Optical Or Photoactive Patents (Class 204/192.26)
  • Patent number: 8969114
    Abstract: A method of manufacturing an organic light emitting display apparatus, the method includes loading a substrate on a moving unit, determining an angle formed between a side of the substrate and an opening in a patterning slit sheet, rotating the patterning slit sheet by two X motors so that the side of the substrate and the opening in a patterning slit sheet extend along the same direction and forming a layer on the substrate while conveying the substrate on the moving unit in the first direction in a chamber. The patterning slit sheet moves along a direction perpendicular to the first direction during the forming the layer on the substrate so that a deposition layer having a linear pattern that extends along the first direction is formed on the substrate.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 3, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Joo-Nyung Jang
  • Patent number: 8956511
    Abstract: A method for reducing the optical loss of the multilayer coating below a predetermined value in a zone by producing coating on a displaceable substrate in a vacuum chamber with the aid of a residual gas using a sputtering device. Reactive depositing a coating on the substrate by adding a reactive component with a predetermined stoichiometric deficit in a zone of the sputtering device. Displacing the substrate with the deposited coating into the vicinity of a plasma source, which is located in the vacuum chamber at a predetermined distance from the sputtering device. The plasma action of the plasma source modifying the structure and/or stoichiometry of the coating, preferably by adding a predetermined quantity of the reactive component to reduce the optical loss of the coating.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: February 17, 2015
    Assignee: Leybold Optics GmbH
    Inventors: Michael Scherer, Jurgen Pistner, Walter Lehnert, Harro Hagedorn, Gerd Deppisch, Mario Roder
  • Publication number: 20150014151
    Abstract: A method of fabricating a sputtering target includes preparing a first powder material including at least one of a tin oxide and a mesh-forming oxide; mixing the first powder material and a second powder material comprising carbon or a tin oxide to prepare a mixture; simultaneously performing a primary compression and primary sintering on the mixture in a reduction atmosphere; and simultaneously performing a secondary compression and secondary sintering on the mixture in the reduction atmosphere to prepare the sputtering target.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 15, 2015
    Inventors: Sang-Wook Shin, Sun-Young Jung, Il-Sang Lee, Jin-Woo Park, Dong-Jin Kim
  • Patent number: 8932436
    Abstract: The subject of the invention is an essentially ceramic target for a sputtering device, especially for magnetically enhanced sputtering, said target comprising predominantly nickel oxide, the nickel oxide NiOx being oxygen-deficient with respect to the stoichiometric composition.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: January 13, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Xavier Fanton, Jean-Christophe Giron
  • Publication number: 20150009556
    Abstract: In forming an optical thin film on a curved surface of a material to be deposited, a specific space, which is part of a space in a processing chamber and is a space between an arrangement part and a target, is surrounded by a shielding part. In this state, when deposition is performed by a sputtering step in which a voltage is applied to the target in the processing chamber which is in a vacuum state and supplied with an active gas and an inert gas, an optical thin film of a substantially equal optical thickness is formed on the curved surface.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 8, 2015
    Inventors: Shuichiro Kawagishi, Teruo Yamashita
  • Publication number: 20140377483
    Abstract: A device housing includes a substrate and a color layer formed on the substrate. The color layer consists substantially of titanium zirconium carbonitride. The color layer has an L* value between about 70 to about 80, an a* value between about 10 to about 15, and an b* value between about 22 to about 30 in the CIE LAB color space. The color layer provides a yellow color for the device housing. A method for making the device housing is also described.
    Type: Application
    Filed: November 14, 2013
    Publication date: December 25, 2014
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventor: CHUN-JIE ZHANG
  • Patent number: 8906206
    Abstract: The invention provides a coater, and methods of using the coater, for depositing thin films onto generally-opposed major surfaces of a sheet-like substrate. The coater has a substrate transport system adapted for supporting the substrate in a vertical-offset configuration wherein the substrate is not in a perfectly vertical position but rather is offset from vertical by an acute angle. The transport system defines a path of substrate travel extending through the coater. The transport system is adapted for conveying the substrate along the path of substrate travel. Preferably, the transport system includes a side support for supporting a rear major surface of the substrate. The preferred side support bounds at least one passage through which coating material passes when such coating material is deposited onto the substrate's rear major surface. Preferably, the coater includes at least one coating apparatus (e.g.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 9, 2014
    Assignee: Cardinal CG Company
    Inventor: Klaus Hartig
  • Publication number: 20140356601
    Abstract: A translucent hard thin film having high transmissivity and film strength is provided. The translucent hard thin film can be composed of a laminated film formed on a substrate surface, wherein the laminated film has a superlattice structure obtained by stacking a plurality of SiO2 layer and SiC layers alternately and the entire film thickness is 3000 nm or more. A film thickness per layer is 5 to 30 nm in a SiC layer and 30% to 60% of that of the SiO2 layer in a SiC layer.
