Amorphous, I.e., Glassy Patents (Class 148/403)
  • Patent number: 9334553
    Abstract: Various embodiments of zirconium based bulk metallic glass are described herein. In one embodiment, an alloy composition includes zirconium (Zr), copper (Cu), aluminum (Al), at least one element from a group consisting of niobium (Nb) and titanium (Ti), and at least one element from a group consisting of nickel (Ni), iron (Fe), and cobalt (Co).
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: May 10, 2016
    Assignee: Washington State University
    Inventors: Atakan Peker, Dongchun Qiao
  • Patent number: 9334560
    Abstract: A cutting tool having a metallic glass thin film (MGTF) coated thereon, a metallic glass cutting tool, and methods of fabricating the same are disclosed. The cutting tool having metallic glass thin film coated thereon comprises: a cutting element having a sharpened portion, and the cutting element is made of metal; and a metallic glass thin film coated on the cutting element, and the metallic glass is represented by the following formula 1 or formula 2, (ZraCubNicAld)100-xSix,??[formula 1] wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10, (ZreCufAggAlh)100-ySiy,??[formula 2] 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10. The metallic glass cutting tool of the present invention comprises: a cutting element having a sharpened portion, and the cutting element is made of a metallic glass represented by the above formula 1 or formula 2.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: May 10, 2016
    Assignee: National Central University
    Inventors: Jason Shiang Ching Jang, Pei Hua Tsai, Jia Bin Li, Yu Ze Lin, Chih Chiang Fu, Jinn P. Chu
  • Patent number: 9328404
    Abstract: A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: May 3, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Cheng Kiong Saw, William A. Bauer, Jor-Shan Choi, Dan Day, Joseph C. Farmer
  • Patent number: 9327481
    Abstract: A method of producing a first part having at least one surface, formed of a first material. The first part includes at least one coating on the at least one surface. The production method includes: a) taking a second part including a cavity forming the negative of the first part; b) depositing the coating, including at least a first layer, onto the second part; c) taking a first metallic material, chosen for its ability to become at least partially amorphous; d) shaping the first material in the cavity of the second part so as to secure the coating to the at least one surface of the first part, the first material having been subject to a treatment allowing it to become at least partially amorphous, at the latest at the time of the shaping operation; e) separating the first part from the second part so as to obtain the first part coated with the coating.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 3, 2016
    Assignee: The Swatch Group Research and Development Ltd.
    Inventors: Yves Winkler, Jean-Francois Dionne, Stewes Bourban, Alban Dubach, Yann Fallet
  • Patent number: 9222159
    Abstract: A method of forming bulk metallic glass engineering materials, and more particularly a method for forming coarsening microstructures within said engineering materials is provided. Specifically, the method forms ‘designed composites’ by introducing ‘soft’ elastic/plastic inhomogeneities in a metallic glass matrix to initiate local shear banding around the inhomogeneity, and matching of microstructural length scales (for example, L and S) to the characteristic length scale RP (for plastic shielding of an opening crack tip) to limit shear band extension, suppress shear band opening, and avoid crack development.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 29, 2015
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, William C. Johnson
  • Patent number: 9222157
    Abstract: Provided is an iron-based amorphous alloy and a method of manufacturing the same. More particularly, provided is an high carbon iron-based amorphous alloy expressed by a general formula Fe?C?Si?BxPyCrz, wherein ?, ?, ?, x, y and z are atomic % of iron (Fe), carbon (C), silicon (Si), boron (B), phosphorus (P), and chrome (Cr) respectively, wherein ? is expressed by ?=100?(?+?+x+y+z) atomic %, ? is expressed by 13.5 atomic %???17.8 atomic %, ? is expressed by 0.30 atomic %???1.50 atomic %, x is expressed by 0.1 atomic %?x?4.0 atomic %, y is expressed by 0.8 atomic %?y?7.7 atomic %, and z is expressed by 0.1 atomic %?z?3.0 atomic %.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 29, 2015
    Assignees: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Sang-Won Kim, Gab-Sik Byun, Young-Geun Son, Eon-Byeong Park, Sang-Hoon Yoon, Sang-Wook Ha, Oh-Joon Kwon, Seung-Dueg Choi, Seong Hoon Yi
  • Patent number: 9142830
    Abstract: A composite of silicon and tin is prepared as a negative electrode composition with increased lithium insertion capacity and durability for use with a metal current collector in cells of a lithium-ion battery. This electrode material is formed such that the silicon is present as a distinct amorphous phase in a matrix phase of crystalline tin. While the tin phase provides electron conductivity, both phases accommodate the insertion and extraction of lithium in the operation of the cell and both phases interact in minimizing mechanical damage to the material as the cell experiences repeated charge and discharge cycles. In general, roughly equal atomic proportions of the tin and silicon are used in forming the phase separated composite electrode material.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 22, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Anil K. Sachdev, Mark W. Verbrugge, Ping Liu, John S Wang
