Superconductive Type Patents (Class 174/15.4)
  • Patent number: 11917794
    Abstract: Separating temperature domains in cooled systems, including: cooling at least one first component of a circuit board using a first cooling system; and conductively coupling the at least one first component to at least one second component using a superconductive portion of a power plane of the circuit board.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 27, 2024
    Assignee: ADVANCED MICRO DEVICES, INC.
    Inventors: Andrew G. Kegel, Jeffrey Bialozor
  • Patent number: 11387026
    Abstract: An assembly having a cylindrical structure supported by a support structure having at least one support element, the support structure being cradle shaped, such that vertical and horizontal loads are taken largely as shear forces by respective interface surfaces which are substantially parallel to the direction of the respective load, and vertical loads are taken in a direction substantially tangential to the cylindrical surface of the cylindrical structure.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 12, 2022
    Assignee: Siemens Healthcare Limited
    Inventors: William James Bickell, Ashley Fulham, Martin Gambling, Martin Howard Hempstead, Graeme Hyson, Paul Lewis, Nicholas Mann, Michael Simpkins
  • Patent number: 11376941
    Abstract: The invention is directed to a support structure for an energy storage device, in particular for a battery pack of a vehicle that has at least one base panel which has a first surface and a second surface and that is at least partially made from a composite material. At least one thermal transfer member is arranged on the first surface of the least one base panel. The thermal transfer member comprises at least one contact face configured to be in thermal contact with at least part of an energy storage device to be mounted on the support structure.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: July 5, 2022
    Assignee: MUBEA CARBO TECH GMBH
    Inventors: Bernhard Spielvogel, Sebastian Schmitz, Guido Insam, Herbert Dorfinger
  • Patent number: 11088539
    Abstract: The present invention relates to pressure generation apparatus and method for superconducting power equipment and, more particularly, to pressure generation apparatus and method for superconducting power equipment, wherein a pressure system separately arranged to apply pressure to liquid nitrogen in the superconducting power equipment is disposed inside a pressure vessel.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 10, 2021
    Assignee: KOREA ELECTRIC POWER CORPORATION
    Inventors: Young-Hee Han, Byung-Jun Park, Seong-Eun Yang
  • Patent number: 10941787
    Abstract: A power source integrated vacuum pump configured such that a pump main body and a pump power source device are integrated together, comprises: a substrate which is provided at the pump power source device and on which an electronic component is mounted; a cooling device having a cooling surface fixed in contact with the substrate; and a heat insulating member having a smaller coefficient of thermal conductivity than that of a material forming the cooling surface and covering a cooling surface region to which the substrate is not fixed.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: March 9, 2021
    Assignee: SHIMADZU CORPORATION
    Inventors: Haruhiko Sakai, Nobuhiko Moriyama
  • Patent number: 10839998
    Abstract: A magnet assembly (1) with a cryostat (2) has a superconducting magnet coil system (3), an active cooling device (4) for the coil system, and current leads (5a, 5b) for charging the coil system. The current leads have at least one normal-conducting region (15a, 15b), wherein multiple cold reservoirs (20) are thermally coupled to the current leads along the normal-conducting region thereof, in order to absorb heat the normal-conducting region during charging of the magnet coil system. The current leads have a variable cross-sectional area B in the normal-conducting region along the extension direction thereof, wherein at least over a predominant fraction of their overall length in the normal-conducting region, the cross-sectional area B decreases from a cold end (18a, 18b) toward a warm end (19a, 19b). This provides a magnet assembly requiring reduced cooling power during charging, with less heat introduced into the magnet coil system in normal operation.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: November 17, 2020
    Assignee: BRUKER SWITZERLAND AG
    Inventors: Patrick Wikus, Joerg Hinderer, Marco Strobel
  • Patent number: 10681850
    Abstract: A magnetic resonance (MR) apparatus has an MR scanner with a basic field magnet formed by a superconducting coil so as to generate a basic magnetic field, a ramp device for ramping down and/or ramping up the basic field magnet, with a ramp component arranged on the MR scanner emitting heat in the ramp-up process and/or a ramp-down process, and a cooling device and at least one electronic unit to be cooled. The cooling device has a cooling plate that, with respect to the MR scanner, is in outward heat-conducting contact with the ramp component. Outwardly adjoining the cooling plate in heat-conducting contact is a carrier plate, which carries at least one electronic unit in heat-conducting contact.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 9, 2020
