Magnesium(mg) Containing Patents (Class 148/700)
  • Patent number: 11118254
    Abstract: A thermal treatment method for an A356 aluminum alloy cast-spun wheel is provided. The thermal treatment method is characterized by including the steps of: 1) heating an aluminum alloy wheel cast-spun piece to 540-550° C.; 2) preserving the heat of the aluminum alloy wheel cast-spun piece for 275-285 minutes at the temperature of 540-550° C.; 3) quenching the aluminum alloy wheel cast-spun piece in water of 70-90° C. for 180 seconds; 4) heating the aluminum alloy wheel cast-spun piece to 150-160° C.; 5) preserving the heat of the aluminum alloy wheel cast-spun piece for 175-185 minutes at 150-160° C.; and 6) cooling the aluminum alloy wheel cast-spun piece in air to room temperature.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: September 14, 2021
    Assignee: CITIC DICASTAL CO., LTD
    Inventors: Zuo Xu, Guoyuan Xiong, Honglei Liu, Hongfeng Liu, Rui Wang, Changhai Li
  • Patent number: 10458009
    Abstract: A wrought aluminium alloy product having the following chemical composition, expressed in wt %: 1.3%?Si?12%, 1.35%?Fe?1.8% wherein the total Fe+Si content is higher than 3.4%, preferably 3.6%; 0.15%?Cu?6%; 0.6%?Mg?3%; optionally, one or more of the following elements: Mn?1%; Cr?0.25%; Ni?3%; Zn?1%; Ti?0.1%; Bi?0.7%; In?0.7%; Sn?0.7%; other elements <0.05% each and 0.15% in total; and the balance aluminium.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: October 29, 2019
    Assignee: CONSTELLIUM EXTRUSIONS DECIN S.R.O.
    Inventors: Ravi Shahani, Lukasz Dolega, Ivo Kolarik
  • Patent number: 9039850
    Abstract: An aluminum alloy forging material of the present invention is constituted by an aluminum alloy cast product obtained by subjecting an aluminum alloy ingot having a structure in which a secondary dentrite arm spacing (DAS) is 40 ?m or less and an average grain diameter of crystallized substances is 8 ?m or less to homogenization treatment for holding the ingot for one hour or more under temperature conditions of 450 to 510° C., wherein the ingot is obtained by continuously casting a molten aluminum alloy having an alloy composition consisting of: Si: 0.80 to 1.15 mass %; Fe: 0.2 to 0.5 mass %; Cu: 3.8 to 5 mass %; Mn: 0.8 to 1.15 mass %; Mg: 0.5 to 0.8 mass %; Zr: 0.05 to 0.13 mass %; and Ti contained in such an amount that a sum of Ti and Zr is 0.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 26, 2015
    Assignee: Showa Denko K.K.
    Inventor: Hideki Takemura
  • Patent number: 8764920
    Abstract: New 2xxx aluminum alloys containing vanadium are disclosed. In one embodiment, the aluminum alloy includes 3.3-4.1 wt. % Cu, 0.7-1.3 wt. % Mg, 0.01-0.16 wt. % V, 0.05-0.6 wt. % Mn, 0.01 to 0.4 wt. % of at least one grain structure control element, the balance being aluminum, incidental elements and impurities. The new alloys may realize an improved combination of properties, such as in the T39 or T89 tempers.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 1, 2014
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, Ralph R. Sawtell, Gary H. Bray, Cindie Giummarra, Andre Wilson, Gregory B. Venema
  • Patent number: 8758530
    Abstract: Aluminum alloy products having improved ballistics performance are disclosed. The aluminum alloy products may be underaged. In one embodiment, the underaged aluminum alloy products realize an FSP resistance that it is better than that of a peak strength aged version of the aluminum alloy product. In one embodiment, ballistics performance criteria is selected and the aluminum alloy product is underaged an amount sufficient to achieve a ballistics performance that is at least as good as the ballistics performance criteria.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: June 24, 2014
    Assignee: Alcoa Inc.
    Inventors: Roberto J. Rioja, Dirk C. Mooy, Jiantao T. Liu, Francine S. Bovard
  • Patent number: 8721811
    Abstract: The present invention provides a casting having increased crashworthiness including an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 13, 2014
    Assignee: Automotive Casting Technology, Inc.
