And Means For Locking Out The Differential Means Patents (Class 180/249)
  • Patent number: 7325640
    Abstract: A power transmission system for a four-wheel drive vehicle comprises a power transmission mechanism provided in a vehicle arranged such that power is always transmitted to one of two pairs of wheels consisting of a pair of front wheels and a pair of rear wheels, to transmit power to the other pair of wheels, and a differential gear unit arranged between left and right wheels in the other pair, to distribute the power transmitted from the power transmission mechanism to the other pair, between the left and right wheels. The differential gear unit is a torque-sensitive differential gear unit with a differential limiting function for producing a differential limiting force between the left and right wheels, depending on power transmitted thereto, and a power transmission control means controls the power transmitted from the power transmission mechanism to the differential gear unit according to a driving state of the vehicle.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: February 5, 2008
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Yuichi Ushiroda, Kaoru Sawase
  • Patent number: 7290634
    Abstract: A differential control system for the center and rear differentials of a four-wheel-drive vehicle comprises a controller (28) which receives signals input from a number of sensors including ride height sensors (42, 44, 46, 48). The controller (28) determines from the ride height signals the degree of articulation of the vehicle suspension and controls the degree of locking of the differentials in response. The degree of locking is increased with increased articulation, and with increased rate of change of articulation.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: November 6, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: David Clare, Keith Gary Reginald Parsons, Jan Prins
  • Patent number: 7291083
    Abstract: An inter-axle differential assembly includes a forward side gear and a rear side gear that are supported by an input shaft. The forward and rear side gears are in meshing engagement with a plurality of inter-axle differential pinion gears that are supported on a spider. The spider is driven by the input shaft and has a plurality of legs with each leg supporting one of the plurality of inter-axle differential pinion gears. A helical drive gear is fixed for rotation with the forward side gear. The helical drive gear includes a center cavity defined by a spherical inner surface. The spider and the plurality of inter-axle differential pinion gears are positioned within the center cavity. This eliminates the need for an inter-axle differential housing assembly and reduces standout.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: November 6, 2007
    Assignee: ArvinMeritor Technology, LLC
    Inventor: Adalberto Jair Reyes Almaguer
  • Patent number: 7281617
    Abstract: A torque transfer mechanism having a multi-plate friction clutch connecting a pair of rotary members and an electrohydraulic clutch system for controlling engagement of the friction clutch. The electrohydraulic clutch system can include an actuator with first and second components with a plurality of actuation chambers that are employed to control the position of the second component relative to the first component. Relatively high pressure fluid may be directed through or around one or more bypassed portions of the actuation chambers when relatively low compressive clutch engagement forces are to be exerted on the friction clutch. The bypassed portions of the actuation chambers may be sequentially or progressively operated based on a position of the second component relative to the first component to increase an amount of force that is applied by actuator.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 16, 2007
    Assignee: Magna Powertrain USA, Inc.
    Inventor: Dumitru Puiu
  • Patent number: 7258187
    Abstract: A drive axle assembly includes a pair of axleshafts connected to a pair of wheels, and a drive mechanism for selectively coupling a driven input shaft to one or both of the axleshafts. The drive mechanism includes first and second drive units that can be selectively engaged to control the magnitude of the drive torque transferred and the relative rotary speed between the input shaft and the axleshafts. Each drive unit includes a planetary gearset disposed between the input shaft and its corresponding axleshaft, and a pair of mode clutches that may be activated to cause the planetary gearset to establish different speed ratio drive connections between the input shaft and the axleshaft. A control system including an electronic control unit (ECU) and sensors are provided to control actuation of the clutches so as to control the side-to-side traction characteristics of the drive axle assembly.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: August 21, 2007
    Assignee: Magna Powertrain USA, Inc.
    Inventor: Thomas C. Bowen
  • Patent number: 7258213
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a power-operated face gear clutch actuator for generating and applying a clutch engagement force on the clutch assembly.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: August 21, 2007
    Assignee: Magna Powertrain USA, Inc.