    Assignee: Siemens Healthcare GmbH
    Inventor: Stephan Biber
  • Patent number: 10629535
    Abstract: An integrated circuit is provided that comprises a first ground plane associated with a first set of circuits that have a first operational temperature requirement, and a second ground plane associated with a second set of circuits that have a second operational temperature requirement that is higher than the first operational temperature requirement. The second ground plane is substantially thermally isolated from the first ground plane. A superconducting coupler electrically couples the first ground plane and the second ground plane while maintaining relative thermal isolation between the first ground plane and the second ground plane.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: April 21, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Patrick Alan Loney, Aaron Ashley Hathaway, Daniel Robert Queen, John X. Przybysz, Robert Miles Young
  • Patent number: 10527694
    Abstract: A magnetic resonance imaging system is disclosed. The magnetic resonance imaging system includes a magnet core that generates a magnetic field including a plurality of magnetic field lines. The magnetic resonance imaging system also includes a plurality of gradient coils disposed along the magnet core and a plurality of gradient amplifiers. Further, the magnetic resonance imaging system includes a plurality of bus-bar conductors coupling a corresponding gradient coil of the plurality of gradient coils and a corresponding gradient amplifier of the plurality of gradient amplifiers. The plurality of bus-bar conductors is disposed along at least one of a first path extending along the plurality of magnetic field lines and a second path extending along a substantially linear direction from the corresponding gradient coil to a fringe region of the magnetic field to reduce an effect of Lorentz force on the plurality of bus-bar conductors.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: January 7, 2020
    Assignee: General Electric Company
    Inventors: Seung-Kyun Lee, Eric William Fiveland, Joseph Edward Piel, Jr., Bruce D Collick
  • Patent number: 10326071
    Abstract: Systems and methods for magnetic shielding are described. A magnetic shield formed of a material having a high magnetic permeability may be degaussed using a toroidal degaussing coil. The toroidal degaussing coil may enclose at least a portion of the shield. Magnetic field gradients may be actively compensated using multiple magnetic field sensors and local compensation coils. Trapped fluxons may be removed by an application of Lorentz force wherein an electrical current is passed through a superconducting plane.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: June 18, 2019
    Assignee: D-Wave Systems Inc.
    Inventor: Sergey V. Uchaykin
  • Patent number: 10107879
    Abstract: An apparatus including a persistent current switch of a superconducting material which is electrically superconducting at a superconducting temperature and electrically resistive at a resistive mode temperature which is greater than the superconducting temperature. The apparatus further includes a first heat exchange element; a convective heat dissipation loop thermally coupling the persistent current switch to the first heat exchange element; a second heat exchange element spaced apart from the first heat exchange element; and a thermally conductive link thermally coupling the persistent current switch to the second heat exchange element. The first heat exchange element is disposed above the persistent current switch. The thermally conductive link may have a greater thermal conductivity at the superconducting temperature than at a second temperature which is greater than the superconducting temperature.
    Type: Grant
    Filed: September 22, 2013
    Date of Patent: October 23, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Philip Alexander Jonas, Alexander Akhmetov, Robert Adolph Ackermann, Philippe Abel Menteur, Glen George Pfleiderer, Matthew Voss
  • Patent number: 10049800
    Abstract: A high-temperature superconducting coil according to the invention includes an oxide superconducting wire including a tape-shaped substrate, an intermediate layer being stacked on the substrate, an oxide superconducting layer being stacked on the intermediate layer, and a metal stabilized layer being stacked on the oxide superconducting layer; a coil main body being formed by winding the oxide superconducting wire in a coil shape; and an impregnated resin layer being formed of an impregnated resin of which a thermal shrinkage rate indicating a rate of change of a length when cooling is performed from 293 K to 140 K is greater than or equal to ?0.517%, the impregnated resin layer covering the coil main body.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 14, 2018
    Assignee: FUJIKURA LTD.