    Inventors: Jen C. Lin, Moustapha Mbaye, Jan Ove Löland, Russell S. Long, Xinyan Yan
  • Publication number: 20140096879
    Abstract: Disclosed herein is an aluminum alloy composition and a method of heat treating the aluminum alloy, to improve process control and strength of the aluminum alloy for a rear safety plate mounted on a truck, etc., complying with safety regulations wherein the aluminum alloy composition includes Silicon (Si) about 0.8 to 1.3% by weight, Iron (Fe) up to about 0.5% by weight, Copper (Cu) about 0.15 to 0.4% by weight, Manganese (Mn) up to about 0.15% by weight, Magnesium (Mg) about 0.8 to 1.2% by weight, Chromium (Cr) up to about 0.25% by weight, Zinc (Zn) up to about 0.2% by weight, Titanium (Ti) up to about 0.1% by weight and the remaining percent by weight of Aluminum (Al) of the entire composition.
    Type: Application
    Filed: December 18, 2012
    Publication date: April 10, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Nak-Young Kim
  • Publication number: 20140048186
    Abstract: An aluminum alloy material for use in thermal conduction to which improved castability has been imparted by silicon addition. It has improved thermal conductivity and improved strength. The material has a composition containing 7.5-12.5 mass % Si and 0.1-2.0 mass % Cu, the remainder being Al and unavoidable impurities, wherein the amount of copper in the state of a solid solution in the matrix phase is regulated to 0.3 mass % or smaller. The composition may further contain at least 0.3 mass % Fe and/or at least 0.1 mass % Mg, provided that the sum of (Fe content) and (content of Mg among the impurities)×2 is 1.0 mass % or smaller and the sum of (Cu content), (content of Mg among the impurities)×2.5, and (content of Zn among the impurities) is 2.0 mass % or smaller.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 20, 2014
    Inventors: Hiroshi Horikawa, Masahiko Shioda
  • Patent number: 8636855
    Abstract: Methods of enhancing mechanical properties of aluminum alloy high pressure die castings are disclosed herein. An aluminum alloy composition forming a casting comprises, by weight of the composition, at least one of a magnesium concentration greater than about 0.2%, a copper concentration greater than about 1.5%, a silicon concentration greater than about 0.5%, and a zinc concentration greater than about 0.3%. After solidification, a casting is cooled to a quenching temperature between about 300° C. and about 500° C. Upon attainment of the quenching temperature, the casting is removed from the die and immediately quenched in a quench media. Following quenching, the casting is pre-aged at a reduced temperature between about room temperature and about 100° C. Thereafter, the casting is aged via at least one substantially isothermal aging at one or more elevated temperatures between about 150° C. and about 240° C.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 28, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Wenying Yang
  • Patent number: 8409374
    Abstract: A method for the heat treatment of a casting produced by high pressure die casting, that may exhibit blister forming porosity in the as-cast condition, of an age-hardenable aluminum alloy, includes solution treating the casting by heating the casting to and within a temperature range enabling solute elements to be taken into solid solution. The casting then is cooled to terminate the solution treatment by quenching the casting to a temperature below 100° C. The cooled casting is held in a temperature range enabling natural and/or artificial ageing. The solution treatment is conducted to achieve a level of solute element solution enabling age-hardening without expansion of pores in the casting causing unacceptable blistering of the casting.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: April 2, 2013
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Roger Neil Lumley, Robert Geoffrey O'Donnell, Dayalan Romesh Gunasegaram, Michel Givord
  • Patent number: 8366839
    Abstract: The present invention relates to extruded, rolled and/or forged products. Also provided are methods of making such products based on aluminum alloy wherein a liquid metal bath is prepared comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0.18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the quantity of said element, if it is selected, being 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the remainder being aluminum and inevitable impurities. The products and methods of the present invention offer a particularly advantageous compromise between static mechanical strength and damage tolerance and are particularly useful in the field of aeronautical design.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: February 5, 2013
    Assignee: Constellium France
    Inventors: Fabrice Heymes, Frank Eberl, Gaëlle Pouget
  • Patent number: 8366846
    Abstract: Disclosed is an Al—Mg—Si aluminum alloy sheet that can prevent ridging marks during press forming and has good reproducibility even with stricter fabricating conditions. In an Al—Mg—Si aluminum alloy sheet of a specific composition, hot rolling is performed on the basis of a set relationship between the rolling start temperature Ts and the rolling finish temperature Tf° C., whereby the relationship of the cube orientation distribution profile in the horizontal direction of the sheet with the cube orientation alone or another crystal orientation distribution profile at various locations in the depth direction of the sheet is made more uniform, suppressing the appearance of ridging marks that develop during sheet press forming.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: February 5, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuo Takaki, Takeo Sakurai, Kwangjin Lee
  • Publication number: 20120325382
    Abstract: Aluminum alloys having an improved combination of properties are provided. In one aspect, a method for producing the alloy includes preparing an aluminum alloy for artificial aging and artificially aging the alloy. In one embodiment, the artificially aging step includes aging the aluminum alloy at a temperature of at least about 250° F., and final aging the aluminum alloy at a temperature of not greater than about 225° F. and for at least about 20 hours.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicant: Alcoa Inc.