    Type: Application
    Filed: February 16, 2012
    Publication date: December 4, 2014
    Inventors: Takuya Sugawara, Hikaru Aoshima, Yousong Jiang, Ichiro Shiono
  • Patent number: 8900423
    Abstract: A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Sun, Yu Wang
  • Patent number: 8894826
    Abstract: A method and apparatus for forming a thin film of a copper indium gallium selenide (CIGS)-type material are disclosed. The method includes providing first and second targets in a common sputtering chamber. The first target includes a source of CIGS material, such as an approximately stoichiometric polycrystalline CIGS material, and the second target includes a chalcogen, such as selenium, sulfur, tellurium, or a combination of these elements. The second target provides an excess of chalcogen in the chamber. This can compensate, at least in part, for the loss of chalcogen from the CIGS-source in the first target, resulting in a thin film with a controlled stoichiometry which provides effective light absorption when used in a solar cell.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: November 25, 2014
    Inventors: Jesse A. Frantz, Jasbinder S. Sanghera, Robel Y. Bekele, Vinh Q Nguyen, Ishwar D. Aggarwal, Allan J. Bruce, Michael Cyrus, Sergey V. Frolov
  • Patent number: 8894827
    Abstract: A deposition method for electrochromic WOx films involves cyclic deposition of very thin poisoned and metallic tungsten oxide layers to build up a film with a desired general stoichiometry with x in the range of 3>x>2.75. The method may include: charging a deposition chamber with oxygen gas to poison a tungsten metal target; initiating sputtering of the target while reducing the oxygen partial pressure being supplied to the chamber and pumping the chamber; sputtering target for time t1+t2 to form first and second tungsten oxide layers, where the first layer is deposited during time t1 from a poisoned target and the second layer is deposited during time t2 from a metallic target, and where the stoichiometry of the film comprising the first and second layers is a function of t1 and t2; and, repeating until a desired film thickness is achieved.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: November 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Chong Jiang, Byung Sung Leo Kwak
  • Patent number: 8888965
    Abstract: The present application relates to a process for the manufacture of transparent, large band gap, high refractive index and high temperature stable, non-stoichiometric titanium nitride thin film (TiNx0.1<x?1.0) for optical and optoelectronic devices comprising the steps of preparing the said film by magnetron sputtering in a mixture of argon and nitrogen atmosphere, as a thin layer on a substrate selected from stainless steel, amorphous fused silica, magnesium oxide, lanthanum aluminate and sodium borosilicate glass, the deposition of the said layer of the substrate being carried out at temperature between ambient and 873 K, the deposition being controlled by varying the nitrogen pressure. The invention also provides films prepared by this process and substrates coated with such films.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: November 18, 2014
    Assignees: Anna University—Chennai, University of Hyderabad
    Inventors: Anantha Padmanabhan Kuppuswamy, Ghanashyam Krishna Mamidipudi, Sri Rama Narasimha Kiran Mangalampalli
  • Publication number: 20140334006
    Abstract: Embodiments of this disclosure pertain to articles that exhibit scratch-resistance and improved optical properties. In some examples, the article exhibits a color shift of about 2 or less, when viewed at an incident illumination angle in the range from about 0 degrees to about 60 degrees from normal under an illuminant. In one or more embodiments, the articles include a substrate, and an optical film disposed on the substrate. The optical film includes a scratch-resistant layer and a refractive index gradient. In one or more embodiments, the refractive index includes a refractive index that increases from a first surface at the interface between the substrate and the optical film to a second surface. The refractive index gradient may be formed from a compositional gradient and/or a porosity gradient.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 13, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Kaveh Adib, Shandon Dee Hart, Karl William Koch, III, Charles Andrew Paulson, Paul Arthur Sachenik
  • Publication number: 20140335335
    Abstract: One or more aspects of the disclosure pertain to an article including an optical film structure disposed on an inorganic oxide substrate, which may include a strengthened or non-strengthened substrate that may be amorphous or crystalline, such that the article exhibits scratch resistance and retains the same or improved optical properties as the inorganic oxide substrate, without the optical film structure disposed thereon. In one or more embodiments, the article exhibits an average transmittance of 85% or more, over the visible spectrum (e.g., 380 nm-780 nm). Embodiments of the optical film structure include aluminum-containing oxides, aluminum-containing oxy-nitrides, aluminum-containing nitrides (e.g., AlN) and combinations thereof. The optical film structures disclosed herein also include a transparent dielectric including oxides such as silicon oxide, germanium oxide, aluminum oxide and a combination thereof. Methods of forming such articles are also provided.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 13, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Karl William Koch, III, Charles Andrew Paulson
