number: 8481848
    Abstract: A large surface area photovoltaic device having high conversion efficiency and excellent mass productivity is provided. A photovoltaic device 100 having a photovoltaic layer 3 comprising a crystalline silicon layer formed on a substrate 1, wherein the crystalline silicon layer has a crystalline silicon i-layer 42, and the crystalline silicon i-layer 42 has a substrate in-plane distribution represented by an average value for the Raman peak ratio, which represents the ratio of the Raman peak intensity for the crystalline silicon phase relative to the Raman peak intensity for the amorphous silicon phase, that is not less than 4 and not more than 8, a standard deviation for the Raman peak ratio that is not less than 1 and not more than 3, and a proportion of regions in which the Raman peak ratio is not more than 4 of not less than 0% and not more than 15%.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 9, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Saneyuki Goya, Eishiro Sasakawa, Hiroshi Mashima, Satoshi Sakai
  • Patent number: 8481419
    Abstract: A method for producing an electrically conducting metal contact on a semiconductor component having a coating on the surface of a semiconductor substrate. In order to keep transfer resistances low while maintaining good mechanical strength, the invention proposes applying a particle-containing fluid onto the coating, where the particles contain at least metal particles and glass frits, curing the fluid while simultaneously forming metal areas in the substrate through heat treatment, removing the cured fluid and the areas of the coating covered by the fluid, and depositing, for the purposes of forming the contact without using intermediate layers, electrically conducting material from a solution onto areas of the semiconductor component in which the coating is removed while at the same time conductively connecting the metal areas present in said areas on the substrate.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: July 9, 2013
    Assignee: SHOTT Solar AG
    Inventors: Jorg Horzel, Gunnar Schubert, Stefan Dauwe, Peter Roth, Tobias Droste, Wilfried Schmidt, Ingrid Ernst
  • Publication number: 20130160853
    Abstract: Disclosed herein is a solar cell, which includes a first conductive layer, a photoelectric conversion layer and a second conductive layer. The photoelectric conversion layer is disposed above the first conductive layer. The photoelectric conversion layer includes a silicon substrate and a CIGS layer that is in contact with the silicon substrate, so that a PN hetero-junction is formed between the silicon substrate and the CIGS layer. The second conductive layer is disposed above the photoelectric conversion layer.
    Type: Application
    Filed: May 3, 2012
    Publication date: June 27, 2013
    Applicant: AU Optronics Corporation
    Inventors: Po-Chuan YANG, I-Min CHAN
  • Patent number: 8471143
    Abstract: Provided is a photoelectric conversion element containing a pair of opposite electrodes having therebetween: a semiconductor layer containing a sensitizing dye which is supported by a semiconductor; and a charge transport layer, wherein the sensitizing dye is a compound represented by Formula (1),
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: June 25, 2013
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventors: Hidekazu Kawasaki, Akihiko Itami, Kazuya Isobe, Hideya Miwa, Kazukuni Nishimura, Mayuko Ushiro
  • Publication number: 20130153017
    Abstract: A package structure and a solar cell with the same are provided. The package structure includes a transparent package bulk and at least one structure capable of changing a direction of light. The structure is disposed within the transparent package bulk and at a distance from a surface of the transparent package bulk. When applied to a solar cell, the package structure can reduce gridline shading.
    Type: Application
    Filed: May 8, 2012
    Publication date: June 20, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tsung-Dar Cheng, Jen-You Chu, Yi-Ping Chen, Ping-Chen Chen
  • Publication number: 20130139886
    Abstract: Provided is a high performance anti-spall laminate article comprising a bi-layer polymeric composite. The bi-layer composite includes a polymeric sheet and a poly(ethylene terephthalate) (PET) film laminated to each other. The PET film has a tensile modulus of about 600,000 psi or higher in both the machine direction (MD) and the transverse direction (TD), a shock brittleness index of about 55 Joules or higher in the machine direction and about 25 joules or higher in the transverse direction, and a percent elongation at break (EOB) of about 110-160 in the machine direction and about 60-110 in the transverse direction.
    Type: Application
    Filed: January 29, 2013
    Publication date: June 6, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: E I DU PONT DE NEMOURS AND COMPANY
  • Patent number: 8455754
    Abstract: A solar cell element and method of manufacturing same is disclosed. A reverse-conductive-type layer is formed on at least one part of a first surface side of a one-conductive-type semiconductor substrate. A conductive layer is formed on the reverse-conductive-type layer. A contact region for electrically connecting the conductive layer and the one-conductive-type semiconductor substrate is formed by heating and melting at least one part of the conductive layer. The solar cell element can be manufactured without conducting complicated treatments, such as removal by etching and re-growing of a silicon thin layer.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: June 4, 2013
    Assignee: KYOCERA Corporation
    Inventors: Koichiro Niira, Manabu Komoda
  • Patent number: 8455756
    Abstract: A solar cell including a base of single crystal silicon with a cubic crystal structure and a single crystal layer of a second material with a higher bandgap than the bandgap of silicon. First and second single crystal transition layers are positioned in overlying relationship with the layers graduated from a cubic crystal structure at one surface to a hexagonal crystal structure at an opposed surface. The first and second transition layers are positioned between the base and the layer of second material with the one surface lattice matched to the base and the opposed surface lattice matched to the layer of second material.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: June 4, 2013
    Assignee: Translucent, Inc.
