With Means For Measuring, Testing, Or Sensing Current, Voltage, Or Power Patents (Class 204/229.8)
  • Publication number: 20020070117
    Abstract: The present invention discloses a power supply device, particularly for supplying a controlled electrical signal in an electrochemical process, e.g., plating, etching, etc. The power delivery device provides an electrical signal with optimal characteristics and setting for processing one or more surfaces in an electrochemical process. The power delivery device comprises a power stage having an input for receiving a power signal and an output being operably connected to the object. A sensor is operably connected to the output. A controller is operably connected to the output and responsive to the sensor. A modulator is operably connected between the controller and the power stage wherein the power stage outputs the electrical signal to the object in response to the modulator and the controller.
    Type: Application
    Filed: October 18, 2001
    Publication date: June 13, 2002
    Inventors: Enrique Gutierrez, Bonifacio Diaz
  • Patent number: 6368491
    Abstract: The invention relates generally to ceramic oxygen generating modules, and more particularly, to an apparatus and method for controlling a duty cycle for each of a plurality of ceramic oxygen generating modules in a modular ceramic oxygen generating system.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: April 9, 2002
    Assignee: Northrop Grumman Corporation
    Inventors: Tuan Q. Cao, Russell F. Hart
  • Publication number: 20020014413
    Abstract: A system for screening and measuring the effectiveness of catalysts, comprising an electrolytic cell having a counter electrode comprising a plurality of segmented anodes, each of the anodes electrically isolated from each other, and a catalyst support adapted for holding an associated plurality of cathodes, where each cathode is operatively arranged to function as a working electrode when a discrete catalyst is deposited thereon, wherein the catalyst support positioned between the counter electrode and the working electrodes, and, means for measuring current in each of the plurality of segmented anodes, where the current is an indication of effectiveness of each discrete catalyst.
    Type: Application
    Filed: August 1, 2001
    Publication date: February 7, 2002
    Inventors: Peter G. Symons, J. David Genders
  • Patent number: 6337002
    Abstract: In the present invention, by making an alkaline ionic water conditioner in which an electrolysis current detection device has a plurality of output means different in conversion level, and conversion levels are switched in accordance with the level of a current flowing in an electrolyte, and which has an optimum pH control function by performing duty control, in case of electrifying certain raw water, or in case of adding brine for strongly accelerating generation, when a current flowing between electrode plates is high, the conversion level of the electrolysis current detection device is lowered to generate electrolyte water of pH 10 or more. When the current is low, an electrolysis current detection range with a high resolution can be obtained by raising the conversion level, proper pH control can be performed in accordance with change in electrolysis current in the quality of raw water and adding brine.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: January 8, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Masahiko Kashimoto
  • Publication number: 20010042687
    Abstract: A method of manufacturing a positive electrode foil of an aluminum electrolytic capacitor is provided in which anodizing conditions are optimally determined and automatically set to minimize the loss of production and to produce a constant quality of the positive electrode foil. The method comprises an etching process and an anodizing process. An etched foil produced in the etching process is subjected to a constant current inspection, and then, the anodizing conditions are determined from the result of the constant current inspection. The anodizing conditions are transferred to a control panel in the anodizing process where they are automatically registered as its settings. Also, an apparatus for manufacturing the positive electrode foil is provided which has a voltage sensor connected between an output running roller and cathode electrodes in an anodizing tank. A voltage measured by the voltage sensor is fed back to a direct-current source for controlling its output voltage.
    Type: Application
    Filed: April 3, 2001
    Publication date: November 22, 2001
    Inventors: Mitsuhisa Yoshimura, Kazuaki Nakanishi, Kenji Yoshida, Seita Takahashi, Hiroyuki Nakano, Naomi Kurihara, Katsuyuki Nakamura, Masanori Okabayashi, Takahiro Suzuki
  • Patent number: 6312584
    Abstract: An apparatus for electrochemically machining of a workpiece by means of an electrode has an actuator for setting a gap between the electrode and the workpiece. The apparatus further has a channel for flushing the gap with an electrolyte and a container for containing the electrolyte. Power cords and are provided for feeding an electric current I supplied by a power supply through the electrolyte in the gap. Near the gap an antenna is provided to pick up electromagnetic waves radiated from the gap. The antenna is connected to a band-pass filter which passes signals in a frequency band of 40 to 100 MHz to a level detector. The level detector compares the amplitude of the filtered signal with a threshold value and supplies a stop signal to the control unit when the amplitude exceeds the threshold value. The control unit is programmed to open a switch in the power supply in response to the stop signal.