  • Publication number: 20140333876
    Abstract: The present invention relates to a CF substrate and an ITO film pattern structure and a manufacturing method thereof and a liquid crystal display. The present invention provides a CF substrate, including a glass substrate, a black matrix and a CF unit formed on the glass substrate, and an ITO film pattern structure covering the black matrix and the CF unit; the ITO film pattern structure is composed of a first portion corresponding in shape to an effective display zone and second portions corresponding in shape to transfer pads. The present invention also provides an ITO film pattern structure and a manufacturing method of a CF substrate and a liquid crystal display.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 13, 2014
    Applicant: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Kisun Kang, Chihsheng Ko, Wenchao He
  • Publication number: 20140321806
    Abstract: In a method, a substrate is provided and is implanted with argon ions to form an argon ion modified layer. Two slots are defined and extend through the argon ion modified layer to form a ridge. The substrate is etched to change the ridge into a beveled ridge. An etching rate of the argon ion modified layer is higher than that of the substrate. The beveled ridge is diffused with metal to form a beveled ridge waveguide.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: BING-HENG LEE
  • Publication number: 20140322502
    Abstract: There is provided an antireflection coating having a band ranging from visible light to infrared (wavelength range from 400 nm to 1600 nm). The antireflection coating includes twelve layers formed by depositing a high refractive index material and a low refractive index material having a refractive index lower than the high refractive index material alternately and depositing an ultra-low refractive index material having a refractive index lower than the low refractive index material as the outermost layer. The first, third, fifth, seventh, ninth, and eleventh layers are formed by depositing the high refractive index material, the second, fourth, sixth, eighth, and tenth layers are formed by depositing the low refractive index material, and the twelfth layer is formed by depositing the ultra-low refractive index material, where the layers are numbered in order from the substrate side.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 30, 2014
    Inventors: MASANORI KOYAMA, Kazuyuki Hosokawa
  • Publication number: 20140312336
    Abstract: An organic display panel having a high luminance, and including an organic light emitting element that includes a bottom electrode, a hole-injection layer, an organic light emitting layer, and a top electrode layered in the stated order on a substrate. The bottom electrode is composed of a material that is aluminium, silver, or an alloy including at least one of aluminium and silver. The hole-injection layer contains an oxide of a transition metal. The organic light emitting element further includes a mixed oxidized thin film interposed between and in contact with the bottom electrode and the hole-injection layer, the mixed oxidized thin film being composed of an oxidized mixture of the same material as the material in the bottom electrode and the same transition metal as the transition metal in the hole-injection layer.
    Type: Application
    Filed: November 7, 2012
    Publication date: October 23, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Yuuki Abe, Kenichi Nendai, Naoko Mizusaki
  • Patent number: 8864958
    Abstract: A method and sputter-deposition system for depositing a layer composed of a mixture of materials and having a predetermined refractive index are provided. The sputter-deposition system includes a plurality of target cathodes, each of which comprises a target material having a different composition, that are powered by a single DC power supply. The plurality of target cathodes are cosputtered to deposit a layer composed of a mixture of materials on a substrate. The composite refractive index of the layer is controlled by adjusting an operating parameter of the plurality of target cathodes. Suitable operating parameters include cathode power, cathode voltage, cathode current, an angle between a cathode support and the substrate, and a flow rate of a reactive gas.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: October 21, 2014
    Assignee: JDS Uniphase Corporation
    Inventors: Markus K. Tilsch, Joseph Smith, Marius Grigonis
  • Patent number: 8864955
    Abstract: The invention is related to a process to apply a heater function to a plastic glass that was made of a polycarbonate. The process includes a sputtering process that allows producing high performance heater function on a plastic glass. Another aspect of the invention is the plastic glass mirrors produced by the inventive process.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: October 21, 2014
    Assignee: SMR Patents S.a.r.l.
