Coating Composition Applied Forms Oxide Coating Patents (Class 148/284)
  • Patent number: 6719852
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises a silicon compound; trivalent chromium and oxalic acid in a molar ratio ranging from 0.5 to 1.5, wherein the trivalent chromium is present in the form of a water-soluble complex with oxalic acid; and cobalt ions, which form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation, wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating. This solution can provide a corrosion resistant trivalent chromate conversion film excellent in the corrosion resistance after heating.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: April 13, 2004
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 6699592
    Abstract: The invention provides a galvannealed steel sheet which has an oxide layer having 10 nm or larger thickness on the plateau of the coating layer flattened by temper rolling. With the use of the galvannealed steel sheet, no powdering occurs during press-forming, and stable and excellent sliding performance is attained. By selecting the area percentage of the plateau of the flattened coating layer to a range from 20 to 80%, making the coating layer single layer of &dgr;1 phase, and letting &zgr; phase exist in the &dgr;1 phase, further improved sliding performance and anti-powdering property are obtained.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: March 2, 2004
    Assignee: NKK Corporation
    Inventors: Shoichiro Taira, Yoshiharu Sugimoto, Junichi Inagaki, Toru Imokawa, Shuji Nomura, Michitaka Sakurai, Masaaki Yamashita, Kaoru Sato, Masayasu Nagoshi, Akira Gamou, Yoichi Miyakawa, Shunsaku Node, Masahiro Iwabuchi
  • Patent number: 6699522
    Abstract: An inorganic coating material maintains the properties of high heat resistance and high electrical insulating characteristics of inorganic materials, while enhancing the degree of adhesion with respect to an object to be coated. A water-based suspension with a specific gravity in the range of 1.5 to 2.5 is obtained by using as major raw materials at least two types of metal oxide particles having heat-resistant characteristics at temperatures above 1000° C., distributing diameters of these particles in the range of 0.1 &mgr;m to 30 &mgr;m, adjusting the average value of their particle diameters to 0.2 &mgr;m to 0.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: March 2, 2004
    Inventor: Takeshi Sakakibara
  • Patent number: 6695931
    Abstract: This invention is a method for forming a chemical conversion coating on ferrous metal substrates, the chemical solutions used in the coating and the articles coated thereby. By modifying and combining the features of two existing, but heretofore unrelated, coating technologies, a hybrid conversion coating is formed. Specifically, a molecular iron/oxygen-enriched intermediate coating, such as a dicarboxylate or phosphate, is applied to a ferrous substrate by a first oxidation. The intermediate coating pre-conditions the substrate to form a surface rich in molecular iron and oxygen in a form easily accessible for further reaction. This oxidation procedure is followed by a coloring procedure using a heated (about 120-220° F.) oxidizing solution containing alkali metal hydroxide, alkali metal nitrate, alkali metal nitrite or mixtures thereof, which reacts with the iron and oxygen enriched intermediate coating to form magnetite (Fe3O4).
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: February 24, 2004
    Assignee: Birchwood Laboratories, Inc.