    Inventors: Todd Ekonen, Douglas Bradley
  • Patent number: 7229139
    Abstract: A system and method of controlling an automotive vehicle includes determining a steering wheel angle, determining a steering wheel direction, determining a steering wheel angular rate and applying brake-steer as a function of steering wheel angle, steering wheel angular rate and steering wheel direction.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: June 12, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Timothy G. Offerle, Hongtei E. Tseng, Douglas S. Rhode, Gregory P. Brown
  • Patent number: 7150694
    Abstract: A full-time power take-off unit is equipped with a dual-mode bi-directional overrunning clutch and a shift mechanism to establish all-wheel drive and part-time four-wheel drive modes. Further, the power take-off unit includes a disconnect clutch that is controlled by the mode shift mechanism to establish a full-time four-wheel drive mode.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: December 19, 2006
    Assignee: Magna Powertrain USA, Inc.
    Inventors: Richard Mizon, Dale L. Pennycuff
  • Patent number: 7147094
    Abstract: A drive power transmission control device is provided with an electromagnetic drive power transmission device and an ECU for controlling the application of electric current to an electromagnetic coil of the drive power transmission device. The ECU is bodily provided on a casing of the electromagnetic type drive power transmission device through at least one support member 50. The electronic control device is fixedly supported on an outer wall of the casing with a space between the electronic control device and the casing, such that cooling air can flow between the outer wall of the casing and the electronic control device.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: December 12, 2006
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Hisaaki Wakao, Tatsuya Inagaki, Yutaka Mori, Susumu Koike
  • Patent number: 7111716
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a power-operated face gear clutch actuator for generating and applying a clutch engagement force on the clutch assembly.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: September 26, 2006
    Assignee: Magna Powertrain USA, Inc.
    Inventors: Todd Ekonen, Douglas Bradley
  • Patent number: 7111717
    Abstract: A power transmission apparatus T of a four wheel drive vehicle is provided with a multiple disc clutch C engaged in accordance with a difference between rotational speeds of a front wheel Wf and a rear wheel Wr and a gear ratio of a second gear mechanism 5 for transmitting rotation of the rear wheel Wr to an output shaft 9 of the multiple disc clutch C is set to be larger than a gear ratio of a first gear mechanism 4 for transmitting rotation of the front wheel Wf to an input shaft 8 of the multiple disc clutch C.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: September 26, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kentarou Arai, Koji Kuroda
  • Patent number: 7101304
    Abstract: The present invention provides a shift mechanism disposed in a housing for providing operable communication between a shift actuator and a shift sleeve. The shift mechanism generally includes a shift rail, a shift fork, a first biasing member, and a second biasing member. The shift rail is slidably supported by the housing. The shift fork is slidably disposed on the shift rail and engages the shift sleeve. The first biasing member is disposed between the shift actuator and the shift rail for selectively biasing the shift rail in a first direction upon actuation of the shift actuator. The second biasing member is disposed between the housing and the shift fork for biasing the shift fork in a second direction that is substantially opposite the first direction.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: September 5, 2006
    Assignee: Magna Powertrain USA, Inc.
    Inventors: Jeffrey Swanson, Carl H. Vonnegut
  • Patent number: 7083030
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes an actuator having a first segment fixed for rotation with the first rotary member and a second segment having a screw thread formed thereon which is rotatably and slidably disposed within a chamber filled with magnetorheological fluid. An electromagnetic coil is disposed in proximity to the chamber and is selectively energized for varying the viscosity of the magnetorheological fluid so as to induce axial movement of the actuator for engaging the multi-plate clutch assembly.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: August 1, 2006
    Assignee: Magna Drivertrain of America, Inc.
    Inventor: James P. Dolan
  • Patent number: 7083539
    Abstract: A drive axle assembly includes first and second axleshafts connected to a pair of wheels and a drive mechanism operable to selectively couple a driven input shaft to the axleshafts. The drive mechanism includes a differential assembly, a planetary gear assembly operably disposed between the differential assembly and the first axleshaft and first and second mode clutches. The first mode clutch is operable with the planetary gear assembly to increase the rotary speed of the first axleshaft which, in turn, causes a corresponding decrease in the rotary speed of the second axleshaft. The second mode clutch is operable with the planetary gear assembly to decrease the rotary speed of the first axleshaft so as to cause an increase in the rotary speed of the second axleshaft. A control system controls actuation of both mode clutches.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: August 1, 2006
    Assignee: Magna Powertrain USA, Inc.