    Inventors: Gilles Benoit, Farid Manzeh, Christophe Laloup
  • Publication number: 20140272112
    Abstract: Embodiments provided herein describe methods and systems for evaluating electrochromic material processing conditions. A substrate having a plurality of site-isolated regions defined thereon is provided. A first electrochromic material, or a first electrochromic device stack, is formed above a first of the plurality of site-isolated regions using a first set of processing conditions. A second electrochromic material, or a second electrochromic device stack, is formed above a second of the plurality of site-isolated regions using a second set of processing conditions. The second set of processing conditions is different than the first set of processing conditions.
    Type: Application
    Filed: December 27, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Jeroen Van Duren, Minh Huu Le, Minh Anh Nguyen, Sandeep Nijhawan
  • Patent number: 8828194
    Abstract: A layer system that can be annealed comprises a transparent substrate, preferably a glass substrate, and a first layer sequence which is applied directly to the substrate or to one or more bottom layers that are deposited onto the substrate. The layer sequence includes a substrate-proximal blocking layer, a selective layer and a substrate-distal blocking layer. Also provided is a method for producing a layer system that can be annealed and has a sufficient quality even under critical climatic conditions and/or undefined conditions of the substrate. During the heat treatment (annealing, bending), the color location of the layer system is maintained substantially stable and the color location can be widely varied at a low emissivity of the layer system. For this purpose, a first dielectric intermediate layer is interposed between the substrate-proximal blocking layer and the selective layer and is configured as a substoichiometric gradient layer.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 9, 2014
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventors: Joerg Fiukowski, Matthias List, Hans-Christian Hecht, Falk Milde
  • Patent number: 8821697
    Abstract: Method and apparatus for sputter depositing silver selenide and controlling defect formation in and on a sputter deposited silver selenide film are provided. A method of forming deposited silver selenide comprising both alpha and beta phases is further provided. The methods include depositing silver selenide using sputter powers of less than about 200 W, using sputter power densities of less than about 1 W/cm2, using sputter pressures of less than about 40 mTorr and preferably less than about 10 mTorr, using sputter gasses with molecular weight greater than that of neon, using cooling apparatus having a coolant flow rate at least greater than 2.5 gallons per minute and a coolant temperature less than about 25° C., using a magnetron sputtering system having a magnetron placed a sufficient distance from a silver selenide sputter target so as to maintain a sputter target temperature of less than about 350° C. and preferably below about 250° C.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: September 2, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Allen McTeer
  • Patent number: 8801905
    Abstract: A thermochromic substrate and a method of manufacturing the same, in which the crystallinity of a thermochromic layer can be improved. The method includes the steps of forming a pre-thermochromic layer on a glass substrate by coating the glass substrate with pure vanadium, forming a seed layer by heat-treating the pre-thermochromic layer, and forming a thermochromic layer by coating the heat-treated seed layer with a vanadium dioxide (VO2) thin film.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Yongwon Choi, Yung-Jin Jung, Donggun Moon, Jeeyun Cha
  • Publication number: 20140197025
    Abstract: A method of sputter coating a glass substrate includes providing a glass substrate and providing a sputtering assembly for sputtering a coating onto the glass substrate in a vacuum deposition chamber. The sputtering assembly includes a backing plate and a separating element disposed on the backing plate. At least one target element is provided and disposed at and in contact with a surface of the separating element. The target element is not bonded the separating element when disposed at and in contact with the surface of the separating element. An expansion gap is provided at or adjacent to the target element to allow for expansion of the target element during the sputtering process. Material from the target element is sputtered and the target element is heated to a substantially elevated temperature during the sputtering process. The sputtering process coats a surface of the glass substrate with the target element material.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 17, 2014
    Applicant: Magna Mirrors of America, Inc.