    Inventors: Keith N. Ravenscroft, William V. Block
  • Patent number: 6692838
    Abstract: The invention includes a composition of matter which is resistant to metal dusting and a method for preventing metal dusting on metal surfaces exposed to carbon supersaturated environments.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 17, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Trikur Anantharaman Ramanarayanan, ChangMin Chun
  • Patent number: 6669787
    Abstract: The invention relates to a method of manufacturing a spin valve structure (1) of the GMR-type. Such a structure includes a stack of a magnetic layer (11a 11b), a nonmagnetic layer (15) and a sense layer (17) of a ferromagnetic material. In order to obtain a spin valve structure having a very good GMR effect the method comprises the following specific steps: oxidation of the ferromagnetic material of the sense layer; deposition of aluminium on the oxidized ferromagnetic material; oxidation of the deposited aluminium using oxygen from the oxidized ferromagnetic material.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: December 30, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Murray Fulton Gillies, Antonius Emilius Theodorus Kuiper
  • Patent number: 6663728
    Abstract: A gold-free platinum material that is dispersion-strengthened by small, finely dispersed particles of base metal oxide. The base metal is either 0.01-0.5 wt. % Sc or a mixture/alloy of Sc and at least one metal from the group consisting of Zr, Y, and Ce with a total base metal content of 0.05-0.5 wt. %.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: December 16, 2003
    Assignee: W.C. Heraeus GmbH & Co. KG
    Inventors: Harald Manhardt, David Francis Lupton, Wulf Kock
  • Patent number: 6648988
    Abstract: Furnace run length extension by fouling control utilizing a pigging-passivation process.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: November 18, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Trikur Anantharaman Ramanarayanan, Ashok Uppal, Changmin Chun
  • Patent number: 6635124
    Abstract: A process of forming a ceramic coating on a component. The process generally entails placing the component in a coating chamber containing oxygen and an inert gas, heating a surface of the component to a temperature of about 100 to about 150° C., and then generating a metal vapor from at least one metal target using a microwave-stimulated, oxygen-containing sputtering technique. The metal vapor is then caused to condense on the component surface to form a metal layer, after which the metal layer is treated with a microwave-stimulated plasma to oxidize the metal layer and form an oxide layer having a columnar microstructure. The generating, condensing and treating steps can be repeated any number of times to form multiple oxide layers that together constitute the ceramic coating.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: October 21, 2003
    Assignee: General Electric Company
    Inventors: William Randolph Stowell, Bangalore Nagaraj
  • Patent number: 6627007
    Abstract: A method has been developed for surface modifications of high temperature resistant alloys, such as FeCrAl alloys, in order to increase their resistance to corrosion at high temperatures. Coating it with a Ca-containing compound before heat-treating builds a continuos uniform and adherent layer on the surface of the alloy, that the aluminum depletion of the FeCrAl alloy is reduced under cyclic thermal stress. By this surface modification the resistance to high temperature corrosion of the FeCrAl alloy and its lifetime are significantly increased.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: September 30, 2003
    Assignee: Sandvik AB
    Inventors: Jan Andersson, Magnus Cedergren
  • Patent number: 6613161
    Abstract: A method of laser marking which comprises applying a laser beam to a metal surface under the influence of an assist gas to produce durable, repeatable and striking colors on the metal surface. The method provides an easy and flexible alternative to conventional metal decorating techniques.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: September 2, 2003
    Assignee: Singapore Institute of Manufacturing Technology
    Inventors: Hong Yu Zheng, Gnian Cher Lim
  • Patent number: 6589365
    Abstract: A hydrogen peroxide solution is applied onto the surface of a metallic member to oxidize the metallic member and to form the oxide film. At this time, a light beam is irradiated towards the metallic member through the hydrogen peroxide solution to promote oxidization of the metallic member. The light beam is one of a visible ray, a laser beam, and an ultraviolet ray.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: July 8, 2003
    Assignee: Matsumoto Dental University
    Inventor: Michio Ito
  • Patent number: 6585832
    Abstract: The present invention relates to an improved method for the manufacture of aircraft engine cylinder barrels to prevent their premature failure due to hairline cracks or specks thought to be caused by caustic stress corrosion cracking during black oxide treatment. Machined aircraft cylinder barrels immersed into a black oxide chemical bath composed of a solution containing about 60% sodium hydroxide, about 0% sodium nitrate, and about 40% sodium nitrite most effectively prevents specks and hairline cracks. Since residual stresses from machining also contribute to the probability that specks or hairline cracks will occur during black oxide treatment, the maximum selected number of cylinder barrels essentially free of detectible specks or hairline cracks determines the maximum number of cylinder barrels to be machined on a given set of tool bits.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: July 1, 2003
    Assignee: Textron Limited
    Inventor: Yoon Sam Kim
  • Publication number: 20030070731
    Abstract: A method for forming a zinc oxalate coating on the surface of a strip or sheet of metal covered with a zinc or zinc alloy coating other than zinc/iron coatings, with the aid of an aqueous solution consisting of oxalic acid having a concentration of between 5.10−3 and 0.1 mole/l, and at least one compound and/or ion of an oxidant zinc metal having a concentration of between 10−6 and 10−2 mole/l, and possibly a wetting agent. The inventive method enables sheet metal to be treated at very high speeds without using large amounts of oxidant. It facilitates management of treatment baths. The invention can be used in the lubrication of sheet metal, especially for die stamping.
