Specific Propping Feature (epo) Patents (Class 166/280.1)
  • Publication number: 20150060065
    Abstract: A system is described that provides for proppant to be blended into a liquefied gas fluid stream with an eductor to produce a proppant slurry which is effectively controlled by the use of a control valve system and associated PLC controller. This system ensures allowing for operation of the system at various static pressures and keeps the proppant completely fluidized throughout the fracing operation.
    Type: Application
    Filed: June 18, 2014
    Publication date: March 5, 2015
    Inventors: WILLIAM SCHARMACH, Daniel Dalton, Gregory J. Panuccio
  • Patent number: 8967263
    Abstract: Methods of treating a subterranean formation including introducing a fracturing fluid into the subterranean formation at a pressure sufficient to create or enhance at least one fracture therein; a treatment fluid comprising a base fluid, proppant particulates, a crosslinking agent, and a stress-activated resin comprising a stress-activated moiety, wherein the stress-activated resin does not substantially react with the crosslinking agent until placed under stress; introducing the treatment fluid into the at least one fracture of the subterranean formation; removing the pressure in the subterranean formation such that the fracture closes on the treatment fluid and applies a stress to the stress-activated resin; and crosslinking the resin with the crosslinking agent, thereby forming a resinous proppant pack therein.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: March 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James William Ogle, Philip D. Nguyen
  • Patent number: 8960284
    Abstract: Providing a carrier fluid having a density; providing a proppant aggregates having a density higher than that of the carrier fluid; and, providing low-density particulates having a density lower than that of the carrier fluid. Then the carrier fluid, proppant aggregates, and low-density particulates are combined to create a propping fluid. The propping fluid then is placed into a fracture within a subterranean formation wherein the low-density particulates slow the settling of the proppant aggregates within the fracture.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 24, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Philip D. Nguyen, Jonathan Dale Worley
  • Publication number: 20150041132
    Abstract: The flow of well treatment fluids may be diverted from a high permeability zone to a low permeability zone within a fracture network within a subterranean formation by use of a mixture comprising a dissolvable diverter and a proppant. At least a portion of the high permeability zone is propped open with the proppant of the mixture and at least a portion of the high permeability zone is blocked with the diverter. A fluid is then pumped into the subterranean formation and into a lower permeability zone of the formation farther from the wellbore. The diverter in the high permeability zones may then be dissolved at in-situ reservoir conditions and hydrocarbons produced from the high permeability propped zones of the fracture network. The mixture has particular applicability in the enhancement of production or hydrocarbons from high permeability zones in a fracture network located near the wellbore.
    Type: Application
    Filed: October 10, 2014
    Publication date: February 12, 2015
    Inventors: Scott G. Nelson, Harold Dean Brannon, Jimie DeVon Lemons, Thomas Ray Starks, II, D.V. Satyanarayana Gupta
  • Publication number: 20150027692
    Abstract: A method of servicing a subterranean formation comprising providing a wellbore penetrating the subterranean formation and having a casing string disposed therein, the casing string comprising a plurality of points of entry, wherein each of the plurality of points of entry provides a route a fluid communication from the casing string to the subterranean formation, introducing a treatment fluid into the subterranean formation via a first flowpath, and diverting the treatment fluid from the first flowpath into the formation to a second flowpath into the formation.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Inventors: Loyd Eddie EAST, Sharlene Dawn LINDSAY, Nicholas Hubert GARDINER
  • Publication number: 20150021023
    Abstract: Providing high energy materials that can be placed in previously created fractures and activating them in place to extend or change an existing fracture system. Also detecting the location of fractures or permeable pathways and a means to assess the extent and efficiency of proppant emplacement.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 22, 2015