    Inventors: Masanori Daibo, Hiroshi Chiba
  • Patent number: 10041720
    Abstract: A superconducting magnet structure has a number of axially aligned superconducting inner magnet coils that form an inner magnet structure (30) and a number of superconducting outer coils each having an inner diameter greater than an outer diameter of each of the inner magnet coils. The inner magnet structure is enclosed within a cryogen vessel, and the outer coils are located outside of the cryogen vessel, in thermal contact with a cooling arrangement for cooling the outer coils.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: August 7, 2018
    Assignee: Siemens Healthcare Limited
    Inventor: Michael Simpkins
  • Patent number: 9859045
    Abstract: A superconducting magnet is provided for magnetic resonance imaging (MRI) or spectroscopy (MRS). The magnet has a plurality of discrete Niobium-Titanium superconductor coils arranged longitudinally along a common central axis, the Niobium-Titanium superconductor coils generating a first magnetic field when in use, the first magnetic field having high field regions of at least 5 Tesla radially inward of the discrete coils. At least two Niobium-Tin superconductor coils are located along the common central axis, each of which is located in a said high field region of the first magnetic field, the Niobium-Tin superconductor coils each generating a respective second magnetic field when in use, which combines with the first magnetic field to produce a resultant magnetic field which is of higher field strength than that of the first magnetic field at a location on the common central axis.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: January 2, 2018
    Assignee: Oxford Instruments Nanotechnology Tools Limited
    Inventors: Timothy Hollis, Wenbin Ma
  • Patent number: 9806511
    Abstract: A method is provided for manufacturing a superconductive cable equipped with means for compensating length changes caused by temperature changes which occur when the cable is cooled from room temperature to work temperature and vice-versa. A superconductive cable (SK) with a tubular, central carrier (1) is used which is surrounded by at least one superconductive conductor. Arranged in the carrier (1) is at least one tension-proof strand (2) arranged over the entire length of the carrier (1). Cable (SK) is initially wound, including strand (2), at room temperature onto a coil (SP). Subsequently, the strand (2) is immovably fastened to the two ends of the cable (SK) and the cable (SK) is subsequently wound off the coil (SP).
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 31, 2017
    Assignee: NEXANS
    Inventors: Erik Marzahn, Mark Stemmle
  • Patent number: 9715958
    Abstract: A method for charging a magnet arrangement having a superconducting tape conductor with a first transition temperature in a cryostat device. The magnet arrangement is temperature-controlled to a first pre-operating temperature between the first transition temperature and the operating temperature, a first pre-operating current is excited, the magnet arrangement is cooled to operating temperature and a first operating current is excited. The magnet arrangement has a second magnet winding composed of a second superconductor material with a second transition temperature above the operating temperature and at least 15 K below the first transition temperature, wherein a second operating current in the second magnet winding is excited at the latest after cooling of the magnet arrangement to the operating temperature, and with the second operating current the second magnet winding generates a second operating magnetic field in the volume of the first magnet winding.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: July 25, 2017
    Assignee: Bruker Biospin AG
    Inventors: Robert Schauwecker, Patrik Vonlanthen
  • Patent number: 9666344
    Abstract: A superconducting magnet system for head imaging is disclosed which includes a cryocooler, a high-pressure helium container, a self-excitation heat pipe and a superconducting magnet. A second stage coldhead of the cryocooler is connected to the high-pressure helium container for converting the helium gas in the high-pressure helium container into liquid helium. The self-excitation heat pipe forms a closed cooling loop, and liquid helium in the high-pressure helium container flows circularly in the self-excitation heat pipe. The self-excitation heat pipe cools the superconducting magnet, wherein part of the liquid helium in the self-excitation heat pipe is converted into the helium gas due to the heat disturbance generated by the superconducting magnet, and the helium gas interacts with the liquid helium to generate liquid helium vibration.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: May 30, 2017
    Assignee: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Qiuliang Wang, Xinning Hu, Zhipeng Ni, Lankai Li, Luguang Yan, Yi Li, Yinming Dai
  • Patent number: 9593807