    Type: Application
    Filed: September 19, 2002
    Publication date: April 17, 2003
    Inventors: Jacques Petitjean, Genevieve Klam
  • Patent number: 6540843
    Abstract: A method of coating a catalyst layer on a metallic substrate includes preparing a metal oxide and binder slurry to coat onto a metal surface and forming a catalytic layer over the slurry coated surface. The slurry may be made from a binder containing, for example, fully dissolved alumina in the presence of excess nitric acid. The binder may then be mixed with a metal oxide mixture to form the metal oxide-binder slurry. The metal oxide mixture may contain aluminum oxide or partially hydrated aluminum oxide. The metal oxide-binder slurry can be used to coat the surfaces of a variety of metals such as aluminum, titanium, nickel, cobalt, chromium, iron, copper, etc., or their alloys that include brass, as well as stainless steel with or without Al as a component.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: April 1, 2003
    Assignee: Honeywell International Inc.
    Inventors: Di-Jia Liu, Daniel R. Winstead, Norman Van Den Bussche
  • Publication number: 20030047243
    Abstract: Ti alloy is embedded in a powder such as graphite and heated with the powder in an oxygen atmosphere. Oxygen atoms are diffused into the Ti alloy to form an oxygen diffusion layer of Ti—O solid solution, thereby increasing wear resistance of the valve. A poppet valve in an internal combustion engine may be made of such Ti alloy.
    Type: Application
    Filed: November 21, 2001
    Publication date: March 13, 2003
    Inventors: Masahito Hirose, Hiroaki Asanuma
  • Patent number: 6527873
    Abstract: This invention is a method for forming a chemical conversion coating on ferrous metal substrates, the chemical solutions used in the coating and the articles coated thereby. By modifying and combining the features of two existing, but heretofore unrelated, coating technologies, a hybrid conversion coating is formed. Specifically, a molecular iron/oxygen-enriched intermediate coating, such as a dicarboxylate or phosphate, is applied to a ferrous substrate by a first oxidation. The intermediate coating pre-conditions the substrate to form a surface rich in molecular iron and oxygen in a form easily accessible for further reaction. This oxidation procedure is followed by a coloring procedure using a heated (about 120-220 F.) oxidizing solution containing alkali metal hydroxide, alkali metal nitrate, alkali metal nitrite or mixtures thereof, which reacts with the iron and oxygen enriched intermediate coating to form magnetite (Fe3O4).
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: March 4, 2003
    Assignee: Birchwood Laboratories, Inc.
    Inventors: Keith N. Ravenscroft, William V. Block
  • Publication number: 20030037843
    Abstract: An indium tin oxide (ITO) film is formed at room temperature in a moistened (water added) atmosphere, and the formed film is thermally treated at 180° C. or more for about one hour or longer. The water added atmosphere is determined to have a total partial pressure of water of about 8.2×10−3 pascals or less in a film forming chamber, so that an effect of improving film quality by annealing in a later step can be produced. When a total partial pressure of water in the film forming chamber is set to 3.20×10−3 pascals or more, an amorphous ITO film can be formed, and an etching treatment can be performed quickly after forming the film. A heat treatment after forming the film (patterning) is appropriately performed under conditions of a temperature of about 180° C. or more (e.g., about 220° C.) for one hour or more (e.g., about one hour to about three hours). Thus, the film is polycrystallized, and an ITO film having low resistance and high transmittance can be produced.
    Type: Application
    Filed: June 28, 2002
    Publication date: February 27, 2003
    Inventor: Mitsuoki Hishida
  • Patent number: 6521114
    Abstract: From the time that they are immersed into a marine environment, bronze propellers are prone to attack by marine organisms, such as barnacles, coral and algae, which attach themselves to the bronze metallic surface, creating lumps on the propeller, which adversely affect its balance and cause impedance and vibration of the propeller and its boat in the water. Anti-fouling paints are either too toxic for the marine environment or lack smoothness on the surface. These problems have been overcome by polishing the propeller to prepare it for electroplating, cleansing to remove dirt and grease, electroplating with copper, followed by spraying with a standard solution (5%) of sodium hypochlorite and sodium chloride and allowing sufficient time for a reaction of the hypochlorite solution with the copper to form a firmly adhering conversion coating of basic cupric chloride. The coating is blue-green in color.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: February 18, 2003
    Assignee: Propeller Antifouling Pty Ltd.