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Jeffery James Roberts, Roger D. Aines, Eric B. Duoss, Christopher M. Spadaccini, Kevin S. Vandersall
  • Patent number: 8936083
    Abstract: Methods of forming channels within propped fractures that are essentially free of proppants and more spacious than the interstitial spaces within traditional proppant packs. Specifically, various proppant-laden fluids may be placed within a fracture in a subterranean formation, the proppants in the proppant-laden fluids having at least two distinct ranges of density. Once placed inside the fracture, the proppants can settle, separate, and consolidate into at least two distinct permeable masses according to their densities. Consequently, the high-density and low-density proppants can separate and form separate proppant masses when the fracture closes on the proppants. Through this process, a highly conductive channel can form inside the fracture through which production fluids can flow.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: January 20, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Philip D. Nguyen
  • Patent number: 8936085
    Abstract: In downhole treatments in the oilfield, ball sealers seated in perforations may not fully seal and may leak fluid through gaps and asperities between the balls and the perforations. A method is given for improving the sealing of ball sealers in perforations by adding a sealing agent that forms a plug in the gaps and severely restricts or eliminates fluid flow. The sealing agent is preferably degradable or soluble, malleable fibers slightly larger than the gaps. Optionally, the particles may be non-degradable, rigid, of different shapes, and smaller than the gaps but able to bridge them. Mixtures of sealing agents may be used. The sealing agent may be added with the ball sealers, after the ball sealers, or both.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: January 20, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Curtis L. Boney, Jason Swaren, John Lassek, Ricardo Ariza, Desmond E. Rees, David Ryan Simon, Michael A. Dardis, Darrel P. Davis
  • Publication number: 20150007990
    Abstract: An improvement over known hydraulic fracturing fluids. Boundary layer kinetic mixing material is added to components of fracturing fluid wherein kinetic mixing material is a plurality of particles wherein at least 25% of particles are several types, i.e., having surface characteristics of thin walls, three dimensional wedge-like sharp blades, points, jagged bladelike surfaces, thin blade surfaces, three-dimensional blade shapes that may have shapes similar to a “Y”, “V” or “X” shape or other geometric shape, slightly curved thin walls having a shape similar to an egg shell shape, crushed hollow spheres, sharp bladelike features, 90° corners that are well defined, conglomerated protruding arms in various shapes, such as cylinders, rectangles, Y-shaped particles, X-shaped particles, octagons, pentagon, triangles, and diamonds.
    Type: Application
    Filed: July 22, 2014
    Publication date: January 8, 2015
    Inventor: WILLIAM L. JOHNSON, SR.
  • Publication number: 20150000910
    Abstract: Methods of treating a subterranean formations including providing a treatment fluid comprising a high salt concentration base fluid, a charged polymeric gelling agent, and proppant particulates suspended therein; wherein the high salt concentration base fluid comprises a concentration of salt in the range of from about 0.5% to saturation, and wherein the treatment fluid has a bulk viscosity of from about 30 cP to about 150 cP at a shear rate of about 40 sec?1; and introducing the treatment fluid comprising the proppant particulates into the subterranean formation.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Aaron Gene Russell, Dipti Singh, HsinChen Chung, Xiangnan Ye
  • Publication number: 20140374093
    Abstract: Methods of treating a fracture in a subterranean formation including providing a proppant-free fluid comprising a first gelling agent; providing a proppant fluid comprising a second gelling agent and proppant aggregates, wherein the proppant-free fluid and the proppant fluid are substantially immiscible; continuously pumping the proppant-free fluid into the subterranean formation; continuously pumping the proppant fluid into the subterranean formation, wherein the proppant-free fluid and the proppant fluid are present simultaneously in a portion of the subterranean formation but remain immiscible; placing the proppant aggregates into a portion of the fracture in the subterranean formation so as to form a proppant pack having proppant-free channels therein.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventors: Philip D. Nguyen, Max L. Phillippi