  • Patent number: 9103009
    Abstract: Disclosed herein are methods of combining at least one bulk-solidifying amorphous alloy and at least one additional metal or alloy of a metal to provide a composite preform. The composite preform then is heated to produce an alloy of the bulk-solidifying amorphous alloy and the at least one additional metal or alloy of the metal.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: August 11, 2015
    Assignee: Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Matthew S. Scott, Dermot J. Stratton
  • Patent number: 9096792
    Abstract: A luminescent element including nitride includes a luminescent film and a metal layer with a metal microstructure formed on a surface of the luminescent film; wherein the luminescent film has a chemical composition: Ga1-xAlxN:yRe, wherein Re represents the rare earth element, 0?x?1, 0<y?0.2. A preparation method of a luminescent element including nitride and a luminescence method are also provided. The metal layer is formed on the surface of the luminescent film, and the luminescent element including nitride has simple structure, good luminescence homogeneity, high luminescence efficiency, and good luminescence stability.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: August 4, 2015
    Assignee: Ocean's King Lighting Science & Technology CO., LTD.
    Inventors: Mingjie Zhou, Wenbo Ma, Jing Tang
  • Patent number: 9085814
    Abstract: Ni-based Cr- and P-bearing alloys that can from centimeter-thick amorphous articles are provided. Within the family of alloys, millimeter-thick bulk-glassy articles can undergo macroscopic plastic bending under load without fracturing catastrophically.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: July 21, 2015
    Assignee: California Institute of Technology
    Inventors: Jong Hyun Na, Marios D. Demetriou, William L. Johnson, Glenn Garrett
  • Patent number: 9051630
    Abstract: Amorphous steel composites with enhanced mechanical properties and related methods for toughening amorphous steel alloys. The composites are formed from monolithic amorphous steel and hard ceramic particulates, which must be embedded in the glass matrix through melting at a temperature above the melting point for the steel but below the melting point for the ceramic. The ceramics may be carbides, nitrides, borides, iron-refractory carbides, or iron-refractory borides. An optical micrograph of such a composite including niobium carbide particulates is shown in FIG. 2A. The produced composites may be one of two types, primarily distinguished by the methods for embedding the ceramic particulates in the steel. These methods may be applied to a variety of amorphous steels as well as other non-ferrous amorphous metals, and the resulting composites can be used in various applications and utilizations.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: June 9, 2015
    Assignee: University of Virginia Patent Foundation
    Inventors: S. Joseph Poon, Gary J. Shiflet, Xiao-Jun Gu
  • Publication number: 20150129089
    Abstract: A hydrogen-free amorphous dielectric insulating film having a high material density and a low density of tunneling states is provided. The film is prepared by e-beam deposition of a dielectric material on a substrate having a high substrate temperature Tsub under high vacuum and at a low deposition rate. In an exemplary embodiment, the film is amorphous silicon having a density greater than about 2.18 g/cm3 and a hydrogen content of less than about 0.1%, prepared by e-beam deposition at a rate of about 0.1 nm/sec on a substrate having Tsub=400° C. under a vacuum pressure of 1×10?8 Torr.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Xiao Liu, Daniel R. Queen, Frances Hellman
  • Patent number: 9005376
    Abstract: Alloys and methods for preparing the same are provided. The alloys are represented by the general formula of (ZraAlbCucNid)100-e-fYeMf, wherein a, b, c, and d are atomic fractions, in which: 0.472?a?0.568; 0.09?b?0.11; 0.27?c?0.33; 0.072?d?0.088; the sum of a, b, c, and d equals 1; e and f are atomic numbers of elements Y and M respectively, in which 0?e?5 and 0.01?f?5; and M is selected from the group consisting of Nb, Ta, Sc, and combinations thereof.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: April 14, 2015
    Assignee: BYD Company Limited
    Inventors: Qing Gong, Faliang Zhang, Yongxi Jian
  • Publication number: 20150096652
    Abstract: Ni—Fe—Si—B and Ni—Fe—Si—B—P metallic glass forming alloys and metallic glasses are provided. Metallic glass rods with diameters of at least one, up to three millimeters, or more can be formed from the disclosed alloys. The disclosed metallic glasses demonstrate high yield strength combined with high corrosion resistance, while for a relatively high Fe contents the metallic glasses are ferromagnetic.