    Inventors: Cindie Giummarra, Roberto J. Rioja, Gary H. Bray, Paul E. Magnusen
  • Patent number: 8333853
    Abstract: Aluminum alloy having an improved combination of properties are provided. In one aspect, a method for producing the alloy includes preparing an aluminum alloy for artificial aging and artificially aging the alloy. In one embodiment, the artificially aging step includes aging the aluminum alloy at a temperature of at least about 250° F., and final aging the aluminum alloy at a temperature of not greater than about 225° F. and for at least about 20 hours. These aluminum alloys realize an improved combination of properties, including improved strength with at least equivalent fatigue crack growth resistance.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: December 18, 2012
    Assignee: Alcoa Inc.
    Inventors: Cindie Giummarra, Roberto J. Rioja, Gary H. Bray, Paul E. Magnusen
  • Patent number: 8168015
    Abstract: A heat treatment method for the direct quench of aluminum alloy castings is presented. An aluminum alloy casting can be heated to the solutionizing temperature. The temperature can be maintained for a period of time sufficient to dissolve the hardening elements into the aluminum solid solution and affect any morphological changes to non-soluble phases, such as speriodization of the eutectic silicon phase. After solutionizing, the aluminum alloy casting can be quenched. The aluminum alloy casting can be rapidly cooled from the solutionizing temperature directly to the aging temperature, eliminating the room temperature hold of a conventional process. Thereby, the process can reduce process steps and equipment, can improve throughput, and can eliminate some waste heat. Further, the process can reduce residual stress and can provide a potential to form new precipitates. Direct quench can also be used with the sequential aging of aluminum casting alloys.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: May 1, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Herbert W. Doty
  • Patent number: 8157934
    Abstract: A wear-resistant aluminum alloy material excellent in workability and wear-resistance is provided. A wear-resistant aluminum alloy material excellent in workability includes Si: 13 to 15 mass %, Cu: 5.5 to 9 mass %, Mg: 0.2 to 1 mass %, Ni: 0.5 to 1 mass %, P: 0.003 to 0.03 mass %, and the balance being Al and inevitable impurities. An average particle diameter of primary Si particles is 10 to 30 ?m, an area occupancy rate of the primary Si particles in cross-section is 3 to 12%, an average particle diameter of intermetallic compounds is 1.5 to 8 ?m, and an area occupancy rate of the intermetallic compounds in cross-section is 4 to 12%.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 17, 2012
    Assignee: Showa Denko K.K.
    Inventor: Yasuo Okamoto
  • Patent number: 7892482
    Abstract: The invention concerns a method for producing a substance during which an aluminum base alloy is produced that has a content of 5.5 to 13.0% by mass of silicon and a content of magnesium according to formula Mg [% by mass]=1.73×Si [% by mass]+m with m=1.5 to 6.0% by mass of magnesium, and has a copper content ranging from 1.0 to 4.0% by mass. The base alloy is then subjected to at least one hot working and, afterwards, to a heat treatment consisting of solution annealing, quenching and artificial aging. The magnesium is added based on the respectively desired silicon content according to the aforementioned formula. The material obtained by using the inventive method comprises having a low density and a high strength.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: February 22, 2011
    Assignees: Mahle GmbH, Peak Werkstoff GmbH
    Inventors: Ulrich Bischofberger, Peter Krug, Gero Sinha
  • Publication number: 20110030856
    Abstract: The invention relates to a wrought product such as an extruded, rolled and/or forged aluminum alloy-based product, comprising, in weight %: Cu: 3.0-3.9; Li: 0.8-1.3; Mg: 0.6-1.0; Zr: 0.05-0.18; Ag: 0.0-0.5; Mn: 0.0-0.5; Fe+Si?0.20; Zn?0.15; at least one element from among: Ti: 0.01-0.15; Sc: 0.05-0.3; Cr: 0.05-0.3; Hf: 0.05-0.5; other elements ?0.05 each and ?0.15 total, remainder aluminum. The invention also relates to the process for producing said product. The products according to the invention are particularly useful in the production of thick aluminum products intended for producing structural elements in the aeronautical industry.