  • Publication number: 20140374094
    Abstract: A composition and method required for providing a fracturing fluid pumped down a well bore and into a subterranean formation under conditions of pressure that will fracture the subterranean formation is described. More specifically, the composition increases the recovery of hydrocarbons from a geological formation penetrated by a well bore, wherein the composition includes a fracturing fluid that is liquid carbon dioxide (LCO2) with proppant to aid transport of the proppant in suspension, and thereby create a fracture using a fracturing fluid which is the thickened composition containing fumed silica.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 25, 2014
    Inventors: Richard M. Kelly, Walter L. Renz
  • Publication number: 20140367100
    Abstract: A treatment fluid for use in a combined acidizing and proppant fracturing treatment, the treatment fluid comprising: (A) an emulsion comprising: (i) a continuous oil phase; (ii) an internal aqueous phase comprising: (a) water; and (b) a source of an acid; and (iii) an emulsifier; and (B) a proppant. A method of fracturing a treatment zone of a well, the method comprising the steps of: (I) forming a treatment fluid according to the invention; and (II) introducing the treatment fluid into the zone at a rate and pressure greater than the fracture gradient of the zone.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Humberto Almeida Oliveira, Weiming Li, Narongsak Tonmukayakul
  • Publication number: 20140352961
    Abstract: Disclosed are treating fluid compositions for use in subterranean hydraulic fracturing operations, wherein the fluid compositions contain a liquid, a crosslinkable organic polymer that is soluble in the liquid, and a concentrated borate solution containing a refined, readily-soluble borate, the borate solution being present as a crosslinking agent to crosslink the organic polymer and increase the viscosity of the composition. The compositions may further include one or more freeze-point depressants, thereby increasing the stability of the compositions over a wide range of environmental temperatures.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 4, 2014
    Applicant: TUCC TECHNOLOGY, LLC
    Inventors: James W. Dobson, JR., Kimberly A. Pierce
  • Patent number: 8899325
    Abstract: A borehole is drilled from the surface to an underground shale matrix. A pipe is inserted into the borehole. Openings are created in the pipe in fluid communication with fractures in the shale matrix. The interior surface of at least one section of pipe is coated with a contaminant-capturing substance. Fracturing fluid including water, proppants and chemicals is pumped through the pipe and into the fractures in the shale matrix. The fluid re-enters the pipe from the shale matrix and moves toward the surface through the coated pipe section where contaminants are sequestered by the coating. Natural gas or oil from the fractured shale then enters the pipe and moves to the surface to be collected. The coated pipe section remains in the ground permanently such that the necessity of disposing of the captured contaminants is eliminated.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: December 2, 2014
    Inventor: Donald Nevin
  • Publication number: 20140345863
    Abstract: Electromagnetically active slurries comprising stabilized fluids and methods of using the stabilized, electromagnetically active slurries in fluid flow control and detection. Also, methods, fluids, equipment and/or systems for treating a subterranean formation penetrated by a wellbore, relating to treatment fluids based on the stabilized, electromagnetically active slurries.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Applicant: Schlumberger Technology Corporation
    Inventors: Hemant K. J. Ladva, Yiyan Chen, Anthony Loiseau, Dmitriy Ivanovich Potapenko
  • Publication number: 20140338905
    Abstract: The methods described are for determining distribution, orientation and dimensions of networks of hydraulically-induced fractures within a subterranean formation containing fluids. Micro-seismic events are generated by particles introduced into the fractures which are capable of explosive or chemical reaction. In one method, treated proppant having a reactive coating is positioned in the formation during fracturing and reactive particles are introduced. In another method, reactive particles having a reactive core and a non-reactive coating are positioned in the fractures and react upon removal of the non-reactive coating, such as by dissolving, and reaction with a reactive particle. The waves generated by the micro-seismic events are used to map fracture space.