    Abstract: A cryogen vessel port arrangement for a magnetic resonance imaging (MRI) system has a port for guiding cryogen into a cryogen vessel. The port has a siphon tube, a siphon cone, which is in flow connection with the siphon tube, and a pipe with an inlet opening and an outlet opening. The inlet opening is configured for connecting it with a coldhead sock and the outlet opening is in flow connection with the port and the siphon cone. The port has a port component that has a flow channel with a first opening configured for connecting it with a service siphon, a second opening in flow connection with the siphon cone, and a third opening in flow connection with the outlet opening of the pipe.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 14, 2017
    Assignee: Siemens Healthcare Limited
    Inventors: Patrick William Retz, Neil Charles Tigwell
  • Patent number: 9583258
    Abstract: A device for limiting current with variable coil impedance includes a choke coil and a cooling device. An additional coil is made of a high-temperature superconducting material and is disposed in the choke coil such that the current is limited by the device without using an iron core.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 28, 2017
    Assignee: KARLSRUHER INSTITUT FUER TECHNOLOGIE
    Inventors: Mathias Noe, Christian Schacherer
  • Patent number: 9570220
    Abstract: In one embodiment, a cryocooler assembly for cooling a heat load is provided. The cryocooler assembly includes a vacuum vessel surrounding the heat load and a cryocooler at least partially inserted into the vacuum vessel, the cryocooler including a coldhead. The assembly further includes an actuator coupled to the cryocooler. The actuator is configured to translate the cryocooler coldhead into thermal engagement with the heat load and to maintain constant pressure of the coldhead against the heat load to facilitate maintaining thermal engagement with the heat load as the heat load shrinks during a cool down process.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: February 14, 2017
    Assignee: General Electric Company
    Inventors: Ernst Wolfgang Stautner, Kiruba Sivasubramaniam Haran, Ruben Jeevanasan Fair
  • Patent number: 9500730
    Abstract: A device is employed for an apparatus including an electrically conductive coil (230) which is disposed within a cryostat (210) and which is configured to produce a magnetic field when an electrical current is passed therethrough. The device dissipates heat from an electrical contact which is disposed within the cryostat and which is configured to supply electrical power to the electrically conductive coil, The device includes: a cooling gas circuit (326) configured to supply a cooling gas to the electrical contact which is disposed within the cryostat and configured to supply electrical power to the electrically conductive coil; and a heat exchanger (308) disposed within the cryostat and configured transfer heat from the electrical contact to the cooling gas to raise the temperature of the cooling gas.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: November 22, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Philip Alexander Jonas, Glen George Pfleiderer, Ronald Ellsworth Hintz, Philippe Abel Menteur
  • Patent number: 9462733
    Abstract: A magnetic shielding apparatus includes: a passive shield; a correction target space that is defined in the interior of the passive shield; external coils as a first coil that corrects a magnetic field in the passive shield; a first magnetic sensor; a second magnetic sensor that is arranged more inside the passive shield than the first magnetic sensor; and a control unit. The first magnetic sensor and the second magnetic sensor measure a magnetic field gradient in the passive shield. The control unit controls the external coils based on a result of the measurement performed by the first magnetic sensor and the second magnetic sensor.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: October 4, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Ryuji Hokari
  • Patent number: 9451734
    Abstract: A magnetic shielding device includes: a passive shield having an inner space; a first coil that cancels a magnetic field entering in the inner space; a first magnetic sensor that measures the magnetic field entering in the inner space; a second magnetic sensor located in a position farther from the first coil than the first magnetic sensor; and a controller that controls the first coil so that a gradient between a first magnetic field measured by the first magnetic sensor and a second magnetic field measured by the second magnetic sensor be less than a predetermined threshold.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: September 20, 2016
    Assignee: Seiko Epson Corporation
    Inventors: Fumihiko Onuma, Shigemitsu Toda, Ryuji Hokari
  • Patent number: 9423478
    Abstract: A magnetic shield for a field magnet of a magnetic resonance system is provided. A magnet apparatus with a field magnet for a magnetic resonance system with active shielding and a magnetic shield, wherein the magnetic shield forms a hollow body which accommodates the field magnets is also provided. A wall of the hollow body has a first, a second and a third area, which are disposed along the axis. In this case the second area separates the first area and the third area from one another and has a smaller wall thickness than the first and the third area.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: August 23, 2016
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Andrew Dewdney, Matthias Drobnitzky, Bernhard Heinrich