    Type: Application
    Filed: January 7, 2014
    Publication date: April 9, 2015
    Applicant: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey
  • Patent number: 8986469
    Abstract: Design and fabrication processes and compositions for bulk metallic glass materials. Examples of bulk metallic glasses based on the described compositions may contain a high atomic percent of titanium or iron, which is alloyed with metalloid elements and refractory metals. The compositions can be designed using theoretical calculations of the liquidus temperature to have substantial amounts of refractory metals, while still maintaining a depressed liquidus temperature. The alloying elements are molybdenum, tungsten, chromium, boron, and carbon may be used. Some of the resulting alloys are ferromagnetic at room temperature, while others are non-ferromagnetic. These amorphous alloys have increased specific strengths and corrosion resistance compared to conventional high strength steels.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: March 24, 2015
    Assignee: The Regents of the University of California
    Inventors: Kenneth S. Vecchio, Justin Cheney, Hesham Khalifa
  • Patent number: 8986472
    Abstract: The present invention is directed at metal alloys that are capable of forming spinodal glass matrix microconstituent structure. The alloys are iron based and include nickel, boron, silicon and optionally chromium. The alloys exhibit ductility and relatively high tensile strengths and may be in the form of sheet, ribbon, wire, and/or fiber. Applications for such alloys are described.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: March 24, 2015
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Brian E. Meacham, Jason K. Walleser, Alla V. Sergueeva, Andrew T. Ball, Grant G. Justice
  • Publication number: 20150068648
    Abstract: In one embodiment, the invention provides a process for thermoplastic forming of a metallic glass. For example, in one embodiment, the invention provides a process for thermoplastic forming of a metallic glass ribbons having a thickness of between about 50 to about 200 microns. Related articles of manufacture and processes for customizing articles in accordance with the process as described herein are also provided.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 12, 2015
    Inventors: Jan Schroers, Thomas M. Hodges, Michael Kanik, Punnathal Bordeenithikasem
  • Publication number: 20150053312
    Abstract: The present invention relates to a metallic glass film for medical application, which is an amorphous thin film metallic glass (TFMG) formed for covering the surface of a substrate (for example, a medical cutting instrument), so as to increase the wear resistance and the sharpness of the substrate, decrease the surface roughness of the substrate, protect the edge of the substrate from curl and chipping crack. In the present invention, the TFMG is a zirconium-based thin film metallic glass constituted by Zr material, Cu material, Al material, and Ta material with the atom percent of 53 at %, 33 at %, 9 at %, 5 at %, respectively. Moreover, the TFMG can also be constituted by Cu material, Zr material, Al material, and Ti material, and the atom percent of the Cu material, the Zr material, the Al material, and the Ti material are 48 at %, 42 at %, 6 at %, 4 at %, respectively.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Inventor: Jinn Chu
  • Publication number: 20150053313
    Abstract: A class of alloys is provided that form metallic glass upon cooling below the glass transition temperature Tg at a rate below 100° K/sec. The alloys have a high value of temperature difference (DT) between the crystallization temperature (Tx) and the glass transition temperature (Tg) of the intermetallic alloy. Such alloys comprise zirconium in the range of 70 to 80 weight percent, beryllium in the range of 0.8 to 5 weight percent, copper in the range of 1 to 15 weight percent, nickel in the range of 1 to 15 weight percent, aluminum in the range of 1 to 5 weight percent and niobium in the range of 0.5 to 3 weight percent, or narrower ranges depending on other alloying elements and the critical cooling rate and value of DT desired. Furthermore, methods are provided for making such metallic glasses.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Inventors: Hans Jürgen WACHTER, Frank KRÜGER, Bernd KUNKEL, Xiaoyun WANG, Doug SHEARER
  • Publication number: 20150047755