    Type: Application
    Filed: June 17, 2014
    Publication date: November 20, 2014
    Inventors: Haluk Vefa Ersoz, Lee J. Hall, David Loveless
  • Patent number: 8887803
    Abstract: A method of servicing a subterranean formation comprising providing a wellbore penetrating the subterranean formation and having a casing string disposed therein, the casing string comprising a plurality of points of entry, wherein each of the plurality of points of entry provides a route a fluid communication from the casing string to the subterranean formation, introducing a treatment fluid into the subterranean formation via a first flowpath, and diverting the treatment fluid from the first flowpath into the formation to a second flowpath into the formation.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: November 18, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Loyd Eddie East, Jr., Sharlene Dawn Lindsay, Nicholas Hubert Gardiner
  • Patent number: 8887808
    Abstract: A method of wellbore strengthening may include providing a wellbore strengthening fluid comprising a drilling fluid, a particulate, and a fiber; introducing the wellbore strengthening fluid into a wellbore penetrating a subterranean formation; and forming a plug comprising the particulate and the fiber in a void near the wellbore, the plug being capable of maintaining integrity at about 1000 psi or greater overbalance pressure.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Arunesh Kumar, Sharath Savari, Donald L. Whitfill, Dale E. Jamison
  • Patent number: 8881813
    Abstract: Methods of fracturing a subterranean formation penetrated by a well bore, that include the steps of placing a fracturing fluid comprising a first stabilizing substance into the subterranean formation at or above a pressure sufficient to create or enhance at least one fracture in the subterranean formation and placing a treatment fluid comprising a gel carrier fluid, degradable solids-free gel bodies, and solids-laden gel bodies into the fracture such that the solids-free gel bodies and the solids-laden gel bodies form multiple packs within the fracture. Breaking the gel carrier fluid and allowing the solids-free gel bodies to degrade to create a high porosity propped fracture formed of the solids-laden gel bodies wherein the propped fracture has a porosity of at least about 40%.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 11, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Philip D. Nguyen
  • Publication number: 20140326452
    Abstract: A composition, treatment fluid and method using hydrolyzable fines. A treatment fluid, which may optionally include a high solids content fluid (HSCF) and/or an Apollonianistic solids mixture, includes a fluid loss control agent comprising a dispersion of hydrolyzable fines, optionally with one or more of a surfactant, plasticizer, dispersant, degradable particles, reactive particles and/or submicron particles selected from silicates, ?-alumina, MgO, ?-Fe2O3, TiO2, and combinations thereof.
    Type: Application
    Filed: November 6, 2012
    Publication date: November 6, 2014
    Inventors: Anthony Loiseau, Yiyan Chen, Mohan K.R. Panga
  • Publication number: 20140318775
    Abstract: The present invention relates to methods for hydraulically fracturing a subterranean formation to improve the production rates and ultimate recovery by contacting unconsolidated resin-coated proppant particulates residing in a propped fracture with a reactive crosslinker in order to form a consolidated proppant pack. The present invention also relates to methods for use in water injection wells to consolidate the resin-coated proppant particulates in a gravel packed or frac packed region of a wellbore.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: CARBO CERAMICS INC.
    Inventors: Chad Cannan, Thu Lieng, Daryl Erwin Johnson, Mark Conner
  • Publication number: 20140318778
    Abstract: Methods of fracturing a subterranean formation are described wherein sintered ceramic proppants are used in at least two different stages. Each stage can utilize the same or a different type of proppant relative to one or more of the other stages, and the same or a different type of fracturing fluid relative to one or more of the other stages. At least one of the stages uses a proppant having a monodispersity of 3-sigma distribution or lower. A first stage can be used that exhibits at least one proppant performance property having a first value. A second stage can be used that exhibits the same proppant performance property as the first stage but at a value that differs from the first value by at least 10%.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 30, 2014
    Applicant: Oxane Materials, Inc.
    Inventors: Robert D. Skala, Christopher Y. Fang, Christopher E. Coker
  • Patent number: 8865632
    Abstract: A drag-reducing additive includes 40-85% by weight of a polymer emulsion that includes a polymer, a first surfactant, and a first solvent; 10-35% by weight of a second surfactant with an HLB greater than 8; and 5-30% by weight of a second solvent. In a preferred embodiment, the second solvent includes a terpene. In another preferred embodiment, the polymer is a copolymer that includes acrylamide and acrylic acid.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: October 21, 2014
    Assignee: CESI Chemical, Inc.