  • Patent number: 9389006
    Abstract: A method for the pulsating load refrigeration of a component of a Tokamak using a refrigeration device subjecting a working fluid to a working cycle. At least one “periodic and symmetrical” operating mode of the Tokamak includes an operating mode in which plasmas of preset duration Dp are generated periodically with intervals of duration Dnp between two successive plasmas. Dnp=Dp±30%. The cooling device cooling power is increased to a relatively high level in a plasma generation phase and reduced to a relatively low level when the Tokamak is no longer in a plasma generation phase. The refrigerating power variation brings gradual increases and reductions in refrigerating power. The increase in the refrigeration device refrigerating power is triggered in advance, in response to a signal (S) generated during a plasma starting step before the thermal load on the component increases.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 12, 2016
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Gerald Aigouy, Pierre Briend, Cindy Deschildre, Eric Fauve, Jean-Marc Bernhardt, Franck Delcayre
  • Patent number: 9377516
    Abstract: An adjustment method of a magnetic resonance imaging apparatus includes: a cooling and excitation step in which work of transporting a superconducting magnet to a facility different from a facility where the superconducting magnet is to be installed, cooling a superconducting coil of the superconducting magnet with a refrigerant, and supplying a current from an external power supply for excitation is repeated until a predetermined rated current flows; a demagnetization and transportation step of demagnetizing the superconducting coil and transporting the superconducting magnet to the facility where the superconducting magnet is to be installed in a state where the superconducting coil is cooled by the refrigerant; and an installation step of installing the superconducting magnet in the facility where the superconducting magnet is to be installed and supplying a predetermined rated current from an external power supply to the superconducting coil in order to excite the superconducting coil.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 28, 2016
    Assignee: HITACHI MEDICAL CORPORATION
    Inventor: Munetaka Tsuda
  • Patent number: 9293253
    Abstract: A cylindrical superconducting magnet has a number of axially-aligned annular coils of superconducting wire, arranged for cooling by thermal conduction through a cooled surface in mechanical contact with the coils. The coils are provided with a cryogenic radiation shield located between respective radially inner surfaces of the coils and respective axes of the coils. The cryogenic radiation shield is formed of a metal layer in thermal contact with the cooled surface.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: March 22, 2016
    Assignee: Siemens PLC
    Inventors: Simon Calvert, Marcel Kruip, Rodrigo Ormeno, Michael Simpkins
  • Patent number: 8912446
    Abstract: A termination structure for a superconducting cable is described. The termination structure for a superconducting cable includes a first tube including a conductive rod therein to form a room temperature section, a second tube including a conductive rod therein to form a temperature gradient section, and a spacer provided between the first and second tubes, the spacer including a conductive connector configured to connect the conductive rods inside the first and second tubes to each other. The first and second tubes are joined to be separable from each other.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: December 16, 2014
    Assignee: LS Cable Ltd.
    Inventors: Chang Youl Choi, Su Kil Lee, Choon Dong Kim, Hyun Man Jang, Seok Hern Jang, Heo Gyung Sung
  • Patent number: 8885329
    Abstract: When testing or powering up a magnet in a magnetic resonance imaging device, a switch is provided that switches a winding between resistive and superconductive modes. The switch includes a housing that contains a winding wound about a bobbin, and an internal coolant cavity that contains coolant that cools the winding, A baffle separates the internal coolant cavity from an external coolant reservoir. The baffle has small apertures that permit influx of liquid coolant into the internal cavity to cool the winding, At high temperatures, the coolant in the internal cavity vaporizes causing the winding to further increase its temperature and resistance, Upon reduction of heat to the winding, the winding cools sufficiently to permit influx of liquid coolant, thereby restoring a superconductive mode of operation to the winding.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: November 11, 2014
    Assignee: Koninklijke Philips N.V.
    Inventor: Alexander A. Akhmetov
  • Patent number: 8826674
    Abstract: A cryostat for electric power conditioner comprising external walls (1, 3, 11) in contact with an ambient medium, internal walls (2, 12, 13) in contact with a cooled medium and a thermal insulating gap (4, 14) formed between the external walls (1, 3, 11) and the internal walls (2, 12, 13). At least one part of the at least one external wall (1, 3, 11) and/or at least one part of the at least one internal wall (2, 12, 13) of the cryostat comprises a layered structure (15, 16, 17).