    Inventor: Thomas C. Bowen
  • Patent number: 7080707
    Abstract: A drive axle assembly includes a pair of axleshafts connected to a pair of wheels, and a drive mechanism for selectively coupling a driven input shaft to one or both of the axleshafts. The drive mechanism includes first and second drive units that can be selectively engaged to control the magnitude of the drive torque transferred and the relative rotary speed between the input shaft and the axleshafts. Each drive unit includes a planetary gearset disposed between the input shaft and its corresponding axleshaft, and a pair of mode clutches that may be activated to cause the planetary gearset to establish different speed ratio drive connections between the input shaft and the axleshaft. A control system including an electronic control unit (ECU) and sensors are provided to control actuation of the clutches so as to control the side-to-side traction characteristics of the drive axle assembly.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: July 25, 2006
    Assignee: Magna Powertrain USA, Inc.
    Inventor: Malcolm E. Kirkwood
  • Patent number: 7059992
    Abstract: A power transfer assembly for a four-wheel drive vehicle includes first and second output shafts and a drive mechanism operable to selectively transfer drive torque from a driven input shaft to the output shafts. The drive mechanism includes a differential assembly, a planetary gear assembly and first and second mode clutches. The first mode clutch is operable with the planetary gear assembly to increase the rotary speed of the first output shaft which, in turn, causes a corresponding decrease in the rotary speed of the second output shaft. The second mode clutch is operable with the planetary gear assembly to decrease the rotary speed of the first output shaft so as to cause an increase in the rotary speed of the second output shaft. A control system controls actuation of both mode clutches.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: June 13, 2006
    Assignee: Magna Powertrain, Inc.
    Inventor: Thomas C. Bowen
  • Patent number: 7044880
    Abstract: A drive axle assembly includes first and second axleshafts connected to a pair of wheels and a drive mechanism operable to selectively couple a driven input shaft to one or both of the axleshafts. The drive mechanism includes a differential assembly, a planetary gear assembly operably disposed between the differential assembly and the first axleshafts and first and second mode clutches. The first mode clutch is operable with the planetary gear assembly to increase the rotary speed of the first axleshaft which, in turn, causes a corresponding decrease in the rotary speed of the second axleshaft. The second mode clutch is operable with the planetary gear assembly to decrease the rotary speed of the first axleshaft so as to cause an increase in the rotary speed of the second axleshaft. A control system controls actuation of both mode clutches.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: May 16, 2006
    Assignee: Magna Powertrain, Inc.
    Inventor: Thomas C. Bowen
  • Patent number: 7017702
    Abstract: A parallel engine and transmission drive arrangement with application to both land and marine vehicles reduces the large moment arm and moment about the rear axle in the case of land vehicles, and provides trim and stability and compact arrangement of the drive arrangement in the case of a marine vessel. The arrangement is applicable to buses, tractor-trailer rigs, towing, dump trucks, garbage trucks, concrete trucks, fire trucks, recreational vehicles, and boats or ships. In one aspect, the engine and transmission are laterally arranged in a parallel manner. This arrangement shortens the longitudinal distance necessary in rear-mounted engine designs from about 120 inches to as little as 54 inches. The large moment arm found about the rear axle in conventional rear-mounted engines is thereby reduced, and the transfer case performance requirements are relaxed, resulting in a transfer case with reduced bulk and weight.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: March 28, 2006
    Inventor: William Gunby
  • Patent number: 6991079
    Abstract: A torque transfer mechanism having a transfer clutch connecting a pair of rotary members and a electrohydraulic clutch actuator for controlling engagement of the transfer clutch. The clutch actuator includes a hydraulic pump and a hydraulically-actuated rotary operator. The hydraulic pump draws low pressure fluid from a sump and delivers high pressure fluid to a series of actuation chambers defined between coaxially aligned first and second components of the rotary operator. The magnitude of the fluid pressure delivered to the actuation chamber controls angular movement of the second component relative to the first component for energizing a pilot ball ramp unit. The pilot ball ramp mechanism applies a clutch actuation force on a pilot friction clutch which energized a main ball ramp unit for applying a clutch engagement force to a main friction clutch. A hydraulic control system adaptively regulates the fluid pressure delivered to the actuation chamber.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: January 31, 2006
    Assignee: Magna Powertrain, Inc.