    Inventors: Earl Parnell, Todd Sanner, Marlin Holtmyer, David Philpot, Andrei Zelenev, Gydeon Gilzow, Lakia Champagne, Thomas Sifferman
  • Patent number: 8853137
    Abstract: A method of increasing the fracture complexity in a treatment zone of a subterranean formation is provided. The subterranean formation is characterized by having a matrix permeability less than 1.0 microDarcy. The method includes the step of pumping one or more fracturing fluids into a far-field region of a treatment zone of the subterranean formation at a rate and pressure above the fracture pressure of the treatment zone. A first fracturing fluid of the one or more fracturing fluids includes a first solid particulate, wherein: (a) the first solid particulate includes a particle size distribution for bridging the pore throats of a proppant pack previously formed or to be formed in the treatment zone; and (b) the first solid particulate comprises a degradable material. In an embodiment, the first solid particulate is in an insufficient amount in the first fracturing fluid to increase the packed volume fraction of any region of the proppant pack to greater than 73%.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: October 7, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bradley L. Todd, Thomas D. Welton
  • Publication number: 20140290943
    Abstract: Proppant pillar placement in a fracture with a stabilized slurry treatment fluid. A method of placing a proppant pack by injecting a well treatment fluid comprising proppant and a stabilized slurry, and a slurry destabilizing system to consolidate solids from the slurry, and placing the proppant in the fracture in a plurality of proppant clusters forming pillars spaced apart by fluid flow channels from the formation through the fracture toward the wellbore. Also, a system for implementing the method, and the propped fracture system obtained as a result of placing the proppant pack into the fracture according to the method.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: Schlumberger Technology Corporation
    Inventors: Hemant K. J. Ladva, Dmitriy Ivanovich Potapenko, Anthony Loiseau, Yiyan Chen
  • Publication number: 20140262262
    Abstract: This invention discloses articles, in the form of particles to small granules to macro sized objects, capable of the controlled release of active ingredients (AI) from a mixture as a solid solution, a matrix or an encapsulated system containing AI and one or more of polymers, additives and/or carriers. The invention also covers additional surface coatings on those articles to further reduce the rate of release of AI. Finally, methods for producing these articles and treating the oil field well and other segments of the oil industry, for example piping, storage tank, and refinery locations, are introduced. The claimed articles can be used as is or mixed with other oil filed components or system, for example proppant fluid, in oil field applications.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Landec Corporation
    Inventors: Qiang Zheng, Damian Hajduk, Steven P. Bitler
  • Publication number: 20140262263
    Abstract: Well completion techniques are disclosed that combine the creation of perforation clusters created using abrasive-jet perforation techniques with hydraulic fracturing techniques that include proppant pulsing through the clustered abrasive jet perforations. Both the abrasive-jet perforation and hydraulic fracturing with proppant pulsing may be carried out through coiled tubing.
    Type: Application
    Filed: October 11, 2012
    Publication date: September 18, 2014
    Inventors: Alexey Yudin, Konstantin Mikhailovich Lyapunov, Fedor Nikolaevich Litvinets, Konstantin Burdin, Alejandro Pena
  • Patent number: 8833452
    Abstract: A method includes treating a first formation intersecting a wellbore, preparing a diversion fluid including an inactivated viscosifier and an inactivated thinning agent, and positioning an amount of the diversion fluid to isolate the first formation. An activator is then delivered to the diversion fluid, thereby activating the inactivated viscosifier and triggering a thinning agent activation process.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: September 16, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Don Williamson
  • Publication number: 20140251610
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. At least one of the proppant-free stage or proppant laden stage contains a viscosifying agent to which the breaker has affinity. The viscosifying agent may be a superabsorbent, a viscosifying polymer (other than a superabsorbent) or a viscoelastic surfactant. The breaker has greater affinity for the viscosifying agent not present in the same stage as the breaker. Either the proppant-free stage or the proppant laden stage may be foamed.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Harold Dean Brannon, Brian N. Ward, D.V. Satyanarayana Gupta, Scott Gregory Nelson
  • Patent number: 8826978
    Abstract: This invention relates to oil production, more specifically, oil production using the formation hydrofracturing process, and can be used for monitoring the operation of a producing oil well.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 9, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Elena Mikhailovna Pershikova
  • Patent number: 8794322
    Abstract: Treatments and compounds can be useful in subterranean formations where particulates and/or surfaces may be subject to silica scale build-up. Certain embodiments pertain to utilizing silica scale control additives with particulate packs. Of these, certain methods may treat particulate packs in a subterranean formation with silica scale control additives, certain methods may combine silica scale control additives with particulates prior to formation of a particulate pack, and certain compounds may provide the features of both silica scale control additives and particulates.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: August 5, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Enrique A. Reyes, Jimmie D. Weaver, Matt E. Blauch, Corine L. McMechan
  • Patent number: 8789595
    Abstract: An apparatus and method for preventing the migration of unconsolidated and/or loosely consolidated material into the wellbore. Such prevention is accomplished by introducing a well treatment comprising an expandable deployable structure into an uncosolidated zone proximate the wellbore. These deployable structures are inserted into the voids of the geological formation and using stored mechanical energy convert from an unexpanded or undeployed state to an expanded or deployed state. These deployable structures can exert forces, pressure or a combination of both in multiple directions on the surrounding media.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: July 29, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Julio C. Guerrero, Adam Paxson, Folkers Eduardo Rojas
  • Publication number: 20140190693
    Abstract: An improvement over known hydraulic fracturing fluids. Boundary layer kinetic mixing material is added to components of fracturing fluid wherein kinetic mixing material is a plurality of particles wherein at least 25% of particles are several types, i.e., having surface characteristics of thin walls, three dimensional wedge-like sharp blades, points, jagged bladelike surfaces, thin blade surfaces, three-dimensional blade shapes that may have shapes similar to a “Y”, “V” or “X” shape or other geometric shape, slightly curved thin walls having a shape similar to an egg shell shape, crushed hollow spheres, sharp bladelike features, 90° corners that are well defined, conglomerated protruding arms in various shapes, such as cylinders, rectangles, Y-shaped particles, X-shaped particles, octagons, pentagon, triangles, and diamonds.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 10, 2014
    Applicant: Ecopuro, LLC
    Inventor: WILLIAM L. JOHNSON, SR.