    Inventor: Ronald Kempin
  • Patent number: 6517642
    Abstract: A thin film of metal or metal compound is produced by preparing an ultrafine particle dispersion liquid by dispersing ultrafine particles at least partly made of metal into a given organic solvent, applying the ultrafine particle dispersion liquid to a substrate, drying the ultrafine particle dispersion liquid to leave metal or metal compound particles on the substrate, heating the metal or metal compound particles to join the metal or metal compound particles, and annealing the metal or metal compound particles into a thin film.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: February 11, 2003
    Assignee: Ebara Corporation
    Inventors: Kuniaki Horie, Akira Fukunaga
  • Patent number: 6503341
    Abstract: This self-compensating spiral for a mechanical spiral balance-wheel oscillator in watchwork or other precision instrument, made of a paramagnetic alloy, contains at least one of the elements Nb, V, Ta, Ti, Zr, Hf and is covered with a substantially uniform oxide layer having a thickness greater than or equal to 20 nm, formed by subjecting the said spiral to an anodizing treatment.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: January 7, 2003
    Assignees: Montres Rolex S.A., Manufacture des Montres Rolex S.A.
    Inventors: Jacques Baur, Patrick Sol
  • Patent number: 6488782
    Abstract: Method for reducing in situ the electrochemical corrosion potential and susceptibility to stress corrosion cracking of a nickel-base alloy and boiling water nuclear reactor components formed therefrom when in contact with high temperature water. The method comprises the steps of: adding a metal hydride to the high temperature water; dissociating the metal hydride in the high temperature water to form a metal and at least one hydrogen ion; and reducing the concentration of the oxidizing species by reacting the hydrogen ions with an oxidizing species, thereby reducing in situ the electrochemical corrosion potential of the nickel-base alloy. The method may further include the steps of reacting the metal with oxygen present in the high temperature water to form an insoluble oxide and incorporating the metal into the surface of the nickel-base alloy, thereby reducing the electrical conductivity of the surface of the nickel-base alloy.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: December 3, 2002
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Peter Louis Andresen
  • Patent number: 6485554
    Abstract: The present invention provides a solution suitable for forming a composite oxide type dielectric thin film containing at least one organometallic compound dissolved in at least one solvent selected from the group consisting of cyclic or acyclic diethers, alkyl-substituted cyclic monoethers, mono- or di-branched alkyl monoethers, alkoxy alcohols, diols, and acetoacetic esters, or dissolved in a solvent mixture comprising at least one solvent selected from the group consisting of cyclic and acyclic saturated hydrocarbons, and at least one solvent selected from the group consisting of cyclic or acyclic diethers, alkyl-substituted cyclic monoethers, mono- or di-branched alkyl monoethers, alkoxy alcohols, diols, acetoacetic esters, and unsubstituted or alkyl-substituted pyridine.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: November 26, 2002
    Assignee: Mitsubishi Materials Corporation
    Inventors: Atsushi Itsuki, Taiji Tachibana, Katsumi Ogi
  • Publication number: 20020166606
    Abstract: A method of coating a metal substrate, the method comprising the steps of forming the metal substrate, nitriding the substrate to form an oxide layer, and subsequently applying a metal compound coating comprising a titanium, zirconium, or aluminum compound using a vacuum chamber process such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). Optionally, the process may include additional coating steps and/or a heat treatment step following the coating step(s). A polytetrafluoroethylene coating may also be added after the metal compound coating(s) and before any final heat treating.
    Type: Application
    Filed: March 12, 2001
    Publication date: November 14, 2002
    Inventor: Russell Caminiti
  • Patent number: 6478888
    Abstract: A method is described for reducing surface oxide growth which heating aluminum containing surfaces in a vacuum environment prior to the deposition of a ceramic coating. The method comprises flowing an inert or non reactive gas into the coating apparatus adjacent to the surface to be coated to reduce oxygen reaction with the surface.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: November 12, 2002
    Assignee: United Technologies Corporation
    Inventor: Steven M. Burns
  • Patent number: 6471788
    Abstract: A method employing oxide film conversion coatings prepared using ferrate (VI) as the oxidizing agent is disclosed. Metal substrates or surfaces, such as aluminum, aluminum alloys or other metals, are contacted with an aqueous solution comprising ferrate (VI) anions to form a corrosion resistant conversion coating on the surface thereof. The ferrate anion concentration is preferably between about 0.0166% and about 1.66% by weight. The coating process is carried out by dipping, spraying, or painting at temperatures ranging from 25° C. to 100° C. for a period of time ranging from about 1 second to about 5 minutes.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: October 29, 2002
    Assignee: Lynntech Coatings, Ltd.