    Inventor: Dumitru Puiu
  • Patent number: 6991080
    Abstract: A torque transfer mechanism having a multi-plate friction clutch connecting a pair of rotary members and a electrohydraulic clutch actuator for controlling engagement of the friction clutch. The clutch actuator includes a hydraulic pump, a hydraulically actuated rotary operator, and a thrust mechanism. The hydraulic pump draws low pressure fluid from a sump and selectively delivers high pressure fluid to a series of actuation chambers and return chambers defined between coaxially aligned first and second components of the rotary operator. The magnitude of the fluid pressure delivered to the actuation chamber controls angular movement of the second component relative to the first component for energizing the thrust mechanism. The thrust mechanism applies a clutch engagement force on the friction clutch, thereby transferring drive torque from the first rotary member to the second rotary member. An electrohydraulic control system regulates the fluid pressure delivered to the actuation and return chambers.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: January 31, 2006
    Assignee: Magna Powertrain, Inc.
    Inventor: Dumitru Puiu
  • Patent number: 6988602
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes an actuator having a first cam fixed for rotation with the first rotary member and a second cam having a rotor which is rotatably disposed within a chamber filled with magnetorheological fluid. An electromagnetic coil is disposed in proximity to the chamber and is selectively energized for varying the viscosity of the magnetorheological fluid so as to induce axial movement of the first cam for engaging the multi-plate clutch assembly.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: January 24, 2006
    Assignee: Magna Powertrain, Inc.
    Inventor: James P. Dolan
  • Patent number: 6971494
    Abstract: A hydraulic coupling having a multi-plate friction clutch assembly operably connecting a pair of rotary members and a hydramechanical clutch actuator for automatically controlling engagement of the friction clutch assembly. The clutch actuator includes a hydraulic fluid pump, a hydraulically-actuated rotary operator, and a ball ramp mechanism. The hydraulic fluid pump is operable to draw low pressure fluid from a sump and deliver high pressure fluid to a series of actuation chambers defined between coaxially aligned first and second components of the rotary operator. The magnitude of the fluid pressure delivered to the actuation chamber controls the angular movement of the second component relative to the first component. Translational movement of the second cam member results in a compressive clutch engagement force being exerted on the friction clutch assembly, thereby controlling the drive torque transferred from the first rotary member to the second rotary member.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: December 6, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventor: Dumitru Puiu
  • Patent number: 6966396
    Abstract: A drive axle assembly for an all-wheel drive vehicle includes an adaptively controlled first hydraulic coupling for providing front-to-rear torque transfer control to a first wheel and an adaptively controlled second hydraulic coupling for providing front-to-rear torque control to a second wheel. The drive axle assembly is contained with a common housing and communicates with a traction control system to actively control actuation of the first and second hydraulic couplings based on the operating characteristics of the vehicle as detected by suitable sensors.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: November 22, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventors: John R. Forsyth, Fred C. Porter
  • Patent number: 6962227
    Abstract: A drive axle assembly includes a pair of axleshafts connected to a pair of wheels, and a drive mechanism for selectively coupling a driven input shaft to one or both of the axleshafts. The drive mechanism includes first and second drive units that can be selectively engaged to control the magnitude of the drive torque transferred and the relative rotary speed between the input shaft and the axleshafts. Each drive unit includes a planetary gearset disposed between the input shaft and its corresponding axleshaft, and a pair of mode clutches that may be activated to cause the planetary gearset to establish different speed ratio drive connections between the input shaft and the axleshaft. A control system including an electronic control unit (ECU) and sensors are provided to control actuation of the clutches so as to control the side-to-side traction characteristics of the drive axle assembly.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: November 8, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventor: Malcolm E. Kirkwood
  • Patent number: 6948604
    Abstract: A torque transfer mechanism having a transfer clutch connecting a pair of rotary members and a electrohydraulic clutch actuator for controlling engagement of the transfer clutch. The clutch actuator includes a hydraulic pump and a hydraulically-actuated rotary operator. The hydraulic pump draws low pressure fluid from a sump and delivers high pressure fluid to a series of actuation chambers defined between coaxially aligned first and second components of the rotary operator. The magnitude of the fluid pressure delivered to the actuation chamber controls angular movement of the second component relative to the first component for energizing a pilot ball ramp unit. The pilot ball ramp mechanism applies a clutch actuation force on a pilot friction clutch which energized a main ball ramp unit for applying a clutch engagement force to a main friction clutch. A hydraulic control system adaptively regulates the fluid pressure delivered to the actuation chamber.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: September 27, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventor: Dumitru Puiu
  • Patent number: 6945374
    Abstract: A torque transfer mechanism having a multi-plate friction clutch connecting a pair of rotary members and a electrohydraulic clutch actuator for controlling engagement of the friction clutch. The clutch actuator includes a hydraulic pump, a hydraulically-actuated rotary operator, and a thrust mechanism. The hydraulic pump draws low pressure fluid from a sump and selectively delivers high pressure fluid to a series of actuation chambers and return chambers defined between coaxially aligned first and second components of the rotary operator. The magnitude of the fluid pressure delivered to the actuation chamber controls angular movement of the second component relative to the first component for energizing the thrust mechanism. The thrust mechanism applies a clutch engagement force on the friction clutch, thereby transferring drive torque from the first rotary member to the second rotary member. An electrohydraulic control system regulates the fluid pressure delivered to the actuation and return chambers.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: September 20, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventor: Dumitru Puiu