  • Patent number: 8763700
    Abstract: Proppants for use in fractured or gravel packed/frac packed oil and gas wells are provided with a contaminant removal component to remove one or more of the contaminants found in subterranean water/hydrocarbon from a production well. The water/hydrocarbon cleaning proppant solids may be used as discrete particles in a proppant formulation, as a coating on proppant solids in pores of a porous proppant solid or as part of the proppant's internal structure. The contaminant removal component removes contaminants, especially dissolved contaminants, in the subterranean water or hydrocarbon before the water/hydrocarbon leaves the well. For those contaminant removal components that can be regenerated, such as ion exchange resins, a measured quantity of an acidic regeneration solution can be injected into the fractured stratum for regeneration and recovered when the well resumes production.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 1, 2014
    Inventors: Robert Ray McDaniel, Avis Lloyd McCrary
  • Patent number: 8763387
    Abstract: Energy is stored by injecting fluid into a hydraulic fracture in the earth and producing the fluid hack while recovering power. The method is particularly adapted to storage of large amounts of energy such as in grid-scale electric energy systems. The hydraulic fracture may be formed and treated with resin so as to limit fluid loss and to increase propagation pressure.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: July 1, 2014
    Inventor: Howard K. Schmidt
  • Patent number: 8763699
    Abstract: A method of heterogeneous proppant placement in a subterranean fracture is disclosed. The method comprises injecting a first treatment fluid comprising a gas and substantially free of macroscopic particles through a wellbore to initiate a fracture in a subterranean formation; injecting a second treatment fluid comprising proppant and channelant through the wellbore into the fracture; placing the proppant in the fracture in a plurality of proppant clusters forming pillars spaced apart by the channelant; and removing the channelant to form open channels around the pillars for fluid flow from the subterranean formation through the fracture toward the wellbore.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 1, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Oleg Medvedev, Alejandro Pena, Timothy Lesko, J. Ernest Brown, Dean M. Willberg, Ivan V. Kosarev, Anatoly Medvedev
  • Patent number: 8757259
    Abstract: A method of heterogeneous proppant placement in a subterranean fracture is disclosed. The method comprises injecting well treatment fluid including proppant (16) wherein the proppant comprises from 1 to 100 percent in weight of stiff, low-elasticity and low-deformability elongated particles (34) and proppant-spacing filler material called a channelant (18) through a wellbore (10) into the fracture (20), heterogeneously placing the proppant in the fracture in a plurality of proppant clusters or islands (22) spaced apart by the channelant (24), and removing the channelant filler material (24) to form open channels (26) around the pillars (28) for fluid flow from the formation (14) through the fracture (20) toward the wellbore (10). The proppant and channelant can be segregated within the well treatment fluid, or segregated during placement in the fracture.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 24, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Timothy Lesko, J. Ernest Brown, Dean M. Willberg, Ivan V. Kosarev, Anatoly Medvedev, Jonathan Abbott, Alexander Burukhin
  • Patent number: 8757261
    Abstract: Stabilizing a subterranean formation containing water-sensitive clays with methods including introducing a leading-edge fluid comprising a first base fluid and a first clay stabilizer solution wherein the first clay stabilizer is present in the first base fluid at a first concentration; and then introducing a treatment fluid comprising a second base fluid and a second clay stabilizer solution wherein the second clay stabilizer is present in the second base fluid at a second concentration, wherein the first concentration of clay stabilizer solution is higher than the second concentration of clay stabilizer solution.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: June 24, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jimmie D. Weaver, Philip D. Nguyen
  • Patent number: 8752627
    Abstract: A method of fracturing a subterranean formation comprising at least in part shale formation, comprises providing a carrier fluid; providing a particulate blend including a first amount of particulates having a first average particle size between about 100 and 2000 microns and a second amount of particulates having a second average particle size between about three and twenty times smaller than the first average particle size, such that a packed volume fraction of the particulate blend exceeds 0.75; combining the carrier fluid and the particulate blend into a fracturing slurry; fracturing the formation with the fracturing slurry to create at least a fracture; and removing the second amount of particulates from the fracture.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: June 17, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Ryan Hartman, Mohan K. R. Panga, Bruno Drochon, John W. Still