    Inventors: Zoran Minevski, Jason Maxey, Carl Nelson, Cahit Eylem
  • Patent number: 6454878
    Abstract: A method for forming sets of tri-metal material involving the use of cladding mills. When multiple sets of tri-metal material are formed, the outside surfaces of each set is prepared by oxidation to prevent each set from adhering to the set above or below. An alternative to oxidation is to provide a removable layer on the outside surface of the tri-metal material. Alternatively bonding materials may be used on the intermediate surfaces; such bonding materials can be selected from a group consisting of tin, nickel, titanium, chromium, silver and zinc.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: September 24, 2002
    Assignee: Visteon Global Technologies, Inc.
    Inventors: Achyuta Achari, Brenda Joyce Nation, Jay D Baker, Lakhi Nandlal Goenka, Mohan R. Paruchuri, Vladimir Stoica
  • Patent number: 6451129
    Abstract: A decorative titanium material according to the present invention eliminates a deterioration of the appearance even after processing, that is, provides a small surface roughness, and has a hardened layer of titanium at the surface of the titanium material, this hardened surface layer including nitrogen and oxygen, and having a surface crystal grain size in the range from 0.1 to 60 &mgr;m.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: September 17, 2002
    Assignee: Citizen Watch Co., Ltd.
    Inventors: Masahiro Sato, Yoshitugu Sibuya, Junji Sato
  • Patent number: 6428629
    Abstract: In accordance with the present invention, an apparatus and method for application of a chemical process on a component surface is provided. In an embodiment for an apparatus for preparing a component surface for application of a chemical process, the apparatus includes a base, an o-ring retainer, an o-ring, a boot, and a retention ring. The component is mounted on the base. The o-ring is positioned on the o-ring retainer and the o-ring retainer is inserted through an aperture in the component and mated with the base. The assembled component, base, o-ring retainer, and o-ring are positioned within the boot. The retention ring is positioned around the boot.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: August 6, 2002
    Assignee: Tyco Telecommunications (US) Inc.
    Inventor: Holt A. Murray, Jr.
  • Patent number: 6410154
    Abstract: The invention relates to TiAl-base alloys with excellent oxidation resistance, and a method for producing the same. The TiAl-base alloy of the invention comprises a substrate and a surface part formed on the substrate, the surface part comprising at least one element of Cr, Nb, Ta and W and having a surface condition capable of forming a dense film of an oxide of the element or Al2O3 in high-temperature oxidizing atmospheres. The method of the invention comprises heating a TiAl-base alloy material having an Al content of from 15 at. % to 55 at. % in the presence of an oxide having a smaller negative value of standard free energy of formation than that of alumina. The method of the invention provides TiAl-base alloys with excellent oxidation resistance.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: June 25, 2002
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroyuki Kawaura, Kazuaki Nishino, Takashi Saito
  • Publication number: 20020076485
    Abstract: A metal compound solution in the atomized state is introduced directly into a film-forming chamber of which the pressure is maintained at about 100 Torr or lower by mean of a two-fluid nozzle to form a complex oxide thin-film. For use in the two-fluid nozzle, gases including an oxidative gas are used. To dissolve the metal compound, a solvent having a boiling point under ordinary pressure of about 100° C. or higher is used.
    Type: Application
    Filed: July 27, 2001
    Publication date: June 20, 2002
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Yutaka Takeshima
  • Patent number: 6387538
    Abstract: A surface-treated sheet for fuel tanks includes a cold-rolled steel sheet with a low carbon content, a zinc or zinc-based alloy plating layer formed on the steel sheet, and a chromate film coated on the zinc or zinc-based alloy plating layer. The chromate film is formed from a chromate solution. The chromate solution includes a subject solution and an aqueous silane solution in an amount ranging from 5 to 50% by weight of the subject solution. The subject solution contains a chrome aqueous solution where the concentration of chrome is in the range of 5-50 g/l and the ratio of trivalent chrome to the chrome content is in the range of 0.4 to 0.8.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: May 14, 2002
    Assignee: Pohang Iron & Steel Co., Ltd.