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: September 9, 2014
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8809679
    Abstract: A heat sink and method for gaseous cooling of superconducting power devices. Heat sink is formed of a solid material of high thermal conductivity and attached to the area needed to be cooled. Two channels are connected to the heat sink to allow an inlet and an outlet for cryogenic gaseous coolant. Inside the hollow heat sink are fins to increase metal surface in contact with the coolant. The coolant enters through the inlet tube, passes through the finned area inside the heat sink and exits through the outlet tube.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: August 19, 2014
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Danny G. Crook, Lukas Graber, Sastry Pamidi
  • Patent number: 8670808
    Abstract: A system is specified having at least one superconducting cable (SK) which has at least one superconducting conductor (2), and having a cryostat (KR) which surrounds the same and has two metallic tubes, an inner tube (6) and an outer tube (7), which are arranged concentrically at a distance from one another, are corrugated transversely with respect to their longitudinal direction and between which vacuum insulation (8) is arranged. The cable (SK) has a central tubular support (1) for passing a coolant through, on which the superconducting conductor (2) rests. The cable (SK) is surrounded all around by a buffer layer (5) which protects the same against mechanical damage and consists of insulating material, and the inner tube (6) of the cryostat (KR) at least rests in a sealed manner on the buffer layer (5).
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: March 11, 2014
    Assignee: NEXANS
    Inventors: Rainer Soika, Mark Stemmle
  • Patent number: 8658896
    Abstract: Disclosed herein is a temperature movable structure of a superconducting cable terminal. The superconducting cable terminal has sections of a high temperature portion, a temperature movable portion and an extremely low temperature portion. The temperature movable structure is disposed in the section of the temperature movable portion between the sections of the high temperature portion and the extremely low temperature portion. The temperature movable structure has upper and lower spacer members, a pipe body, first and third conductors, a second conductor and a contact connecting member disposed between the first and second conductors.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 25, 2014
    Assignee: LS Cable Ltd.
    Inventors: Heo Gyung Sung, Su Kil Lee, Hyun Man Jang, Jung Min Lee, Chang Youl Choi, Seok Hern Jang
  • Patent number: 8588875
    Abstract: A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: November 19, 2013
    Assignee: Superpower, Inc.
    Inventors: Juan Carlos H. Llambes, Xuming Xiong
  • Patent number: 8543178
    Abstract: An induction heating apparatus that can operate at current frequencies of greater than 60 Hz and at least 1 kW. The induction heating apparatus includes a high frequency power supply, a superconductive induction coil, and a fluid cooling system. A fluid cooling system is designed to cause a cooling fluid to flow at least partially about and/or through the superconductive induction coil.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 24, 2013
    Assignee: Ajax Tocco Magnethermic Corporation
    Inventors: Theodore E. Burke, Frank Li
  • Patent number: 8525023
    Abstract: A cooled current lead for conducting electrical current into a cooled vessel. The current lead comprises an electrical conductor (22) comprising a region (29) which, in use, is heated by electrical current flowing through it; a cooled component (31) situated above a the region (29) and which is provided with a path for removal of heat; and a thermo-siphon comprising a cavity (35) in thermal contact with both the region of the electrical conductor and the cooled component, said cavity containing a fluid (35).
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: September 3, 2013
    Assignee: Siemens plc
    Inventors: Neil Charles Tigwell, Stephen Paul Trowell
  • Patent number: 8437819
    Abstract: Superconductor cable having a plurality of flat, tape-shaped ribbon superconductor wires assembled to form a stack having a rectangular cross section, the stack having a twist about a longitudinal axis of the stack. Multiple superconductor cables including twisted stacked-cables of the flat-tape-shaped superconductor wires, and power cable comprising the twisted flat-tape stacked cables are disclosed. Superconducting power cable disposed within and separated from an electrical insulator with a space passing cryo-coolant between the superconducting cable and insulator is also disclosed.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 7, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Makoto Takayasu, Joseph V. Minervini, Leslie Bromberg
  • Patent number: 8373066
    Abstract: An electrical bushing structure includes a central conductor (19) designed to have one (26) of its two ends connected to a superconductor element situated in an enclosure (11) at cryogenic temperature, and its other end (25) connected to an article at ambient temperature. An electrically insulating sheath (20) surrounds the conductor over substantially the entire length of the conductor. A metal tube (24) surrounds the conductor over substantially its entire length and is interposed between the insulating sheath (20) and the conductor (19), the tube being mechanically fastened to the conductor close to one of the ends (25, 26) of the conductor, referred to as its first end, and not being mechanically fastened to the conductor close to the other one of the ends of the conductor, referred to as its second end. A space between the conductor and the tube containing a gas. The tube is in electrical contact with said second end of the conductor.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: February 12, 2013