  • Patent number: 8746335
    Abstract: A borehole is drilled from the surface to an underground shale matrix. A pipe is inserted into the borehole. Openings are created in the pipe in fluid communication with fractures in the shale matrix. The interior surface of at least one section of pipe is coated with a contaminant-capturing substance. Fracturing fluid including water, proppants and chemicals is pumped through the pipe and into the fractures in the shale matrix. The fluid re-enters the pipe from the shale matrix and moves toward the surface through the coated pipe section where contaminants are sequestered by the coating. Natural gas or oil from the fractured shale then enters the pipe and moves to the surface to be collected. The coated pipe section remains in the ground permanently such that the necessity of disposing of the captured contaminants is eliminated.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 10, 2014
    Inventor: Donald Nevin
  • Patent number: 8739878
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. The other stage contains a viscosifying polymer or viscoelastic surfactant to which the breaker has affinity. The proppant-free stage may be introduced prior to introduction of the proppant laden stage into the wellbore and/or formation. Alternatively, the proppant laden stage may be introduced into the wellbore and/or formation prior to introduction of the proppant-free stage.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: June 3, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Harold Dean Brannon, Brian N. Ward
  • Patent number: 8739871
    Abstract: A particulate suspending agent may be useful for mitigating particulate settling in wellbore applications with high-temperature and/or at near-neutral and higher pH values. Methods of treating a wellbore may include providing a treatment fluid comprising an aqueous liquid, a plurality of particulates, and a particulate suspending agent, wherein the particulate suspending agent comprises a crosslinked polymer particulate formed by a reaction comprising a first monofunctional monomer and an orthoester crosslinker, the orthoester crosslinker comprising an orthoester linkage and at least two crosslinking moieties; and placing the treatment fluid in a wellbore penetrating a subterranean formation.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: June 3, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Gary P. Funkhouser
  • Publication number: 20140144629
    Abstract: Methods of treating a subterranean formation including providing a subterranean formation comprising at least one fracture; providing proppant particulates coated with a binding agent and having a gas-generating chemical and a delayed encapsulated activator attached thereto so as to form coated proppant particulates; suspending the coated proppant particulates in a treatment fluid; placing the treatment fluid into the at least one fracture; and reacting the gas-generating chemical and the delayed encapsulated activator so as to produce a gas within the at least one fracture and form a proppant pack therein.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Philip D. Nguyen
  • Publication number: 20140138085
    Abstract: A method of heterogeneous proppant placement in a subterranean fracture is disclosed. The method comprises injecting well treatment fluid including proppant (16) and proppant-spacing filler material called a channelant (18) through a wellbore (10) into the fracture (20), heterogeneously placing the proppant in the fracture in a plurality of proppant clusters or islands (22) spaced apart by the channelant (24), and removing the channelant filler material (24) to form open channels (26) around the pillars (28) for fluid flow from the formation (14) through the fracture (20) toward the wellbore (10). The proppant and channelant can be segregated within the well treatment fluid, or segregated during placement in the fracture. The channelant can be dissolvable particles, initially acting as a filler material during placement of the proppant in the fracture, and later dissolving to leave the flow channels between the proppant pillars.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Timothy M. Lesko, J. Ernest Brown, Dean M. Willberg, Ivan Ivan Vitalievich, Anatoly Vladimirovich Medvedev
  • Patent number: 8728991
    Abstract: The present invention relates to lightweight high strength microsphere containing ceramic particles having controlled microsphere placement and/or size and microsphere morphology, which produces an improved balance of specific gravity and crush strength such that they can be used in applications such as proppants to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more microsphere containing ceramic particles of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the microsphere containing ceramic particles of the present invention are further disclosed, as well as methods of making the microsphere containing ceramic particles.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: May 20, 2014
    Assignee: Oxane Materials, Inc.