    Type: Application
    Filed: June 22, 2010
    Publication date: February 10, 2011
    Applicant: ALCAN RHENALU
    Inventors: Timothy WARNER, Christophe Sigli, Cedric Gasqueres, Armelle Danielou
  • Publication number: 20110017359
    Abstract: High strength heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
    Type: Application
    Filed: October 7, 2010
    Publication date: January 27, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: Awadh B. Pandey
  • Publication number: 20110011501
    Abstract: The invention relates, according to a first aspect, to a process for the heat treatment of a cylinder head-type casting made from an aluminium alloy, in particular an alloy of aluminium, of silicon and of magnesium, and where appropriate of copper, comprising the steps of: —solution annealing (L) of the part for a time between three and ten hours; —quenching (S) of the part in air or in a fluidized bed; —tempering (H) of the part at the peak of resistance, or in the vicinity of the peak of resistance to attain a level of resistance of the part at least equal to 85% of the maximum level of resistance at the tempering temperature in question. According to a second aspect, the invention relates to the castings obtained at the end of the process according to the invention, and which have an improved fatigue resistance.
    Type: Application
    Filed: June 19, 2008
    Publication date: January 20, 2011
    Applicant: MONTUPET S.A.
    Inventors: Philippe Meyer, Denis Massinon, Julien Morichon
  • Patent number: 7815758
    Abstract: Disclosed is a high damage tolerant Al—Cu alloy of the AA2000 series having a high toughness and an improved fatigue crack growth resistance, including the following composition (in weight percent) Cu 3.8-4.7, Mg 1.0-1.6, Zr 0.06-0.18, Cr<0.15, Mn>0-0.50, Fe?0.15, Si?0.15, and Mn-containing dispersoids, the balance essentially aluminum and incidental elements and impurities, wherein the Mn-containing dispersoids are at least partially replaced by Zr-containing dispersoids. There is also disclosed a method for producing a rolled high damage tolerant Al—Cu alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 19, 2010
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
  • Publication number: 20100224293
    Abstract: Methods and technologies to maximize the aging response and the mechanical properties of aluminum alloys are provided. In one embodiment, the aging process for the slowly-quenched aluminum alloys includes, but is not limited to, at least a two-stage solution treatment and a two-stage aging hardening. In the solution treatment, the components are first heat treated at an initial solution treatment temperature and then gradually heated up to about 5° C. to about 30° C. above the initial solution treatment temperature for the material. For the aging treatment, the castings/components are first aged at a lower temperature followed by a higher temperature for the subsequent aging stages. The temperature increase during solution treatment and/or aging can be in steps, in a continuous manner, or combinations thereof. Another embodiment includes a two stage aging process in which there is a non-isothermal aging step.
    Type: Application
    Filed: January 6, 2010
    Publication date: September 9, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Qigui Wang, Dale A. Gerard
  • Patent number: 7776168
    Abstract: A method of heat-treating a casting made of an aluminum-based alloy including an alloy of aluminum, silicon, and magnesium comprising heat treating the casting at a first temperature range for a first duration; gradually cooling the casting to a second temperature having a second temperature range; maintaining the casting at the second temperature range for a second duration; quenching the casting; and age hardening the casting.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: August 17, 2010
    Assignee: Montupet S.A.
    Inventors: Philippe Meyer, Denis Massinon, Virginie Jacquet
  • Patent number: 7744704
    Abstract: A low density aluminum based alloy useful in aircraft structure for fuselage sheet or light-gauge plate applications which has high strength, high fracture toughness and high corrosion resistance, comprising 2.7 to 3.4 weight percent Cu, 0.8 to 1.4 weight percent Li, 0.1 to 0.8 weight percent Ag, 0.2 to 0.6 weight percent Mg and a grain refiner such as Zr, Mn, Cr, Sc, Hf, Ti or a combination thereof, the amount of which being 0.05 to 0.13 wt. % for Zr, 0.1 to 0.8 wt. % for Mn, 0.05 to 0.3 wt. % for Cr and Sc, 0.05 to 0.5 wt. % for Hf and 0.05 to 0.15 wt. % for Ti. The amount of Cu and Li preferably corresponds to the formula Cu(wt. %)+5/3 Li(wt. %)<5.2.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Alcan Rhenalu
    Inventors: Bernard Bés, Hervé Ribes, Christophe Sigli, Timothy Warner
  • Publication number: 20090301616
    Abstract: A wear-resistant aluminum alloy material excellent in workability and wear-resistance is provided. A wear-resistant aluminum alloy material excellent in workability includes Si: 13 to 15 mass %, Cu: 5.5 to 9 mass %, Mg: 0.2 to 1 mass %, Ni: 0.5 to 1 mass %, P: 0.003 to 0.03 mass %, and the balance being Al and inevitable impurities. An average particle diameter of primary Si particles is 10 to 30 ?m, an area occupancy rate of the primary Si particles in cross-section is 3 to 12%, an average particle diameter of intermetallic compounds is 1.5 to 8 ?m, and an area occupancy rate of the intermetallic compounds in cross-section is 4 to 12%.
    Type: Application
    Filed: November 8, 2007
    Publication date: December 10, 2009
    Applicant: SHOWA DENKO K.K.