    Inventors: Ian A. McCabe, Jeffrey D. Harlow
  • Patent number: 8778463
    Abstract: Disclosed herein is a method of manufacturing a color-controlled sapphire, comprising: vaporizing a metal material, irradiating the vaporized metal material with electron beams or high-frequency waves to form the vaporized metal material into a plasma state, and then implanting the metal ions into a sapphire by extracting the metal ions from the plasma and accelerating the metal ions (step 1); and heat-treating the sapphire implanted with the metal plasma ions in an oxygen atmosphere or in air (step 2). According to the method of manufacturing a sapphire of the present invention, a sapphire, which can exhibit various colors, can be manufactured by implanting the ions, which can cause optical band gap changes into the sapphire, and a sapphire, which cannot be damaged by radiation and can exhibit colors uniformly, can be manufactured by conducting heat treatment under an oxygen atmosphere.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: July 15, 2014
    Inventors: Jae-Won Park, Ju-Hyung Ahn, Young-chool Kim, Jang-Min Han, Junyeon Kim
  • Patent number: 8771530
    Abstract: A method for producing a polarizing element includes: forming particulate materials of a metal halide on a glass substrate; forming a protective film that covers the particulate materials in a non-plasma environment; stretching the particulate materials by heating and stretching the glass substrate; and forming acicular metal particles by reducing the metal halide constituting the stretched particulate materials.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 8, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Yoshitomo Kumai
  • Publication number: 20140183037
    Abstract: One embodiment of the present invention provides a sputtering system for large-scale fabrication of solar cells. The sputtering system includes a reaction chamber, a rotary target situated inside the reaction chamber which is capable of rotating about a longitudinal axis, and an RF power source coupled to at least one end of the rotary target to enable RF sputtering. The length of the rotary target is between 0.5 and 5 meters.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Inventors: Zhigang Xie, Wei Wang, Zheng Xu, Jianming Fu
  • Patent number: 8764950
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 1, 2014
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 8764951
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 1, 2014
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20140170420
    Abstract: The present invention relates to a production method for thermochromatic glass in which use is made of a low-temperature metal vapor deposition process, and to thermochromatic glass obtained thereby. More specifically, the invention relates to: a production method for thermochromatic glass in which a low-temperature metal-vapor-deposition process is used in order to effect the vapor deposition of a metal for forming a thermochromatic metal oxide and then subsequently a heat treatment is carried out, such that the processing efficiency is high and the reliability of the thermochromatic characteristics of the glass produced by the method is outstanding; and to thermochromatic glass obtained by means of the method.
    Type: Application
    Filed: August 8, 2012
    Publication date: June 19, 2014
    Applicant: LG Hausys, Ltd.
    Inventor: Youn Ki Jun
  • Publication number: 20140166472
    Abstract: A method for making low emissivity panels, comprising cooling the article before or during sputter depositing a coating layer, such as a seed layer or an infrared reflective layer. The cooling process can improve the quality of the infrared reflective layer, which can lead to better transmittance in visible regime, block more heat transfer from the low emissivity panels, and potentially can reduce the requirements for other layers, so that the overall performance, such as durability, could be improved.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang
  • Publication number: 20140166932
    Abstract: A titanium doped ternary system silicate film is provided, wherein the titanium doped ternary system silicate film has the general formula, of Ca2-xMgSi2O7:xTi4+, where x has a value of 0.00017˜0.0256. The preparation method of the titanium doped tenuity system silicate film and the application of the titanium doped ternary system ,silicate film obtained by the method in field emission de ices cathode my tubes and/or electroluminescent devices are also provided.