    Inventors: Jae-Ryung Lee, Sang-Geol No, Soo-Hyoun Cho, Youn-Kyun Song, Sam-Kyu Chang
  • Patent number: 6383297
    Abstract: Disclosed is a method for joint oxydation and heat treatment of workpieces at temperatures ≦1300° in the treatment chamber of an oven containing a neutral or reactive gas in a temperature range above 570°. In order for the process to be reproducible and to produce homogeneous oxide layers, the PH2O/PH2 ratio is adjusted after transformation of the workpiece structure such as found at the ambient temperature into the structure wanted during the heat treatment in such a way that the line FeO+H2=Fe+H2O is exceeded and an oxide layer is formed from FEO<10 &mgr;m.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: May 7, 2002
    Assignee: Messer Griesheim GmbH
    Inventor: Hans-Peter Schmidt
  • Patent number: 6364966
    Abstract: A method for manufacturing an acoustic vibration plate includes molding titanium metal into a shape of an acoustic vibration plate in order to obtain a titanium vibration plate, and performing a heat treatment on the titanium vibration plate by a ceramic-formation step, thereby to change entirely the titanium vibration plate into titanium oxide.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: April 2, 2002
    Assignee: Sony Corporation
    Inventors: Yoshio Ohashi, Masaru Uryu
  • Patent number: 6361836
    Abstract: A method of making a spinner disc for a rotary fiberization process, such as but not limited to a glass fiberization process, includes: forming a spinner disc from an alloy that forms a protective oxide film on surfaces of the spinner disc exposed to the atmosphere; forming fiberizing holes in an annular peripheral sidewall of the spinner disc; and applying a plasma to a surface of the spinner disc to remove hydrocarbons and sulfurous compounds from the surface of the spinner disc which would otherwise reduce and/or react with and degrade the protective oxide film forming on the surface of the spinner disc when the spinner disc is exposed to the atmosphere.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: March 26, 2002
    Assignee: Johns Manville International, Inc.
    Inventor: Walter A. Johnson
  • Publication number: 20020023696
    Abstract: The reactive element is introduced to the surface of the metal substrate in the form of an oxide powder and the aluminide-type coating is then formed.
    Type: Application
    Filed: August 27, 2001
    Publication date: February 28, 2002
    Applicant: SNECMA MOTEURS
    Inventors: Yann Jaslier, Alain Martinez, Marie-Christine Ntsama Etoundi, Guillaume Oberlaender
  • Patent number: 6346185
    Abstract: A method of anodizing valve metals with a borate polyester solution formed by the combining 2-methyl-1,3-propane diol and boric acid and heating to about 130 to about 160° C. The heating drives off water produced by esterification. A substrate is immersed in the borate polyester electrolyte solution at a temperature of about 25° C. to about 85° C. and an anodizing voltage is applied.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: February 12, 2002
    Assignee: Kemet Electronics Corporation
    Inventors: John Tony Kinard, Brian John Melody, David Alexander Wheeler, Philip Michael Lessner
  • Patent number: 6336979
    Abstract: Wear resistant copper or a wear resistant copper base alloy having formed on the outermost surface thereof an oxide layer having a thickness of 10-1000 nm and a layer of an intermetallic compound primarily comprising Cu—Sn having a thickness of 0.1-10 &mgr;m under the oxide film layer is provided; a method of preparing the above-described wear resistant copper or copper base alloy by coating base material copper or a copper base alloy with Sn, preferably performing reflow treatment and then conducting heat treatment is provided; and an electrical part comprising the above-described wear resistant copper or copper base alloy is provided. A terminal made of the alloy according to the present invention which has an appropriate oxide film layer by performing heat treatment can greatly decrease a terminal-insertion force compared with that made of an ordinary copper base alloy which is not subjected to the heat treatment.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: January 8, 2002