    Abstract: The present disclosure is directed to Ni—P—B alloys and glasses containing small fractions of Nb and Ta and optionally Mn. Over a specific range, the alloys are capable of forming bulk metallic glasses having critical casting thickness in excess of 1 mm. In one embodiment, compositions with a Mn content of between 3 and 4 atomic percent, Nb content of about 3 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, where the balance in Ni, were capable of forming bulk metallic glass rods with diameters as large as 5 mm or larger. In another embodiment, Ni-based compositions with a Mn content of between 5 and 7 atomic percent, Ta content of between 1 and 2 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, where the balance in Ni, were capable of forming bulk metallic glass rods with diameters as large as 5 mm or larger.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 19, 2015
    Inventors: Jong Hyun Na, Danielle Duggins, Michael Floyd, Glenn Garrett, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Publication number: 20150050181
    Abstract: A fluxing method is disclosed by which the melt of aluminum-contaminated Ni-based glass-forming alloys is fluxed using a fluxing agent based on boron and oxygen in order to reverse the adverse effects of aluminum impurities on the glass-forming ability and toughness.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 19, 2015
    Inventors: Jong Hyun Na, Michael Floyd, Danielle Duggins, David S. Lee, Marios D. Demetriou, William L. Johnson
  • Patent number: 8951368
    Abstract: Disclosed are amorphous, ductile brazing foils with a composition consisting essentially of FeRestNiaCrbSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %?c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %, or consisting essentially of FeRestNiaCrbMofCugSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %<c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; 0 atomic %<f?3 atomic %; 0 atomic %?g?3 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %. Also disclosed are brazed objects formed using these foils, particularly exhaust gas recirculation coolers and oil coolers, and methods for making the brazing foils and for making the brazed parts.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 10, 2015
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Publication number: 20150034213
    Abstract: Bulk solidifying amorphous alloys exhibiting improved processing and mechanical properties and methods of forming these alloys are provided. The bulk solidifying amorphous alloys are composed to have high Poisson's ratio values. Exemplary Pt-based bulk solidifying amorphous alloys having such high Poisson's ratio values are also described. The Pt-based alloys are based on Pt—Ni—Co—Cu—P alloys, and the mechanical properties of one exemplary alloy having a composition of substantially Pt57.5Cu14.7Ni5.3P22.5 are also described.
    Type: Application
    Filed: September 8, 2014
    Publication date: February 5, 2015
    Inventors: William Johnson, Jan Schroers
  • Publication number: 20150027592
    Abstract: The invention provides a method of producing an amorphous alloy ribbon, the method including a step of producing an amorphous alloy ribbon by discharging a molten alloy through a rectangular opening of a molten metal nozzle having a molten metal flow channel along which the molten alloy flows, the opening being an end of the molten metal flow channel, onto a surface of a rotating chill roll, in which, among wall surfaces of the molten metal flow channel, a maximum height Rz(t) of a surface t, which is a wall surface parallel to a flow direction of the molten alloy and to a short side direction of the opening, is 10.5 ?m or less.
    Type: Application
    Filed: March 7, 2013
    Publication date: January 29, 2015
    Applicant: HITACHI METALS, LTD.
    Inventors: Hiroshi Shibasaki, Takayuki Motegi, Hajime Itagaki, Jun Sunakawa, Yoshio Bizen
  • Publication number: 20150020929
    Abstract: The present disclosure provides specified ranges in the Fe—Mo—Ni—Cr—P—C—B alloys such that the alloys are capable of forming bulk glasses having unexpectedly high glass-forming ability. The critical rod diameter of the disclosed alloys is at least 10 mm.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Publication number: 20150023827
    Abstract: The present invention relates to a porous amorphous alloy artificial joint and a manufacturing method thereof The porous amorphous alloy artificial joint is formed of at least one of amorphous alloy compounds represented by Formula 1 to Formula 4 as described in the present specification.