    Type: Application
    Filed: June 27, 2011
    Publication date: June 19, 2014
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.,
    Inventors: Mingjie Zhou, Ping Wang, Jixing Chen, Tietao Zhong
  • Patent number: 8753548
    Abstract: A composite oxide sintered body includes In, Zn, and Sn, and has a relative density of 90% or more, an average crystal grain size of 10 ?m or less, and a bulk resistance of 30 m?cm or less, the number of tin oxide aggregate particles having a diameter of 10 ?m or more being 2.5 or less per mm2 of the composite oxide sintered body.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: June 17, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Hirokazu Kawashima
  • Publication number: 20140145114
    Abstract: Cerium doped magnesium barium tungstate luminescent thin film, manufacturing method and application thereof are provided, said method for manufacturing cerium doped magnesium barium tungstate luminescent thin film comprises the following steps: mixing MgO, BaO, WO3 and Ce2O3, sintering for forming sputtering target, forming the precursor of cerium doped magnesium barium tungstate luminescent thin film by magnetron sputtering, annealing the precursor of cerium doped magnesium barium tungstate luminescent thin film, and then forming cerium doped magnesium barium tungstate luminescent thin film. Said cerium doped magnesium barium tungstate luminescent thin film exhibits high luminescence efficiency and high light emitting peaks in red and blue regions. Said method presents the advantages of simplified operation, less cost, and suitable for industrial preparation.
    Type: Application
    Filed: June 28, 2011
    Publication date: May 29, 2014
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO.,LTD
    Inventors: Mingjie Zhou, Ping Wang, Jixing Chen, Hui Huang
  • Publication number: 20140140659
    Abstract: Methods of depositing materials to provide for efficient coupling of light from a first device to a second device are disclosed. In general, these methods include mounting one or more wafers on a rotating table that is continuously rotated under one or more source targets. A process gas can be provided and one or more of the source targets powered while the wafers are biased to deposit optical dielectric films on the one or more wafers. In some embodiments, a shadow mask can be laterally translated across the one or more wafers during deposition. In some embodiments, deposited films can have lateral and/or horizontal variation in index of refraction and/or lateral variation in thickness.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 22, 2014
    Applicant: Demaray LLC
    Inventor: R. Ernest Demaray
  • Patent number: 8728285
    Abstract: A method of deposition of a transparent conductive film from a metallic target is presented. A method of forming a transparent conductive oxide film according to embodiments of the present invention include depositing the transparent conductive oxide film in a pulsed DC reactive ion process with substrate bias, and controlling at least one process parameter to affect at least one characteristic of the conductive oxide film. The resulting transparent oxide film, which in some embodiments can be an indium-tin oxide film, can exhibit a wide range of material properties depending on variations in process parameters. For example, varying the process parameters can result in a film with a wide range of resistive properties and surface smoothness of the film.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: May 20, 2014
    Assignee: Demaray, LLC
    Inventors: Richard E. Demaray, Mukundan Narasimhan
  • Publication number: 20140130794
    Abstract: A thin-film spectrally selective coating for receiver tube of vacuumed type for use in thermodynamic solar installations and operating both at medium temperature (up to 400° C.) and at high temperature (up to 550° C.), coating where the optically absorbing layer is a multilayer of cermet material of type: WyN—AlNx or MoyN—AlNx, material prepared with reactive co-sputtering technique from an Al target and a W or Mo target, process conducted under a transition regimen, under PFM (Plasma Emission Monitoring) or CVM (Cathode Voltage Monitoring) monitoring for the sole Al target, with inletting near the Al target of a N2 amount adequate for obtainment of a high-transparency, high growth rate sub-stoichiometric ceramic AlN and with inletting near the W or Mo target of a N2 amount adequate for obtainment of the sole W2N or Mo2N phase, phase very stable at high temperature, such as to make the cermet material as close as possible to the formulation W2N—AlNx or Mo2N—AlNx (with x comprised between 0.90 and 1.
    Type: Application
    Filed: June 14, 2012
    Publication date: May 15, 2014
    Applicant: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE(ENEA
    Inventors: Alessandro Antonaia, Salvatore Esposito, Maria Luisa Addonizio, Antonio Guglielmo
  • Publication number: 20140127468
    Abstract: An optical information recording medium includes a recording film, which contains germanium, bismuth, and at least 50 at % tellurium, and has a first recording film component formed in the planar direction and having a bismuth content of at least 15 at %, a second recording film component formed in the planar direction on the side to be irradiated with a light beam and having a bismuth content that is at least 10 at % lower than that of the first recording film component, and an intermediate recording film component provided between the first and second recording film component to moderate the change in the bismuth content in the film thickness direction between the first and second recording film component, and having a bismuth content greater than the bismuth content of the second recording film component and less than the bismuth content of the first recording film component.