    Inventor: Yasuo Okamoto
  • Publication number: 20090196762
    Abstract: A casting aluminum alloy which contains, in terms of mass %, 3.2-5.0% Cu, 0.8-3.0% Ni, 1.0-3.0% Mg, 0.05-0.20% Ti, and up to 1.0% Si, the remainder being aluminum and incidental impurities. This casting aluminum alloy is used to produce a cast compressor impeller comprising a hub part, a hub-disk part extending from the hub part in the radial directions and having a hub surface and a disk surface, and blade parts disposed on the hub surface. Compared to conventional aluminum alloys, the casting aluminum alloy has a moderate elongation and a high strength at ordinary temperature and has high strength even at high temperatures.
    Type: Application
    Filed: June 26, 2007
    Publication date: August 6, 2009
    Applicants: HITACHI METALS PRECISION , LTD., HITACHI METALS , LTD.
    Inventor: Masaaki Koga
  • Patent number: 7503986
    Abstract: A method for producing a heat treated aluminum alloy product in a shortened period of time, the method comprising: (a) providing a heat treatable aluminum alloy; (b) working the heat treatable aluminum alloy at a solutionizing temperature to form a product; (c) first stage cooling the product to a critical temperature at which precipitation of second phase particles of the heat treatable aluminum alloy is negligible, wherein the first stage cooling comprises a first stage cooling rate from about 15° F. per second to about 100° F. per second; (d) second stage cooling the product to ambient temperature; (e) heating the product to an artificial aging temperature; and (f) artificially aging the product at the artificial aging temperature for a predetermined artificial aging time to form the heat treated aluminum alloy product.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: March 17, 2009
    Assignee: Alcoa, Inc.
    Inventors: Rajeev G. Kamat, William D. Bennon, Shawn J. Murtha
  • Publication number: 20090010799
    Abstract: Disclosed are: a casting aluminum alloy that is excellent in elongation as alternative properties of a high cycle fatigue strength and a thermal fatigue strength and is suitably usable for a casting for which both of the excellent high cycle fatigue strength and the excellent thermal fatigue strength are required, for example, an internal combustion engine cylinder head; a casting made of the aluminum alloy; a manufacturing method of the casting; and further, an internal combustion engine cylinder head composed of the aluminum alloy casting and manufactured by the manufacturing method of the casting. The casting aluminum alloy contains, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, no more than 0.5% of Mn, and at least one component selected from the group consisting of Na, Ca and Sr, each mass ratio of which is 0.002 to 0.02%.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Inventors: Hiroshi SOUDA, Kouichi AKIYAMA, Hiroshi HORIKAWA, Masahiko SHIODA
  • Publication number: 20080000561
    Abstract: A cast aluminum alloy excellent in the relaxation resistance property, comprising 9 to 17% by mass of Si, 3 to 6% by mass of Cu, 0.2 to 1.2% by mass of Mg, 0.2 to 1.5% by mass of Fe, 0.1 to 1% by mass of Mn, a balance consists of Al and unavoidable impurities, wherein a Ni content is not more than 0.5% by mass. The average hardness is adjusted to HV130 to HV160 by performing, after casting, solution heating by retaining the alloy at a treatment temperature of 450 to 510° C. for 0.5 hour or longer, performing water quenching and, thereafter, performing aging treatment by retaining the alloy at a treatment temperature of 170 to 230° C. for 1 to 24 hours.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 3, 2008
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Hajime IKUNO, Akira Yamada, Hiroshi Hohjo, Hiroshi Kawahara, Shoji Hotta, Isamu Ueda
  • Patent number: 7252723
    Abstract: New alloys for potential use in applications such as in lower wing skins and fuselage skins are disclosed. Specifically, Mn-free 2×24 alloys potentially suitable for thick plate and thin plate and sheet applications are believed to be novel and to provide unexpectedly superior properties.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: August 7, 2007
    Assignee: Pechiney Rhenalu
    Inventors: Ronan Dif, Timothy Warner, Bernard Bes
  • Patent number: 7214279
    Abstract: An Al/Cu/Mg/Mn alloy for the production of semi-finished products with high static and dynamic strength properties has the following composition: 0.3–0.7 wt % silicon (Si), max. 0.15 wt. % iron (Fe), 3.5–4.5 wt % copper (Cu), 0.1–0.5 wt. % manganese (Mn), 0.3–0.8 wt. % magnesium (Mg), 0.5–0.15 wt % titanium (Ti), 0.1–0.25 wt % zirconium (Zr), 0.3–0.7 wt. % silver (Ag), max. 0.05 wt. % others individually, max 0.15 wt. % others globally, the remaining wt. % aluminum (Al). The invention further relates to a semi-finished product made for such an alloy and a method of production of a semi-finished product made for such an alloy.