  • Patent number: 6945375
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a clutch actuator assembly for generating and applying a clutch engagement force on the clutch assembly. The clutch actuator assembly includes an electric motor/brake unit, a torque/force conversion mechanism, and a force amplification mechanism. The motor/brake unit can be operated in either of a motor mode or a brake mode to cause bi-directional linear movement of an output member of the torque/force conversion mechanism. The thrust force generated by the torque/force conversion mechanism is increased by the force amplification mechanism with the resultant clutch engagement force applied to the clutch assembly. The dual mode feature of the electric motor/brake unit significantly reduces the power requirements.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: September 20, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventors: Malcolm E. Kirkwood, Thomas C. Bowen
  • Patent number: 6942055
    Abstract: A drive axle assembly for an all-wheel drive vehicle includes an adaptively controlled first hydraulic coupling for providing front-to-rear torque transfer control to a first wheel and an adaptively controlled second hydraulic coupling for providing front-to-rear torque control to a second wheel. The drive axle assembly is contained with a common housing and communicates with a traction control system to actively control actuation of the first and second hydraulic couplings based on the operating characteristics of the vehicle as detected by suitable sensors.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: September 13, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventors: John R. Forsyth, Fred C. Porter
  • Patent number: 6938748
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a clutch actuator for generating and applying a clutch engagement force on the clutch assembly. The clutch actuator includes a wedge fork having a gear rack segment and a tapered tang segment and a reaction block defining a tapered edge in sliding engagement with the tapered tang segment. An electric motor drives a pinion that is meshed with the gear rack to cause bi-directional linear movement of the wedge fork which causes corresponding sliding movement of the reaction block relative to the clutch assembly.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: September 6, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventor: Dale L. Pennycuff
  • Patent number: 6918851
    Abstract: An interaxle differential is provided which includes a side gear, a clutch gear torsionally locked on a first input shaft and axially slidably mounted thereon and an annular piston mounted in a differential casing for urging the clutch gear into engagement with a side gear and a spring to urge the clutch gear to an unlocked position.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: July 19, 2005
    Assignee: Dana Corporation
    Inventors: James Ziech, Lawrence P. Wagle
  • Patent number: 6878085
    Abstract: In a differential limiting torque control section, a target differential rotation speed between front and rear drive shafts is established according to a dial position inputted by a driver of a variable dial. Further, an actual differential rotation speed between front and rear drive shafts is calculated and a deviation between the target differential rotation speed and the actual differential rotation speed is calculated. Based on the deviation, a first differential limiting torque and based on a dial position of a variable dial a second differential limiting torque are calculated. Further, a third differential limiting torque is calculated based on the dial position and a throttle opening angle. A final differential limiting torque between front and rear drive shafts is obtained by summing up these first, second and third differential limiting torques.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: April 12, 2005
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Patent number: 6862953
    Abstract: A controllable, multi-mode, bi-directional overrunning clutch assembly and a shift system are adapted for use in a power transmission device. The clutch assembly includes a first ring journalled on a first rotary member, a second ring fixed to a second rotary member, and a plurality of rollers disposed in opposed cam tracks formed between the first and second rings. The first ring is split to define an actuation channel having a pair of spaced end segments. An actuator ring is moveable between positions engaged with and released from the end segments of the first ring. The shift system includes a moveable clutch actuator which controls movement of the actuator ring for establishing engaged and disengaged clutch modes. An alternate embodiment clutch assembly includes first and second rings non-rotatably coupled to one another. A third ring is selectively engageable with a rotary component to transfer power thereto.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: March 8, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventors: Brian M. Fitzgerald, Douglas W. Conklin
  • Patent number: 6851537
    Abstract: A torque transfer mechanism for controlling the magnitude of a clutch engagement force exerted on a clutch pack that is operably disposed between a first rotary member and a second rotary member includes an actuator having an inner sleeve, an outer sleeve, and a plurality of balls. The inner sleeve is supported for rotation relative to the first rotary member and each of the inner and outer sleeves includes a spiral groove aligned with the other. The balls are positioned within the spiral grooves between the inner and outer sleeves. An electric motor selectively rotates one of the inner and outer sleeves so as to induce axial movement of the other of the inner and outer sleeves to engage the clutch.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: February 8, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventor: Thomas C. Bowen
  • Patent number: 6843338
    Abstract: A traction distribution control system for a 4WD vehicle is constructed to calculate a difference gain in accordance with a difference in spinning state between main driving wheels, and determine a control signal for controlling traction distribution to driven wheels by multiplying a control amount by the difference gain.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: January 18, 2005
    Assignee: Hitachi Unisia Automotive, Ltd.