    Type: Application
    Filed: August 10, 2012
    Publication date: May 8, 2014
    Applicant: PANASONIC CORPORATION
    Inventor: Hideki Kitaura
  • Publication number: 20140120341
    Abstract: A process for manufacturing glazing including a substrate provided with a coating including a layer consisting of a porous material, includes depositing on the substrate, via a physical vapor deposition (PVD) process in a vacuum chamber, a coating including a layer of a material including an element selected from Si, Ti, Sn, Al, Zr, In or a mixture of at least two of these elements, oxygen and carbon, the layer in addition optionally including hydrogen, heat treatment of the layer thus deposited, under conditions that enable at least one portion of the carbon to be removed and the layer of porous material to be obtained, wherein the deposition is carried out, on the substrate passing through the chamber, by the sputtering of a carbon target, under a reactive plasma atmosphere including a precursor of the element or elements.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 1, 2014
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Andriy Kharchenko, Jean-Paul Rousseau, Antje Jung, Christian Bernhard Petersen
  • Publication number: 20140104690
    Abstract: This transparent layered element (1) has two smooth outer main surfaces (2A, 4A) and comprises: two outer layers (2, 4), which each form one of the two outer main surfaces (2A, 4A) of the element (1) and which are constituted of dielectric materials having substantially the same refractive index (n2, n4), and a central layer (3) inserted between the two outer layers, this central layer (3) being formed either by a single layer which is a dielectric layer having a refractive index different from that of the outer layers or a metal layer, or by a stack of layers which comprises at least one dielectric layer having a refractive index different from that of the outer layers or a metal layer. Each contact surface (S0, S1) between two adjacent layers of the element (1), which are one a dielectric layer and the other a metal layer, or which are two dielectric layers having different refractive indices, is textured and parallel to the other textured contact surfaces.
    Type: Application
    Filed: January 31, 2012
    Publication date: April 17, 2014
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventor: Etienne Sandre-Chardonnal
  • Publication number: 20140102880
    Abstract: The invention relates to sputter targets and methods for depositing a layer from a sputter target. The method preferably includes the steps of: placing a sputter target in a vacuum chamber; placing a substrate having a substrate surface in the vacuum chamber; reducing the pressure in the vacuum chamber to about 100 Torr or less; removing atoms from the surface of the sputter target while the sputter target is in the vacuum chamber (e.g., using a magnetic field and/or an electric field). The deposited layer preferably is a molybdenum containing alloy including about 50 atomic percent or more molybdenum, 0.5 to 45 atomic percent of a second metal element selected from the group consisting of niobium and vanadium; and 0.5 to 45 atomic percent of a third metal element selected from the group consisting of tantalum, chromium, vanadium, niobium, and titanium.
    Type: Application
    Filed: April 4, 2013
    Publication date: April 17, 2014
    Applicant: H.C. STARCK, INC.
    Inventor: H.C. STARCK, INC.
  • Publication number: 20140093711
    Abstract: A scratch-resistant glass substrate is prepared by forming a hard, scratch-resistant layer over a major surface of the substrate. The layer is formed from an inorganic material such as a metal oxide, metal nitride, metal carbide, or metal boride using, for example, physical vapor deposition such as reactive or non-reactive sputtering at a process temperature of less than 500° C. The inorganic layer is resistant to micro-ductile scratching, which can safeguard the visible appearance of the glass substrate in use. The glass substrate can include chemically-strengthened glass.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 3, 2014
    Applicant: Corning Incorporated
    Inventor: Charles Andrew Paulson
  • Patent number: 8679302
    Abstract: Certain example embodiments relate to a layer of or including Ti1-xSixOy and/or a method of making the same. In certain example embodiments, the Ti1-xSixOy-based layer may be substoichiometric with respect to oxygen. In certain example embodiments of this invention, the layer may include Ti1-xSixOy where x is from about 0.05 to 0.95 (more preferably from about 0.1 to 0.9, and even more preferably from about 0.2 to 0.8, and possibly from about 0.5 to 0.8) and y is from about 0.2 to 2 (more preferably from about 1 to 2, and even more preferably from about 1.5 to 2, and possibly from about 1.9 to 2). The layer may have an index of refraction of from about 1.6 to 1.9. The layer may also be used with a transparent conductive oxide in a transparent conductive coating.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 25, 2014
    Assignee: Guardian Industries Corp.