    Assignee: Nexans
    Inventors: Nicolas Lallouet, Sébastien Delplace, Pierre Mirebeau
  • Patent number: 8354591
    Abstract: Provided is a superconducting cable capable of maintaining a predetermined thermal insulation property without having a vacuum thermal insulation structure. The superconducting cable of the present invention includes: a cable unit 100, in which a core having a superconductor layer and an electrical insulation layer is housed in a core-housing pipe; a thermal insulation member 200 which is provided outside the cable unit and maintained in a non-vacuum state; and a sealing member for preventing the permeation of moisture into the thermal insulation member. By equipping the outside of the cable unit with the thermal insulation member 200 which is maintained in a non-vacuum state, it is made possible to maintain the predetermined thermal insulation property without having a vacuum thermal insulation structure.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 15, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masayuki Hirose, Ryosuke Hata
  • Patent number: 8352002
    Abstract: A superconductor cooling system has: a first superconductor; a first cooling conductor used for cooling the first superconductor; a first cooling unit configured to cool the first cooling conductor to a first temperature; and a current lead configured to supply a current to the first superconductor. Here, a part of a path of the current is formed of a second superconductor. The superconductor cooling system further has: a second cooling conductor used for cooling the second superconductor; a second cooling unit configured to cool the second cooling conductor to a second temperature; and a first thermal conduction switch connected between the first cooling conductor and the second cooling conductor to ON and OFF heat transfer between the first cooling conductor and the second cooling conductor.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: January 8, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Hiroshi Kawashima
  • Patent number: 8320088
    Abstract: An improved power transfer mechanism is disclosed, which is particularly beneficial in power transmission applications. The mechanism allows the SCFCL system to have more than one electrical reference. The use of hydraulic power simplifies the design of systems in which one part of the system is referenced to ground, while a second part of the system is referenced to a different voltage, typically much higher than ground. For example, the tank of the SCFCL system may not be connected to ground, while hydraulic power supply is referenced to ground. This embodiment is performed without the use of an electrically conductive path between the two parts of the system.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 27, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Roger Fish
  • Patent number: 8304650
    Abstract: An arrangement for current limiting is specified, using components (4, 5, 6) composed of a superconducting material which are arranged in a cryostat (KR) which comprises two metallic tubes (1, 2) which are arranged concentrically with respect to one another and between which vacuum insulation (3) is fitted, and which cryostat surrounds a free space (FR) for a coolant to pass through. The components (4, 5, 6) each comprise three phase conductors (7, 8, 9) composed of a superconducting material based on rare earths (ReBCO), which are arranged insulated from one another and concentrically with respect to one another.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: November 6, 2012
    Assignee: NEXANS
    Inventors: Mark Stemmle, Rainer Soika
  • Patent number: 8271061
    Abstract: A connection arrangement for connecting together two superconductor cables, each having a central conductor comprising at least one superconductive part, a dielectric layer surrounding said central conductor, a shield surrounding said dielectric layer and a cryogenic enclosure surrounding said shield, the connection arrangement has an electrical splicing device for splicing together the central conductors and stripped dielectric layers of the corresponding shields. This connection arrangement has a covering made of semi-conductive material that is placed between the two shield ends and an electrical connection device for connecting together the two shield ends, the connection device surrounding the covering, being contained in the cryogenic enclosure, and comprising two junction elements each electrically and mechanically joined to a respective one of the shield ends, and an electrical splicing arrangement for splicing together the two junction elements.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: September 18, 2012
    Assignee: Nexans
    Inventor: Nicolas Lallouet
  • Patent number: 8253024
    Abstract: In a method and apparatus for joining a number of superconductive cables to establish electrical connection therebetween, a cup-like member having a base, a sidewall, and an opening to receive electrically conductive ends of said cables is provided. The base of the cup-like member is attached to a holder device. The holder device is attached to a cryogenically cooled surface. The ends of the superconductive cables are connected together within the cup-like member.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: August 28, 2012