    Type: Grant
    Filed: June 29, 2002
    Date of Patent: May 8, 2007
    Assignee: Otto Fuchs KG
    Inventors: Gernot Fischer, Dieter Sauer, Gregor Terlinde
  • Patent number: 6994760
    Abstract: The present invention relates to a method for producing high strength balanced Al—Mg—Si alloy with an improved fatigue crack growth resistance and a low amount of intermetallics, comprising the steps of a) casting an ingot with the following composition (in weight percent) Si: 0.75–1.3, Cu: 0.6–1.1, Mn: 0.2–0.8, Mg: 0.45–0.95, Fe: 0.01–0.3, Zr: <0.25, Cr: <0.25, Zn: <0.35, Ti: <0.25, impurities each less than 0.05 and less than 0.20 in total, balance aluminum, b) optional homogenization of the cast ingot, c) pre-heating the ingot after casting for 4 to 30 hours with temperatures above 520° C., d) hot working the ingot and optionally cold working, e) solution heat treating, and f) quenching the worked product. The pre-heating is preferably performed for 6 to 18 hours with temperatures between 530° C. and 560° C. The alloy has a fatigue crack growth rate at ?K=20 MPa?m of below 9.0E?04 and at ?K=40 MPa?m of below 9.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: February 7, 2006
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Guido Weber, Alfred Johann Peter Haszler
  • Patent number: 6991689
    Abstract: An aluminum based alloy having a composition within the following ranges, all of the ranges being in weight percent: lithium 2.0 to 2.8, magnesium 0.4 to 1.0, copper 2.0 to 3.0, manganese 0.7 to 1.2, zirconium up to 0.2 and the balance aluminum, save for incidental impurities and up to 2.0 in total of one or more grain controlling elements to provide microstructural optimization and control.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: January 31, 2006
    Assignee: Qinetiq Limited
    Inventors: Wendy J Vine, Donald S McDarmaid, Christopher J Peel
  • Patent number: 6918975
    Abstract: A substantially unrecrystallized extrusion comprising about 3.6 to about 4.2 wt. % copper, about 1.0 to about 1.6 wt. % magnesium, about 0.3 to about 0.8 wt. % manganese, about 0.05 to 0.25% zirconium, the balance substantially aluminum, incidental elements and impurities. The extrusion has a longitudinal yield strength of at least about 50 ksi and a longitudinal tensile ultimate strength of at least about 70 ksi. On a preferred basis, the extrusions of this invention include very low levels of both iron and silicon, typically on the order of less than 0.1 wt. % each, and more preferably about 0.05 wt. % or less iron and about 0.03 wt. % or less silicon.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: July 19, 2005
    Assignee: Alcoa Inc.
    Inventors: John Liu, Gary H. Bray, David A. Lukasak, Robert C. Pahl
  • Patent number: 6756133
    Abstract: The present invention provides an aluminum alloy brazing sheet material, particularly suitable for charge air cooler applications, comprising a core alloy and a clad brazing alloy, as well as to methods for their manufacture and use. The present invention also provides a method for increasing the yield strength of brazing sheet materials.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: June 29, 2004
    Assignee: Pechiney Rolled Products LLC
    Inventors: Scott L. Palmer, Zayna M. Connor, H. Scott Goodrich
  • Publication number: 20040103964
    Abstract: A thermal treating process includes a step of heating a light alloy casting up to a solid solution range and maintaining it at such heating temperature T, and a step of quenching the light alloy casting through a cooling medium while pressurizing it. Thus, increase in porosity of the light alloy casting can be suppressed and generation of blisters on a surface of the light alloy casting can be prevented, thereby enhancing the toughness of the light alloy casting.