    Assignees: Dowa Mining Co., Ltd., Yazaki Corporation
    Inventors: Akira Sugawara, Yoshitake Hana, Takayoshi Endo
  • Patent number: 6316117
    Abstract: A new stainless steel sheet has a stainless steel substrate which contains Cu at a ratio of 1.0 wt. % or more and has Cu-enriched grains precipitated at a ratio of 0.2 vol. %. The Cu-enriched grains are exposed to the outside through pinholes in a passive film generated on the substrate. Cu is preferably condensed at a Cu/(Cr+Si) weight ratio of 0.1 or more or a Cu/(Si+Mn) weight ratio of 0.5 or more with respect to Cr, Si and Mn present in the passive film or at an outermost layer of the substrate. Precipitation of Cu-enriched grains and condensation of Cu effectively improve solderability and electric conductivity of the stainless steel sheet.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: November 13, 2001
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Naoto Hiramatsu, Sadayuki Nakamura, Kazuyuki Kageoka
  • Patent number: 6312762
    Abstract: A process for the production of copper or a copper base alloy that provides a surface having improved characteristics suitable for the production of a connector or a charging-socket of an electric automobile by having a decreased coefficient of friction on the surface and improved resistance to abrasion. The process comprises coating copper or a copper alloy with Sn, followed by heat treating the resulting Sn-plated copper or copper base in an atmosphere having an oxygen content of no more than 5%, thereby forming on an outermost surface thereof an oxide film and beneath the surface a layer of an intermetallic compound mainly comprising Cu—Sn.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: November 6, 2001
    Assignees: Dowa Mining Co., Ltd., Yazaki Corporation
    Inventors: Akira Sugawara, Yoshitake Hana, Takayoshi Endo
  • Publication number: 20010023888
    Abstract: The present invention provides a welding method for materials to be welded which are subjected to fluoride passivation treatment, and a fluoride passivation retreatment method, wherein, when fluoride passivation retreatment was conducted after welding, there is no generation of particles or dust, and superior resistance is provided to fluorine system gases.
    Type: Application
    Filed: December 27, 2000
    Publication date: September 27, 2001
    Applicant: Tadahiro OHMI and KABUSHIKI KAISHA ULTRACLEAN TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Tadahiro Ohmi, Takahisa Nitta, Yasuyuki Shirai, Osamu Nakamura
  • Publication number: 20010022206
    Abstract: Disclosed is a reaction vessel used for oxidizing and decomposing equipment suitable for processing with supercritical water, and methods of manufacturing the reaction vessel. The reaction vessel comprises an oxide film containing a platinum group metal oxide, for example having a fine crystalline structure, and a high corrosion resistance in both oxidizing and reducing atmosphere. The film is formed on a surface of the vessel by performing a pyrolysis reaction in an atmosphere containing water vapor. The oxide film is comprised of at least one platinum group metal oxide selected from Ir, Ru or Rh oxide, and a platinum group metal selected from Ti and Ta.
    Type: Application
    Filed: December 20, 2000
    Publication date: September 20, 2001
    Applicant: Furuyametal Co., Ltd.
    Inventors: Takahito Furuya, Takayuki Shimamune
  • Patent number: 6287704
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi-colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: September 11, 2001
    Assignee: Surtec Produkte und System fur die Oberflachenbehandlung GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 6280597
    Abstract: The known flourinated layer has usually a thickness of from 1000 to 3000 angstroms. After the forced oxidation of metal, the forcibly oxidized surface is flourinated. As a result of the preceding forcing oxidation, a 1 &mgr;m or more thick fluorinated layer is formed on the surface of the metal.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: August 28, 2001
    Assignee: Showa Denko K.K.