    Inventor: Nobuyuki Ohtsu
  • Patent number: 6820712
    Abstract: A vehicle has a lockable differential. The lockable differential generally comprises an actuator and a locking mechanism. The vehicle also has a motor. The actuator, the motor or both are controlled according to a control routine that reduces wear on the components by reducing the likelihood that a locked differential will be requested when locking is not very practical. In one arrangement, actuation only occurs below a preset threshold speed and can occur through a specified range defined between the preset threshold and a second threshold. In another arrangement, the motor speed is controlled when actuation is desired such that motor speed is reduced to a lockable speed range.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: November 23, 2004
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Kazuo Nakamura
  • Patent number: 6817434
    Abstract: The vehicular axle assembly includes an input shaft, a drive gear assembly connecting the input shaft to a pair of output shafts, pair of opposite wheel ends mounted to the outboard ends of the output shafts, a pair of wheel end disconnect assembly disposed between and selectively connecting each of the pair of the output shafts to the corresponding one of the wheel ends, and a control system controlling the wheel end disconnect assemblies to selectively transfer torque from the input shaft to either the wheel ends. Each of the wheel end disconnect assemblies has a hydraulically actuated friction clutch assembly integrated with the corresponding wheel ends for facilitating both selective torque coupling and limited slip between the wheel ends and the corresponding output shafts. The friction clutch assemblies are actuated by a hydraulic actuator, also adapted to supply pressurized hydraulic fluid to a vehicle wheel brake system.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: November 16, 2004
    Assignee: Torque-Traction Technologies, Inc.
    Inventor: Scott Richard Sweet
  • Patent number: 6810983
    Abstract: A control apparatus for four wheel drive vehicle having differential limiting unit has: turning state determining unit; actual left and right wheel differential speed calculating unit; target differential speed setting unit; differential limiting torque calculating unit for setting a differential limiting torque at 0 in the event that an inside wheel speed falls below an outside wheel speed by a preset threshold value in the turning condition, and calculating a differential limiting torque on the basis of the target left and right wheel differential speed and the actual left and right wheel differential speed in the event that an inside wheel speed exceeds an outside wheel speed by the preset threshold value in the turning condition; and front and rear wheel differential limiting torque setting unit for setting a front and rear wheel differential limiting torque on the basis of a differential limiting torque which is calculated.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: November 2, 2004
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventor: Koji Matsuno
  • Patent number: 6808053
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a clutch actuator assembly for generating and applying a clutch engagement force on the clutch assembly. The clutch actuator assembly includes an electric motor/brake unit, a torque/force conversion mechanism, and a force amplification mechanism. The motor/brake unit can be operated in either of a motor mode or a brake mode to cause bi-directional linear movement of an output member of the torque/force conversion mechanism. The thrust force generated by the torque/force conversion mechanism is increased by the force amplification mechanism with the resultant clutch engagement force applied to the clutch assembly. The dual mode feature of the electric motor/brake unit significantly reduces the power requirements.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: October 26, 2004
    Assignee: New Venture Gear, Inc.