    Type: Application
    Filed: January 24, 2014
    Publication date: January 22, 2015
    Applicant: National Central University
    Inventors: Shiang Ching JANG, Chih-Ching HUANG, Jia Bin LI, Hung Cheng LIN
  • Publication number: 20150004431
    Abstract: The present invention relates to an anti-corrosion film, a metal substrate with an anti-corrosion layer and a manufacturing method thereof. The anti-corrosion film is at least one selected from the group consisting of: a Zr-based metallic glass film formed of Formula 1, a Zr—Cu-based metallic glass film formed of Formula 2, and a Ti-based metallic glass film formed of Formula 3, Formula 4 or Formula 5, wherein Formula 1 to Formula 5 are as described in the specification.
    Type: Application
    Filed: March 7, 2014
    Publication date: January 1, 2015
    Applicant: National Central University
    Inventors: Chung-Jen TSENG, Shian-Ching JANG, Tein-Chun CHENG, Pei-Jung WU, Hung-Cheng LIN, Pei Hua TSAI
  • Patent number: 8911568
    Abstract: The invention is directed to Pd-based metallic glass alloys useful in biomedical applications having no Ni or Cu. Exemplary metallic glass alloys are represented by AaBb{(Si)100-c(D)c}d, where A may be selected from Pd, and combinations of Pd and Pt, B may be selected from Ag, Au, Co, Fe, and combinations thereof, and D may be selected from P, Ge, B, S. Also, a, b, c and d are atomic percentages, and a ranges from about 60 to about 90, b ranges from about 2 to about 18, d ranges from about 5 to about 25, and c is greater than 0 and less than 100.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: December 16, 2014
    Assignee: California Institute of Technology
    Inventors: Marios D. Demetriou, William L. Johnson
  • Patent number: 8911572
    Abstract: A family of iron-based, phosphor-containing bulk metallic glasses having excellent processability and toughness, methods for forming such alloys, and processes for manufacturing articles therefrom are provided. The inventive iron-based alloy is based on the observation that by very tightly controlling the composition of the metalloid moiety of the Fe-based, P-containing bulk metallic glass alloys it is possible to obtain highly processable alloys with surprisingly low shear modulus and high toughness. Further, by incorporating small fractions of silicon (Si) and cobalt (Co) into the Fe—Ni—Mo—P—C—B system, alloys of 3 and 4 mm have been synthesized with high saturation magnetization and low switching losses.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: December 16, 2014
    Assignee: California Institute of Technology
    Inventors: Samuel T. Kim, Marios D. Demetriou, William L. Johnson
  • Patent number: 8906172
    Abstract: The present disclosure discloses an amorphous alloy composite material comprises an amorphous and continuous matrix phase, and a plurality of equiaxed crystalline phases as reinforcing phases dispersed in the matrix phase. Oxygen content in the amorphous alloy composite material may be less than 2100 ppm. The present disclosure also discloses a method of preparing the same. With the equiaxed crystalline phases dispersed in the matrix phase, the plasticity of the amorphous alloy composite material may be improved considerably.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: December 9, 2014
    Assignee: BYD Company Limited
    Inventors: Qing Gong, Zhijun Ma, Jiangtao Qu, Zengyan Guo, Faliang Zhang
  • Publication number: 20140345754
    Abstract: A method to form and to separate bulk solidifying amorphous alloy or composite containing amorphous alloy where the forming and separating takes place at a temperature around the glass transition temperature or within the super cooled liquid region are provided.
    Type: Application
    Filed: September 16, 2011
    Publication date: November 27, 2014
    Inventors: Tran Quoc Pham, Theodore Andrew Waniuk, Michael Blaine Deming, Sean Timothy O'Keeffe
  • Publication number: 20140345919
    Abstract: A transparent conductor includes a metallic glass, and a method of manufacturing a transparent conductor includes: preparing a metallic glass or a mixture comprising the metallic glass; and firing the metallic glass or the mixture comprising the metallic glass at a predetermined temperature higher than a glass transition temperature of the metallic glass.