    Inventor: Yiwei Lu
  • Patent number: 8673122
    Abstract: A system and method for sputtering a coating onto a glass substrate in a vacuum deposition chamber includes providing a backing plate with a separating element disposed at the backing plate. At least one target element or tile is disposed on a surface of the separating element, wherein an expansion gap is provided to allow for expansion of the target relative to the separating element during the sputtering process. The method includes sputtering material from the target and heating the target to a substantially elevated temperature during the sputtering process. The separating element may be a sheet having a low-coefficient of friction surface, and the target may be disposed on the low-coefficient of friction surface of the separating element. The separating element may thermally insulate the target from the backing plate, whereby the target may be heated to a substantially greater temperature than the backing plate during the sputtering process.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: March 18, 2014
    Assignee: Magna Mirrors of America, Inc.
    Inventors: Ian A. McCabe, Jeffrey D. Harlow
  • Publication number: 20140072106
    Abstract: A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90° as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.
    Type: Application
    Filed: December 13, 2010
    Publication date: March 13, 2014
    Applicant: BROOKHAVEN SCIENCE ASSOCIATES
    Inventors: Raymond P. Conley, Chian Qian Liu, Albert T. Macrander, Hanfei Yan, Jorg Maser, Hyon Chol Kang, Gregory Brian Stephenson
  • Patent number: 8663433
    Abstract: A coated article is provided with at least one infrared (IR) reflecting layer. In certain embodiments, the coating is provided with at least one layer of zirconium silicon oxynitride (e.g., ZrSiOxNy), for improving the coated article's ability to block of UV radiation. The oxygen content of the layer may be adjusted in order to tune the coating's visible transmission versus UV blockage.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: March 4, 2014
    Assignees: Guardian Industries Corp., Centre Luxembourg de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Ratchaneekorn Chonlamaitri, Anton Dietrich, Bernd Disteldorf
  • Patent number: 8652306
    Abstract: To provide a method for manufacturing a mask blank capable of manufacturing a high quality mask blank that suppresses generation of defects in a thin film for forming a mask pattern with high yields, a method for manufacturing a transfer mask that manufactures the thin film of the mask blank by patterning, and a sputtering target used for manufacturing the mask blank. By using the sputtering target containing silicon and having a hardness of 900 HV or more in Vickers' hardness, the thin film for forming the mask pattern on a substrate is formed by sputtering, and the high quality mask blank that suppresses generating of defects is manufactured, and further the transfer mask is manufactured by patterning the thin film.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: February 18, 2014
    Assignee: Hoya Corporation
    Inventor: Masaru Mitsui
  • Publication number: 20140002884
    Abstract: An all-solid electrochromic device with controlled infrared reflection or emission, in particular of electro-controllable type, comprising a stack successively comprising from a back face (3) as far as a front face (1) exposed to infrared radiation (2): a substrate (4) made of an electron-conducting material, or a substrate made of a non-electron-conducting material coated with a layer made of an electron-conducting material, forming a first electrode; a layer made of a first proton storage electrochromic material (5); a layer of a proton-conducting and electron-insulating electrolyte (6); a bilayer comprising a layer of a non-electrochromic, sub-stoichiometric tungsten oxide WO3-y forming a second electrode; said tungsten oxide WO3-y layer being arranged underneath a layer with variable infrared reflection of a second electrochromic material with variable proton intercalation rate, chosen from among crystallized tungsten oxide HxWO3-c and hydrated crystallized tungsten oxide HxWO3.
    Type: Application
    Filed: December 14, 2011
    Publication date: January 2, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Corinne Marcel, Frédéric Sabary, Daniel Marteau, Julien Demeaux
  • Publication number: 20130341513
    Abstract: Transparent optical ceramic coating materials have been fabricated from europium-doped lutetium oxide (Lu2O3:Eu) using physical vapor deposition and chemical vapor deposition techniques. The non-pixilated film coatings have columnar microcrystalline structure and excellent properties for use as radiological scintillators, namely very high density, high effective atomic number, and light output and emission wavelength suitable for use with silicon-based detectors having a very high quantum efficiency. The materials can be used in a multitude of high speed and high resolution imaging applications, including x-ray imaging in medicine.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicant: Trustees of Boston University
    Inventors: Vinod K. Sarin, Stephen Gibson Topping