    Inventors: Malcolm E. Kirkwood, Thomas C. Bowen
  • Patent number: 6808052
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a clutch actuator assembly for generating and applying a clutch engagement force on the clutch assembly. The clutch actuator assembly includes an electric motor/brake unit and a torque/force conversion mechanism. The motor/brake unit can be operated in either of a motor mode or a brake mode to cause bi-directional linear movement of an output member of the torque/force conversion mechanism. The thrust force generated by the torque/force conversion mechanism is applied to the clutch assembly. The dual mode feature of the electric motor/brake unit significantly reduces the power requirements.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: October 26, 2004
    Assignee: New Venture Gear, Inc.
    Inventors: Malcolm E. Kirkwood, Thomas C. Bowen
  • Patent number: 6805652
    Abstract: A controllable, multi-mode, bi-directional overrunning clutch assembly and a mode shift system are adapted for use in a transfer case for transferring drive torque from a primary output shaft to a secondary output shaft so as to establish four-wheel drive modes. The clutch assembly includes a first ring journalled on a first rotary member, a second ring fixed to a second rotary member, and a plurality of rollers disposed in opposed cam tracks formed between the first and second rings. The first ring is split to define an actuation channel having a pair of spaced end segments. An actuator ring is moveable between positions engaged with and released from the end segments of the first ring. The shift system includes a moveable clutch actuator which controls movement of the actuator ring for establishing an on-demand four-wheel drive mode and a locked or part-time four-wheel drive mode.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: October 19, 2004
    Assignee: New Venture Gear, Inc.
    Inventor: Randolph C. Williams
  • Publication number: 20040195028
    Abstract: An off-road vehicle has front and rear wheels. An engine unit powers the wheels. The engine unit has an output shaft. A front differential is coupled with the front wheels. The front differential has a front input shaft. A front drive connects the output shaft and the front input shaft with each other. The front differential can operate in one of three modes: an unlocked mode, a locked mode and a disabled mode. A rear differential is coupled with the rear wheels. The rear differential mechanism has a rear input shaft. A rear drive connects the output shaft and the rear input shaft. The rear differential can operated in at least two modes: an unlocked mode and a locked mode. In one embodiment, the front differential is allowed to be locked only when the rear differential is locked.
    Type: Application
    Filed: March 2, 2004
    Publication date: October 7, 2004
    Inventor: Kazuhiko Izumi
  • Publication number: 20040188213
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a clutch actuator for generating and applying a clutch engagement force on the clutch assembly. The clutch actuator includes a wedge fork having a gear rack segment and a tapered tang segment and a reaction block defining a tapered edge in sliding engagement with the tapered tang segment. An electric motor drives a pinion that is meshed with the gear rack to cause bi-directional linear movement of the wedge fork which causes corresponding sliding movement of the reaction block relative to the clutch assembly.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 30, 2004
    Inventor: Dale L. Pennycuff
  • Patent number: 6790154
    Abstract: A rear axle assembly for a primary front wheel drive motor vehicle includes two electromagnetic clutches and a geared differential. A first electromagnetic clutch provides torque to the geared differential which, in turn, provides drive torque to two axles. The geared differential includes a second electromagnetic clutch operably disposed between the differential cage and the output shafts (axles). Activation of the first electromagnetic clutch provides controlled application of torque to the rear differential and activation of the second electromagnetic clutch progressively inhibits differentiation of the geared differential.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: September 14, 2004
    Assignee: BorgWarner, Inc.
    Inventor: William R. Kelley, Jr.
  • Publication number: 20040173428
    Abstract: A torque transfer mechanism for controlling the magnitude of a clutch engagement force exerted on a clutch pack that is operably disposed between a first rotary member and a second rotary member includes an actuator having an inner sleeve, an outer sleeve, and a plurality of balls. The inner sleeve is supported for rotation relative to the first rotary member and each of the inner and outer sleeves includes a spiral groove aligned with the other. The balls are positioned within the spiral grooves between the inner and outer sleeves. An electric motor selectively rotates one of the inner and outer sleeves so as to induce axial movement of the other of the inner and outer sleeves to engage the clutch.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 9, 2004
    Inventor: Thomas C. Bowen
  • Patent number: 6786293
    Abstract: A two-wheel-drive/four-wheel-drive switching system for a vehicle wherein a switching mechanism is securely fixed and functions of the switching mechanism can be secured, preventing noise from being made. An outside flange is provided to an electromagnetic coil forming a switching mechanism for switching two wheel drive and four wheel drive. A fitting section having a difference in a level to which the outside flange touches is formed in a casing in which the switching mechanism is installed. A fitting groove is formed on the inside face at an interval equal to or larger than the thickness of the outside flange from the fitting section. A circlip opposite to the outside flange is inserted into the circular groove and the outside flange is pressed on the fitting section by inserting a circular elastic member between the circlip and the outside flange.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: September 7, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Akio Handa
  • Publication number: 20040168545
    Abstract: A controllable, multi-mode, bi-directional overrunning clutch assembly and a shift system are adapted for use in a power transmission device. The clutch assembly includes a first ring journalled on a first rotary member, a second ring fixed to a second rotary member, and a plurality of rollers disposed in opposed cam tracks formed between the first and second rings. The first ring is split to define an actuation channel having a pair of spaced end segments. An actuator ring is moveable between positions engaged with and released from the end segments of the first ring. The shift system includes a moveable clutch actuator which controls movement of the actuator ring for establishing engaged and disengaged clutch modes. An alternate embodiment clutch assembly includes first and second rings non-rotatably coupled to one another. A third ring is selectively engageable with a rotary component to transfer power thereto.