    Type: Application
    Filed: December 3, 2013
    Publication date: November 27, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Se Yun KIM, Eun Sung LEE, Keum Hwan PARK, Weon Ho SHIN, Suk Jun KIM, Jin Man PARK, Sang Soo JEE
  • Publication number: 20140345755
    Abstract: A Ni-based bulk metallic glass forming alloy is provided. The alloy includes Ni(100-a-b-c-d)CraNbbPcBd, where an atomic percent of chromium (Cr) a ranges from 3 to 13, an atomic percent of niobium (Nb) b is determined by x?y*a, where x ranges from 3.8 to 4.2 and y ranges from 0.11 to 0.14, an atomic percent of phosphorus (P) c ranges from 16.25 to 17, an atomic percent of boron (B) d ranges from 2.75 to 3.5, and the balance is nickel (Ni), and where the alloy is capable of forming a metallic glass object having a lateral dimension of at least 6 mm, where the metallic glass has a stress intensity factor at crack initiation when measured on a 3 mm diameter rod containing a notch with length between 1 and 2 mm and root radius between 0.1 and 0.15 mm, the stress intensity factor being at least 70 MPa m1/2.
    Type: Application
    Filed: October 30, 2013
    Publication date: November 27, 2014
    Applicant: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey
  • Publication number: 20140346038
    Abstract: Provided are a crystalline alloy having significantly better thermal stability than an amorphous alloy as well as glass-forming ability, and a method of manufacturing the crystalline alloy. The present invention also provides an alloy sputtering target that is manufactured by using the crystalline alloy, and a method of manufacturing the alloy target. According to an aspect of the present invention, provided is a crystalline alloy having glass-forming ability which is formed of three or more elements having glass-forming ability, wherein the average grain size of the alloy is in a range of 0.1 ?m to 5 ?m and the alloy includes 5 at % to 20 at % of aluminum (Al), 15 at % to 40 at % of any one or more selected from copper (Cu) and nickel (Ni), and the remainder being zirconium (Zr).
    Type: Application
    Filed: December 4, 2012
    Publication date: November 27, 2014
    Inventors: Seung-Yong Shin, Kyoung-Il Moon, Ju-Hyun Sun, Chang-Hun Lee
  • Publication number: 20140332120
    Abstract: Ferrous metal alloys including Fe, Co and optionally Ni with metalloids Si, B and P are provided that are substantially close to the peak in glass forming ability and have a combination of both good glass formability and good ferromagnetic properties. In particular, Fe/Co-based compositions wherein the Co content is between 15 and 30 atomic percent and the metalloid content is between 22 and 24 atomic percent at a well-defined metalloid moiety, have been shown to be capable of forming bulk glassy rods with diameters as large as 4 mm or larger. In addition, incorporating a small content of Ni under 10 atomic percent and additions of Mo, Cr, Nb, Ge, or C at an incidental impurity level of up to 2 atomic percent are not expected to impair the bulk-glass-forming ability of the present alloys.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 13, 2014
    Applicant: California Institute of Technology
    Inventors: Xiao Liu, Marios D. Demetriou, William L. Johnson, Michael Floyd
  • Publication number: 20140328714
    Abstract: One embodiment provides a method of making an alloy feedstock, comprising: forming a first composition by combining Fe with a first nonmetal element; forming a second composition by combining Fe with a plurality of transition metal elements; forming a third composition by combining the second composition with a second nonmetal element; and combining the first composition with the third composition to form an alloy feedstock.
    Type: Application
    Filed: November 21, 2011
    Publication date: November 6, 2014
    Applicant: Crucible Intellectual Property, LLC
    Inventors: Theodore Andrew Waniuk, Quoc Tran Pham
  • Publication number: 20140311630
    Abstract: A bulk metallic glass forming alloy having the following composition x(aZr bHf cM dNb eO) yCu zAI and its preparation from an alloy L=(aZr bHf cM dNb eO), Cu, and Al as well as the use thereof is described.