    Type: Application
    Filed: August 27, 2003
    Publication date: June 3, 2004
    Inventors: Takeyoshi Nakamura, Katsuhiro Shibata
  • Patent number: 6719859
    Abstract: An improved Si—Cu—Mg—Al base alloy suitable for forming in the semi-solid condition into members such as vehicular members having improved properties.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: April 13, 2004
    Assignee: Northwest Aluminum Company
    Inventor: S. Craig Bergsma
  • Patent number: 6696175
    Abstract: The present invention provides aluminum alloys and layers formed in aluminum alloys as well as methods for their manufacture. Aluminum alloys of the present invention are provided with at least one discrete layer of uncrystallized grains formed therein. Alloys of the present invention can be formed, for example, by a process that includes a final partial anneal that permits softening of the material to essentially an O-temper condition. Processes of the present invention recrystallized substantially the entire material by leave a discrete layer of preferably less than 50 microns of the material unrecrystallized. In preferred embodiments, the aluminum material is a core material that is clad on one or both sides and the discrete unrecrystallized layer forms at the boundary between the clad and the core.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: February 24, 2004
    Assignee: Pechiney Rolled Products
    Inventors: Scott L. Palmer, Zayna Connor, H. Scott Goodrich
  • Patent number: 6692589
    Abstract: A process for forming a structure element, particularly an lower wing element of an aircraft, manufactured from a rolled, extruded or forged product made of an alloy of composition (% by weight) Cu=4.6-5.3, Mg=0.10-0.50, Mn=0.15-0.45, Si<0.10, Fe<0.15, Zn<0.20, Cr<0.10, other elements <0.05 each and <0.15 total, remainder Al. The product is treated by solution heat treating, quenching, controlled tension to more than 1.5% permanent deformation and aging.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: February 17, 2004
    Assignee: Pechiney Rhenalu
    Inventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
  • Patent number: 6669792
    Abstract: A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon (Si) 14.0-25.0 Copper (Cu) 5.5-8.0 Iron (Fe)   0-0.8 Magnesium (Mg) 0.5-1.5 Nickel (Ni) 0.05-1.2  Manganese (Mn)   0-1.0 Titanium (Ti) 0.05-1.2  Zirconium (Zr) 0.12-1.2  Vanadium (V) 0.05-1.2  Zinc (Zn)   0-0.9 Phosphorus (P) 0.001-0.1  Aluminum balance In this alloy the ration of Si:Mg is 15-35, and the ratio of Cu:Mg is 4-15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400° F. to 500° F. for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: December 30, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jonathan A. Lee, Po-Shou Chen
  • Patent number: 6627010
    Abstract: The present invention concerns procedures for producing an alloy from a eutectic alloy system, in order to form a workpiece for rolling or extrusion purposes by, for example, producing an Al—Mg—Si alloy, which can be precipitation-hardened, which alloy, after having been heated to a temperature above the solubility temperature of phases which can be precipitated, is kept at this temperature until the phases have dissolved and is cooled at a cooling rate which is rapid enough to avoid most of the precipitation of the phases and slow enough to avoid most of the precipitation of dispersoid particles. At cooling rates within this interval, most coarse phases which have a reductive effect on the processing rate can be avoided and, at the same time, the number of small dispersoid particles which have a reductive effect on the mechanical properties after hardening is limited.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: September 30, 2003
    Assignee: Norsk Hydro ASA
    Inventors: Oddvin Reiso, Ulf Tundal, John Erik Hafsås, Oddgeir Sjøthun
  • Patent number: 6613167
    Abstract: A process for improving 6XXX alloys, such as 6013, preferably includes heating, hot rolling, inter-rolling thermal treatment at a very high temperature such as 1020° F. or more, again hot rolling (with or without subsequent continuous hot rolling or cold rolling or both), solution heat treating and artificial aging. The initial heating, inter-rolling, thermal treatment and solution treatment, especially the latter two, are carried out at very high temperatures such as 1030° F. Each aforesaid hot rolling stage produces substantial metal thickness reduction. The improved sheet or plate product has a substantially reduced occurrence of reduced density features revealed in scanning electron microscope examination at 500× and exhibits improved (reduced) fatigue crack growth rate providing an advantage in aerospace applications such as fuselage skin, especially fuselage belly skin.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: September 2, 2003
    Assignee: Alcoa Inc.