    Type: Application
    Filed: July 24, 2003
    Publication date: September 2, 2004
    Inventors: Brian M. Fitzgerald, Douglas W. Conklin
  • Patent number: 6783475
    Abstract: An all-wheel distributor transmission (1) is described for a motor vehicle comprising a planetary gear set as multiplication step (2) for a switchable off-road gear and a planetary gear set (3) with variable division for distributing a drive torque onto a front axle and a rear axle. The all-wheel distributor transmission (1) also has an adjustable lock (4) for locking between the front axle and the rear axle, the lock (4) and the multiplication step (2) being actuatable via a controllable drive device (5). The drive device (5) comprises a drive shaft (6) and two output shafts (7, 8), the first output shaft (7) being in operative connection with the multiplication step (2) and the second output shaft (8) being in operative connection with the lock (4). A torque introduced via the drive shaft (6) can be applied on the first or the second output shaft (7 or 8) according to a control of a shift unit (10) for actuating the lock (4) or the multiplication step (2).
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: August 31, 2004
    Assignee: ZF Friedrichshafen AG
    Inventors: √únal Gazyakan, Detlef Baasch, Gerhard Gumpoltsberger, Michael Ebenhoch, Barbara Schmohl
  • Patent number: 6766889
    Abstract: A torque transfer mechanism is provided for controlling the magnitude of a clutch engagement force exerted on a multi-plate clutch assembly that is operably disposed between a first rotary and a second rotary member. The torque transfer mechanism includes a clutch actuator for generating and applying a clutch engagement force on the clutch assembly. The clutch actuator includes a wedge fork having a gear rack segment and a tapered tang segment and a reaction block defining a tapered edge in sliding engagement with the tapered tang segment. An electric motor drives a pinion that is meshed with the gear rack to cause bi-directional linear movement of the wedge fork which causes corresponding sliding movement of the reaction block relative to the clutch assembly.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: July 27, 2004
    Assignee: New Venture Gear, Inc.
    Inventor: Dale L. Pennycuff
  • Patent number: 6745885
    Abstract: A power distribution control apparatus determines a command value that corresponds to the driving state of a four-wheel drive vehicle. The vehicle includes a pair of front wheels and a pair of rear wheels, and a coupling device that changes the power distribution to the front wheels and the rear wheels. The control apparatus detects the differential rotation speed between the average rotation speed of the front wheels and the average rotation speed of the rear wheels. The control apparatus estimates the exothermic energy generated in the coupling device based on the product of the differential rotation speed and the command value. The control apparatus determines an optimum drive mode for the four-wheel drive vehicle based on the estimated exothermic energy and for selecting map data corresponding to the determined drive mode. The control apparatus determines the command value that corresponds to the driving state by using the map data.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: June 8, 2004
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Tsuyoshi Murakami, Akihiro Ohno
  • Patent number: 6719082
    Abstract: In a vehicle in which an engine output power is transmitted to front and rear wheels through a transmission and an inter axle differential, a wheel lock prevention device is provided. The wheel lock prevention device comprises a differential lock mechanism for locking the inter axle differential, a detection element for detecting a wheel lock state of the front and rear wheels, and an operation element for operating the differential lock mechanism so as to lock the inter axle differential by operating the differential lock mechanism upon the detection of the wheel lock state.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: April 13, 2004
    Assignee: Komatsu Ltd.
    Inventors: Koji Uematsu, Nobuki Hasegawa