    Inventors: Shanghua Wu, Yuming Xie, Christopher E. Coker, Dilip Chatterjee
  • Publication number: 20140131042
    Abstract: Methods of forming conductive channels in a subterranean formation including providing a subterranean formation having a threshold fracture gradient; introducing a fracturing fluid at a rate above the threshold fracture gradient so as to enhance or create at least one fracture in the subterranean formation; introducing a proppant slurry into the at least one fracture at a rate above the threshold fracture gradient so as to propagate the at least one fracture and deposit the proppant slurry therein; wherein the proppant slurry comprises a base fluid and proppant particulates; injecting a substantially proppant-free resilient viscous fluid into the proppant slurry deposited in the at least one fracture at a rate below the threshold fracture gradient so as to generate a continuous channel within the proppant slurry; setting the proppant slurry; and removing the substantially proppant-free resilient viscous fluid from the at least one fracture in the subterranean formation.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Halliburton Energy Services, Inc.
  • Patent number: 8720556
    Abstract: Fracturing operations can be problematic in completed wellbores containing at least one existing fracture, since it can be difficult to seal an existing fracture and initiate a new fracture within a reasonable timeframe due to the presence of particulate materials in the wellbore. Methods for fracturing a completed wellbore can comprise introducing a treatment fluid comprising a plurality of degradable sealing particulates into a completed wellbore penetrating a subterranean formation having an existing fracture therein; sealing the existing fracture with at least a portion of the degradable sealing particulates, thereby forming a degradable particulate seal; after sealing, allowing any degradable sealing particulates remaining in the treatment fluid to degrade, such that the treatment fluid becomes substantially particulate free; and after the treatment fluid becomes substantially particulate free, fracturing the subterranean formation so as to introduce at least one new fracture therein.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 13, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Bradley L. Todd
  • Patent number: 8720555
    Abstract: A method for diverting fluids across a perforation tunnel in high-rate water pack operations may include providing a wellbore extending into a subterranean formation, wherein a perforation tunnel provides a fluid connection between the wellbore and the subterranean formation; providing a diverting particulate that comprises a degradable plasticized polymer coating on a particulate; placing the diverting particulate into the perforation tunnel, wherein the step of placing the diverting particulate forms a particulate pack within the subterranean formation and the perforation tunnel; allowing the degradable plasticized polymer coating to deform and fill the interstitial spaces within the particulate pack in the perforation tunnel such that the fluid conductivity between the wellbore and the subterranean formation is substantially blocked; and allowing the plasticized polymer coating to degrade over time thereby substantially restoring the fluid conductivity between the wellbore and the subterranean formation.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: May 13, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Feng Liang, Bradley L. Todd, Rajesh K. Saini, Stanley J. Heath
  • Publication number: 20140116697
    Abstract: The present invention generally relates to enhanced recovery of petroleum fluids from the subsurface by initiating and propagating vertical permeable inclusions in a plane substantially orthogonal to the borehole axis. These inclusions containing proppant are thus highly permeable and enhance drainage of heavy oil from the formation, and also by steam injection into these planes, enhance oil recovery by heating the oil sand formation, the heavy oil and bitumen, which will drain under gravity and be produced. The present invention generally relates to a method of isolating openings in an expanded casing to provide for fluid injection into the formation in a single longitudinal plane with the wellbore axis.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: GeoSierra LLC
    Inventor: Grant Hocking