    Inventors: Michael Lebby, Andrew Clark
  • Patent number: 8455606
    Abstract: Novel photoactive polymers, as well as related components, articles, systems, and methods are disclosed.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 4, 2013
    Assignee: Merck Patent GmbH
    Inventors: Zhengguo Zhu, David Waller
  • Publication number: 20130133715
    Abstract: A solar cell includes a first electrode layer, a P-type silicon layer, an N-type silicon layer, a second electrode layer, and a reflector. The first electrode layer, the P-type silicon layer, the N-type silicon layer, and the second electrode layer are arranged in series side by side along a first direction and in contact with each other, thereby cooperatively forming a integrated structure. A P-N junction is formed near an interface between the P-type silicon layer and the N-type silicon layer. The integrated structure has a first surface substantially parallel to the first direction and a second surface opposite to the first surface. The first surface is used as a photoreceptive surface to directly receive incident light. The reflector is located on the second surface of the integrated structure.
    Type: Application
    Filed: May 18, 2012
    Publication date: May 30, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YUAN-HAO JIN, QUN-QING LI, SHOU-SHAN FAN
  • Patent number: 8450595
    Abstract: A non-aqueous electrolyte battery includes a battery element, a film-form casing member, and a resin protective layer. The battery element includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. The film-form casing member contains the battery element and an electrolyte in an enclosed space thereof. The resin protective layer is formed along the surface of the film-form casing member and has a substantially uniform thickness.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: May 28, 2013
    Assignee: Sony Corporation
    Inventors: Tamotsu Harada, Yoshiaki Naruse, Takashi Ishigooka, Nobuyuki Ohyagi
  • Patent number: 8450599
    Abstract: A photovoltaic device is provided. It comprises at least two electrical contacts, p type dopants and n type dopants. It also comprises a bulk region and nanowires in an aligned array which contact the bulk region. All nanowires in the array have one predominant type of dopant, n or p, and at least a portion of the bulk region also comprises that predominant type of dopant. The portion of the bulk region comprising the predominant type of dopant typically contacts the nanowire array. The photovoltaic devices' p-n junction would then be found in the bulk region. The photovoltaic devices would commonly comprise silicon.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 28, 2013
    Assignee: Bandgap Engineering, Inc.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Publication number: 20130125969
    Abstract: This disclosure provides photovoltaic apparatus and methods of forming the same. In one implementation, a method of forming a photovoltaic device includes forming a plurality of substrate features on a surface of a glass substrate, the substrate features having a depth dimension in the range of about 10 ?m to about 1000 ?m and a width dimension in the range of about 10 ?m to about 1000 ?m. The method further includes forming a thin film solar cell over the surface of the glass substrate including over the plurality of substrate features.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Wilhelmus A. de Groot, Sijin Han, Fan Yang
  • Patent number: 8445775
    Abstract: A solar cell module includes a first isolation groove for separating the first electrode layer; a second isolation groove for separating each of the first semiconductor layer, the transparent conductive layer, and the second semiconductor layer; and a third isolation groove formed in a position opposite from the first isolation groove across the second isolation groove and for separating each of the second electrode layer, the second semiconductor layer, the transparent conductive layer, and the first semiconductor layer. The second electrode layer includes: a first conductive layer formed on the first semiconductor layer constituting a bottom surface of the second isolation groove, on an inner wall of the second isolation groove, and on the second semiconductor layer; and a second conductive layer formed on the first conductive layer.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 21, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Wataru Shinohara
  • Patent number: 8445314
    Abstract: A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Assignee: Solexel, Inc.
    Inventors: Suketu Parikh, David Dutton, Pawan Kapur, Somnath Nag, Mehrdad Moslehi, Joe Kramer, Nevran Ozguven, Asli Buccu Ucok
  • Publication number: 20130112275
    Abstract: A photovoltaic device including a single junction solar cell provided by an absorption layer of a type IV semiconductor material having a first conductivity, and an emitter layer of a type III-V semiconductor material having a second conductivity, wherein the type III-V semiconductor material has a thickness that is no greater than 50 nm.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20130112274
    Abstract: A low-cost fabrication technique, readily extensible to volume manufacturing is presented for thin strip solar cells. A wafer structure is disclosed for formation of thin strips. Plurality of strips is formed and mechanically supported by a thin layer of silicon with uneven surface. Processing methods are also disclosed to fabricate solar cells.
    Type: Application
    Filed: November 6, 2011
    Publication date: May 9, 2013
    Applicant: QXWAVE INC
    Inventor: Xiangcun Long