    Inventors: Kunio Kashiwada, Takanori Kodama, Hiroyasu Taguchi, Satoshi Hirano
  • Patent number: 6251196
    Abstract: An Fe—B—R based permanent magnet and metal pieces are placed into a treating vessel, where they are vibrated and/or agitated, whereby a metal film is formed on the surface of the magnet. A sol solution produced by the hydrolytic reaction and the polymerizing reaction of a metal compound which is a starting material for a metal oxide film is applied to the metal film and subjected to a heat treatment to form a metal oxide film. Therefore, it is possible to form, on the surface of the magnet, a corrosion-resistant film which can be produced easily and at a low cost without carrying-out of a plating treatment or a treatment using hexa-valent chromium and which has an excellent adhesion to the surface of the magnet and can exhibit a stable high magnetic characteristic which cannot be degraded even if the magnet is left to stand for a long period of time under high-temperature and high-humidity conditions of a temperature of 80° C. and a relative humidity of 90%.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: June 26, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Takeshi Nishiuchi, Kohshi Yoshimura, Fumiaki Kikui
  • Patent number: 6221176
    Abstract: In one embodiment, the present invention relates to a flexible laminate, comprising a first flexible polymeric film; a copper layer having a microcracking prevention layer on at least one side the microcracking prevention layer sufficient to prevent microcracks in a copper layer having a thickness of up to about 18 &mgr;m during at least 50,000,000 bending cycles and/or a copper layer having a thickness of up to about 35 &mgr;m during at least 20,000,000 bending cycles of the flexible laminate; and a second flexible polymeric film.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: April 24, 2001
    Assignee: Gould Electronics, Inc.
    Inventors: Harish D. Merchant, Charles A. Poutasse, Chin-Ho Lee
  • Patent number: 6220500
    Abstract: A welding method for materials to be welded which are subjected to fluoride passivation treatment, and a fluoride passivation retreatment method, wherein, when fluoride passivation retreatment is conducted after welding, there is no generation of particles or dust. The method provides superior resistance to fluorine system gases. During fluoride passivation treatment, hydrogen is added to the gas (the back shield gas) flowing through the materials to be welded. In one embodiment of the welding method, the thickness of the fluoride passivated film in a predetermined range from the butt end surfaces of the materials to be welded is set to 10 nm or less, followed by subsequent welding. Furthermore, the fluoride passivation retreatment method, includes the steps of heating at least the welded parts following welding and flowing a gas containing fluorine gas in the interior portion of the parts.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: April 24, 2001
    Assignees: Kabushiki Kaisha Ultraclean Technology Research Institute
    Inventors: Tadahiro Ohmi, Takahisa Nitta, Yasuyuki Shirai, Osamu Nakamura
  • Patent number: 6165287
    Abstract: A ferromagnetic tunnel-junction magnetic sensor includes a first ferromagnetic layer, an insulation barrier layer formed on the first ferromagnetic layer and including therein a tunnel oxide film, and a second ferromagnetic layer formed on the insulation barrier layer, wherein the insulation barrier layer includes a metal layer carrying the tunnel oxide film thereon such that the tunnel oxide film is formed of an oxide of a metal element constituting the metal layer, and wherein the insulation barrier layer has a thickness of about 1.7 nm or less but larger than 1 molecular layer in terms of the oxide forming the tunnel oxide film.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: December 26, 2000
    Assignee: Fujitsu Limited
    Inventors: Masashige Sato, Kazuo Kobayashi, Hideyuki Kikuchi
  • Patent number: 6162305
    Abstract: A method is provided for providing extra insulation between lead layers and first and second shield layers of a read head so as to prevent electrical shorting therebetween. A sensor layer is partially formed with a capping layer of a first oxidizable metallic layer. A lead layer is formed with a second oxidizable metallic capping layer thereon. A rear edge of the partially completed sensor is then formed followed by formation of an insulation layer which seals the rear edge. The wafer, upon which the components are constructed, is then subjected to an oxygen-based plasma which oxidizes the oxidizable layers with the second oxidizable metallic layers oxidizing at a faster rate than the first oxidizable metallic layer. The second oxidized layer then provides the desired extra insulation between the lead layers and the second shield layer. The read head produced by the method includes a sensor layer and first and second lead layers.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: December 19, 2000
    Assignee: International Business Machines Corporation
    Inventors: Richard Hsiao, Daniele Mauri, Neil Leslie Robertson
  • Patent number: 6159307
    Abstract: Process to avoid adhesions during the annealing of non-ferrous metal alloys, comprising the heating, holding and cooling phases, whereby the material being annealed is exposed to an inert or oxidizing protective-gas atmosphere during the structure transformation, as a result of which a thin oxide layer is formed during this time on the surface of the material being annealed and/or an oxide layer that was previously there is maintained, thus preventing the non-ferrous metal objects from adhering together.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: December 12, 2000
    Assignee: Messer Griesheim GmbH
    Inventor: Peter Zylla