    Type: Application
    Filed: November 22, 2012
    Publication date: October 23, 2014
    Inventors: Jochen Heinrich, Ralf Busch
  • Publication number: 20140312283
    Abstract: According to example embodiments, a metallic glass includes aluminum (Al), a first element group, and a second element group. The first element group includes at least one of a transition metal and a rare earth element. The second element group includes at least one of an alkaline metal, an alkaline-earth metal, a semi-metal, and a non-metal. The second element group and aluminum have an electronegativity difference of greater than or equal to about 0.25. The second element group is included less than or equal to about 3 at % of the metallic glass, based on the total amount of the aluminum (Al), the first element group, and the second element group. A conductive paste and/or an electrode of an electronic device may be formed using the metallic glass.
    Type: Application
    Filed: January 2, 2014
    Publication date: October 23, 2014
    Applicants: Yonsei University, University-Industry Foundation (UIF), SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin Man PARK, Keum Hwan PARK, Eun Sung LEE, Suk Jun KIM, Se Yun KIM, Sang Soo JEE, Do-hyang KIM
  • Publication number: 20140305549
    Abstract: An amorphous and a manufacturing method thereof are provided. The amorphous alloy may have a formula of ZraCubAlcMdNe, M is at least one selected from the group consisting of Ni, Fe, Co, Mn, Cr, Ti, Hf, Ta, Nb and rare earth elements; N is at least one selected from a group consisting of Ca, Mg, and C; 40?a?70, 15?b?35, 5?c?15, 5?d?15, 0?e?2, and a+b+c+d+e=100.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 16, 2014
    Inventors: Qing Gong, Faliang Zhang, Yunchun Li
  • Publication number: 20140283959
    Abstract: A method to form an enclosure or assembly which is fitted together and joined via a thermoplastic forming operation in order to seal the enclosure and hinder attempts to tamper with the contents.
    Type: Application
    Filed: September 30, 2011
    Publication date: September 25, 2014
    Applicant: Crucible Intellectual Property, LLC
    Inventors: Theodore Andrew Waniuk, Tran Quoc Pham, Dennis Ogawa
  • Publication number: 20140283957
    Abstract: The invention belongs to the technical field of rapid solidification of amorphous alloy and concretely relates to an iron-based amorphous alloy broad ribbon, wherein the width is 220-1000 mm, the thickness is 0.02-0.03 mm, the transversal thickness deviation is smaller than +/?0.002 mm, the lamination factor is larger than 0.84, the saturation magnetic-flux density is larger than 1.5 T, the iron loss is smaller than 0.20 W/kg under the conditions that the frequency is 50 Hz and the maximum magnetic-flux density is 1.3 T, and the exciting power is smaller than 0.50 VA/kg. The invention also relates to a manufacturing method of the broad ribbon, and a single-roll quenching method is adopted, wherein the width of a nozzle slot is 0.4-0.7 mm, the transversal width deviation of the nozzle slot is smaller than +/?0.05 mm, the transversal flatness deviation of a cooling roll (4) is smaller than 0.02 mm, and the surface roughness Ra is smaller than 0.0005 mm.
    Type: Application
    Filed: September 27, 2012
    Publication date: September 25, 2014
    Inventors: Shaoxiong Zhou, Guodong Liu, Wenzhi Chen, Lidong Ding, Jian Wang, Quan Li, Zhiying Zhang, Pei Zhao
  • Publication number: 20140283956
    Abstract: The disclosure is directed to a method of forming high-aspect-ratio metallic glass articles that are substantially free of defects and cosmetic flaws by means of rapid capacitive discharge forming. Metallic glass alloys that are stable against crystallization for at least 100 ms at temperatures where the viscosity is in the range of 100 to 104 Pa-s are considered as suitable for forming such high-aspect-ratio articles.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Applicant: Glassimetal Technology, Inc.