    Inventors: Paul E. Magnusen, Dhruba J. Chakrabarti, Anne E. Zemo, Robert W. Westerlund, Anthony Morales, Daniel T. Moulton
  • Patent number: 6528183
    Abstract: Clad sheet made up of a core sheet and a cladding layer on one or two core sheet surfaces. The core sheet is formed of an alloy having the composition (% by weight) Si: 0.7-1.3, Mg: 0.6-1.2, Cu: 0.5-1.1, Mn: 0.15-1.0, Zn<0.5, Fe<0.5, Zr<0.2, Cr<0.25, other elements <0.05 each and <0.15 total, the remainder aluminum. The cladding is formed of an AlZn alloy having a thickness of between 1 and 15% of the clad sheet thickness, having the composition (% by weight) Zn: 0.25-0.7, Fe<0.40, Si<0.40, Cu, Mn, Mg, V or Ti <0.10, other elements <0.05 each and 0.15 total.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: March 4, 2003
    Assignee: Pechiney Rhenalu
    Inventors: Ronan Dif, Bernard Bes, Philippe Lassince, Herve Ribes
  • Patent number: 6406571
    Abstract: A process of producing a shaped article suitable for use as an automotive body panel intended for finishing by painting and, if necessary, baking. The process comprises obtaining a sheet article made of an aluminum alloy of the 2000 or 6000 series in a T4 or T4P temper and that exhibits an increase in hardness after painting and optionally baking, shaping the sheet article by forming to produce an intermediate shaped article, and subjecting the intermediate shaped article to a thermal spiking treatment prior to painting and optionally baking. The thermal spiking treatment involves heating the intermediate shaped article from ambient temperature to a temperature in a range of 150 to 300° C. with or without holding at that temperature for a period of time to enhance the increase in hardness. The process may also include the painting and optionally baking step. The invention includes the shaped articles, either prior to or after painting and optionally baking, produced by the process.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: June 18, 2002
    Assignee: Alcan International Limited
    Inventors: Alok Kumar Gupta, David James Lloyd, Pierre Henri Marois
  • Patent number: 6344096
    Abstract: The present invention relates to an improved method of producing an aluminum alloy sheet which, in one embodiment, includes roll casting an aluminum alloy strip having a thickness of less than about 0.5 inch and, subsequently, preferably without intervening thermal treatments or surface cleaning, cold rolling the strip to a thickness of less than about 0.15 inch, after which the cold rolled strip is subjected to thermal treatment which is preferably either continuous annealing or solution heat treatment. The aluminum alloy, in a continuous annealing embodiment, is preferably selected from the group consisting of the 3XXX and 5XXX series. In another embodiment wherein solution heat treatment is employed, the aluminum alloy is preferably selected from the group consisting of 2XXX and 6XXX. The sheet may be converted into a motor vehicle body panel.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: February 5, 2002
    Assignee: Alcoa Inc.
    Inventors: Stephen F. Baumann, Robert E. Sanders, Jr., Scott L. Palmer
  • Patent number: 6258463
    Abstract: The invention relates to a process for producing anodic coatings with superior corrosion resistance and other properties on aluminum and aluminum alloy surfaces by cryogenically treating the aluminum prior to anodizing. The invention also relates to the anodic coatings and to the anodically coated articles produced by the process. The anodized coating has a thickness of 0.001 to 0.5 mm and a time to penetration of at least 5 hours for aqueous solutions of HCl.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: July 10, 2001
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: Michael Kevin Corridan
  • Patent number: 6129792
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.15 to about 0.65 wt. % magnesium, about 0.00 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.3 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 460.degree. C. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: October 10, 2000
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 6074501
    Abstract: An aluminum casting of composition that is hardenable due to the presence of suitable amounts of silicon, magnesium and, optionally, other hardening constituents such as copper, nickel and the like is heat treated for improved tensile strength at 300.degree. C. The casting, which as formed has a microstructure of aluminum rich dendrites, silicon particles and hardening particles, is reheated above 500.degree. C. to redissolve the hardening particles and redistribute hardening constituents through the aluminum dendrites, cooling the casting to 350.degree. C. to 450.degree. C. and holding there to reform an abundance of large stable hardening precipitates in the aluminum dendrites and then air cooling the casting. The thus treated casting may then be artificially age hardened such as by a T5 temper practice.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: June 13, 2000
    Assignee: General Motors Corporation
    Inventors: William John Baxter, Anil Kumar Sachdev
  • Patent number: 6045632
    Abstract: End or tab stock and a method for its manufacture in which a low alloy content aluminum alloy is continuously cast to form a hot feedstock, the hot feedstock is rapidly quenched rapidly to prevent substantial precipitation of alloying elements, annealed, quenched, and coiled. The can end and tab stock of the invention has strength and formability equal to higher alloy content aluminum alloy.
    Type: Grant
    Filed: January 29, 1998
    Date of Patent: April 4, 2000
    Assignee: Alcoa, Inc.
    Inventors: Tyzh-Chiang Sun, William M. Betts
  • Patent number: RE36692
    Abstract: A process of producing solution heat treated aluminum alloy sheet material comprises subjecting hot- or cold-rolled aluminum alloy sheet to solution heat treatment followed by quenching and, before substantial age hardening has taken place, subjecting the alloy sheet material to one or more subsequent heat treatments involving heating the material to a peak temperature in the range of 100.degree. to 300.degree. C. (preferably 130.degree.-270.degree. C.), holding the material at the peak temperature for a period of time less than about 1 minute, and cooling the alloy from the peak temperature to a temperature of 85.degree. C. or less. The sheet material treated in this way can be used for automotive panels and has good a good "paint bake response", i.e. an increase in yield strength from the T4 temper to the T8X temper upon painting and baking of the panels.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: May 16, 2000
    Assignee: Alcan International Limited
    Inventors: Alok Kumar Gupta, Michael J. Wheeler, Michael Jackson Bull, Pierre Henri Marois