    Assignee: Siemens PLC
    Inventors: Neil John Belton, Simon James Calvert, Raymond Hornsby, Marcel Jan Márie Kruip
  • Patent number: 8173897
    Abstract: A superconducting cable line includes a heat insulation pipe for a fluid for transporting liquid hydrogen, a superconducting cable housed in the heat insulation pipe for a fluid, and heat exchange means for performing a heat exchange between liquid hydrogen and a refrigerant of the cable. The superconducting cable includes a cable core inside a heat insulation pipe for a cable and is housed in the heat insulation pipe for a fluid to form a low temperature environment around the cable and a double heat insulation structure including the heat insulation pipe. Therefore, since heat intrusion into the superconducting cable is reduced and the refrigerant is cooled with liquid hydrogen, the line can reduce energy for cooling the refrigerant.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: May 8, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masayuki Hirose, Yuichi Yamada
  • Patent number: 8173901
    Abstract: A multifilament superconductor (1) has a core area (2), several superconductor filaments (7) and reinforcement filaments (6). The superconductor filaments (7) and the reinforcement filaments (6) are arranged, so that they have a regular two-dimensional matrix (5) in the cross-section of core area (2). The reinforcement filaments (6) consist of tantalum or a tantalum alloy, and the superconductor filaments (7) each have a core (8), made from a powder metallurgically produced superconductor, which is enclosed by an inner shell (9), made of a non-superconducting metal or a non-superconducting alloy. The core area (2) is enclosed by an outer shell (3), made of a non-superconducting metal or a non-superconducting alloy.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: May 8, 2012
    Assignee: European Advanced Superconductor GmbH & Co. KG
    Inventors: Manfred Thoener, Horst Ehser, Andreas Szulczyk, Alfred Auer, Vital Abaecherli
  • Patent number: 7995312
    Abstract: Electric fault current limiter has superconducting elements inside a cryogenic vessel and bushings for connecting an external circuit. The electric fault current limiter (1) includes a cryogenic vessel (2) and superconducting assemblies (5) including high temperature type superconducting elements (HTSC) immersed in a liquid coolant (6) such as liquefied nitrogen. Bushings (25, 28) with conductors (17, 18) are associated with a main body (3) of the vessel (2) such that the conductors (17, 18) extend horizontally from a surrounding space into an ullage space (8) situated between a level (7) of the liquid coolant (6) inside the vessel (2) and a cover (4). The arrangement of the bushings (25, 28) according to the invention allows for removing the cover (4) without dismantling electrical connections between the current limiter (1) and a circuit to be protected as is necessary with prior art limiters.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: August 9, 2011
    Assignee: Nexans
    Inventors: Joachim Bock, Frank Breuer, Werner Kohler
  • Patent number: 7990662
    Abstract: A localized area is at least partially contained within a perimeter of a shield ring formed by a closed superconducting current path of a material that is superconductive below a critical temperature. The shield ring is at least partially within a perimeter of a compensation coil that is coupled to a current source. One or more measurement devices are responsive to magnetic fields in the vicinity of the localized area, allowing compensation by controlling current to the compensation coil. A heater can raise temperature of the shield ring out of a superconducting condition.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: August 2, 2011
    Assignee: D-Wave Systems Inc.
    Inventors: Andrew J. Berkley, Sergey V. Uchaykin, Thomas F. W. Mahon
  • Patent number: 7953466
    Abstract: A superconductive cable is provided which upon normal state, restricts flowing of electric current to a former to the maximum extent to thereby keep a cryogenic state in the superconductive cable stable. The superconductive cable includes a former surrounded by a superconductive layer and a cryostat provided at the outside of the superconductive layer, wherein the former includes a metal wire-wound part around which a plurality of wires is wound and an eddy-current prevention layer provided on the outer face of the wire-wound part, and the metal wires and the eddy-current prevention layer are made of a copper alloy.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: May 31, 2011
    Assignee: LS Cable Ltd
    Inventors: Hyun-man Jang, Chang-young Lee, Choon-dong Kim
  • Publication number: 20110105335
    Abstract: A system is specified having at least one superconducting cable (SK) which has at least one superconducting conductor (2), and having a cryostat (KR) which surrounds the same and has two metallic tubes, an inner tube (6) and an outer tube (7), which are arranged concentrically at a distance from one another, are corrugated transversely with respect to their longitudinal direction and between which vacuum insulation (8) is arranged. The cable (SK) has a central tubular support (1) for passing a coolant through, on which the superconducting conductor (2) rests. The cable (SK) is surrounded all around by a buffer layer (5) which protects the same against mechanical damage and consists of insulating material, and the inner tube (6) of the cryostat (KR) at least rests in a sealed manner on the buffer layer (5).
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Inventors: Rainer Soika, Mark Stemmle