    Inventors: Joseph P. Schramm, Jong Hyun Na, Marios D. Demetriou, David S. Lee, William L. Johnson
  • Publication number: 20140261899
    Abstract: Negative electrode compositions for use in a lithium-ion electrochemical cell are provided that has the formula, SixSnqMyCz, wherein q, x, y, and z represent mole fractions, q, x, and z are greater than zero and M is one or more transition metals. The provided electrode compositions are amorphous and can be made by sputtering or ball milling. Typically, 0.50?x?0.83, 0.02?y?0.10, 0.25?z?0.35, and 0.02?q?0.05. Electrodes made using the provided electrode compositions can include a binder than can be lithium polyacrylate.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 18, 2014
    Inventors: Dinh B. Le, Jeffrey R. Dahn, Richard A. Dunlap, Mahdi Abdul Fattah Al-Maghrabi
  • Publication number: 20140261898
    Abstract: Disclosed herein is a bulk metallic glasses (BMG) comprising 0.0001 wt % to 0.7 wt % of Be, 0.0001 wt % to 0.2 wt % of Be, or 0.06 wt % to 0.08 wt % of Be. Be may have the effect of reducing a liquidus temperature of the BMG relative to melting temperatures of individual alloying elements of the BMG.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Edgar E. Vidal, James A. Yurko, Charles Pokross, Randy S. Beals, Lawrence H. Ryczek, Theodore A. Waniuk, Joseph C. Poole, Christopher D. Prest, Dermot J. Stratton
  • Patent number: 8828155
    Abstract: Bulk solidifying amorphous alloys exhibiting improved processing and mechanical properties and methods of forming these alloys are provided. The bulk solidifying amorphous alloys are composed to have high Poisson's ratio values. Exemplary Pt-based bulk solidifying amorphous alloys having such high Poisson's ratio values are also described. The Pt-based alloys are based on Pt—Ni—Co—Cu—P alloys, and the mechanical properties of one exemplary alloy having a composition of substantially Pt57.5Cu14.7Ni5.3P22.5 are also described.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Crucible Intellectual Property, LLC
    Inventors: William Johnson, Jan Schroers
  • Publication number: 20140238551
    Abstract: The disclosure is directed to Ni—P—B alloys bearing Mn and optionally Cr and Mo that are capable of forming a metallic glass, and more particularly metallic glass rods with diameters at least 1 mm and as large as 5 mm or larger. The disclosure is further directed to Ni—Mn—Cr—Mo—P—B alloys capable of demonstrating a good combination of glass forming ability, strength, toughness, bending ductility, and corrosion resistance.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 28, 2014
    Applicant: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey, Danielle Duggins
  • Publication number: 20140238550
    Abstract: A negative electrode active material for a secondary battery contains an aluminum alloy. The internal structure of the aluminum alloy has a crystalline aluminum phase in a magnesium-supersaturated solid solution state, and an amorphous aluminum phase. The amorphous aluminum phase is dispersed in the crystalline aluminum phase in the magnesium-supersaturated solid solution state. Each of these phases has a columnar shape. The magnesium content of the aluminum alloy preferably is greater than 22 at % and less than 35 at %, and more preferably, lies within a range of 25±2 at %.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 28, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Kenshi INOUE
  • Patent number: 8795444
    Abstract: A method of thermomagnetically processing a material includes disposing a workpiece within a bore of a magnet; exposing the workpiece to a magnetic field of at least about 1 Tesla generated by the magnet; and, while exposing the workpiece to the magnetic field, applying heat energy to the workpiece at a plurality of frequencies to achieve spatially-controlled heating of the workpiece. An apparatus for thermomagnetically processing a material comprises: a high field strength magnet having a bore extending therethrough for insertion of a workpiece therein; and an energy source disposed adjacent to an entrance to the bore. The energy source is an emitter of variable frequency heat energy, and the bore comprises a waveguide for propagation of the variable frequency heat energy from the energy source to the workpiece.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 5, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Roger A. Kisner, Orlando Rios, John B. Wilgen, Gerard M. Ludtka, Gail M. Ludtka
  • Patent number: 8791005
    Abstract: A structure formed in an opening having a substantially vertical sidewall defined by a non-metallic material and having a substantially horizontal bottom defined by a conductive pad, the structure including a diffusion barrier covering the sidewall and a fill composed of conductive material.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Fitzsimmons, Troy L. Graves-Abe
  • Patent number: 8778460
    Abstract: A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: July 15, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventor: Joseph C. Farmer