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: November 6, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Hermanus S. J. Altena, Anjali K. De Silva
  • Patent number: 6300141
    Abstract: A diagnostic card device for use in detecting or quantitating an analyte present in a liquid sample, comprising a card substrate having a sample introduction region, a biosensor, and a sample-flow pathway communicating between the sample-introduction region and the biosensor, circuitry for generating an analyte-dependent electrical signal from the biosensor; and a signal-responsive element for recording such signal. In one embodiment, the biosensor includes a detection surface with surface-bound molecules of a first charged, coil-forming peptide capable of interacting with a second, oppositely charged coil-forming peptide to form a stable &agr;-helical coiled-coil heterodimer, where the binding of the second peptide to the first peptide, to form such heterodimer, is effective to measurably alter a signal generated by the biosensor. The sample-flow pathway contains diffusibly bound conjugate of the second coil-forming peptide and the analyte (or an analyte analog) and immobilized analyte-binding agent.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: October 9, 2001
    Assignee: Helix BioPharma Corporation
    Inventors: Donald Segal, Heman Chao, Wah Y. Wong, Jerry McElroy
  • Patent number: 6231748
    Abstract: A method of electrochemically machining an electrically conductive workpiece in an electrolyte by applying electrical pulses between the workpiece and an electrically conductive electrode, one or more machining pulses alternating with passivation voltage pulses for depositing passivation layers on the workpiece. The amplitude of the passivation voltage pulses is adjusted during an adjustment procedure in which the amplitude of the passivation voltage pulses is increased gradually from zero to the voltage at which the workpiece starts to dissolve in the electrolyte. After each voltage increase the resistance of the gap between the electrode and the workpiece is measured. The voltage value for the highest gap resistance is stored in a memory and used during further machining. The time span of the passivation voltage pulses may be divided into time slices and for each time slice the voltage is adjusted for maximum gap resistance during that time slice.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: May 15, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Igor L. Agafonov, Rinat A. Alimbekov, Aleksandr L. Belogorskij, Nasich Z. Gimaev, Aleksandr N. Zajcev, Viktor N. Kucenko, Rafail R. Muchutdinov
  • Patent number: 6207037
    Abstract: Recovery of silver from a photographic fixer solution in an electrolytic cell is controlled so as to maintain a high current efficiency whilst minimizing unwanted side effects. The difference between plating voltages when operating at two different current levels is monitored, and the plating current adjusted in response to detection of a maximum of said differences. Such control allows the cell to be operated continually at high current efficiency in response to changing chemical conditions within the cell.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: March 27, 2001
    Assignee: Eastman Kodak Company
    Inventors: Nicholas J. Dartnell, Christopher B. Rider
  • Patent number: 6187167
    Abstract: Recovery of silver from a photographic fixer solution in an electrolytic cell is controlled so as to maintain a high current efficiency whilst minimizing unwanted side effects. The rate of change of plating voltage at constant current through the cell is monitored, and in response to detection of a maximum value thereof the current is reduced to a new constant level. Such control allows the cell to be operated continually at high current efficiency in response to changing chemical conditions within the cell.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: February 13, 2001
    Assignee: Eastman Kodak Company
    Inventors: Nicholas J. Dartnell, Christopher B. Rider, Bruce S. Gowans
  • Patent number: 6187153
    Abstract: A method and circuit (14) for monitoring an electroplating operation of an electroplating machine (10) of the type having a first electroplating cell (18) for depositing nickel onto an integrated circuit leadframe (12) and a second electroplating cell (19) for subsequently depositing palladium onto the leadframe (12). A first current (30) is applied in the first electroplating cell (18) to form a nickel deposit on the leadframe (12) and a second current (31) is applied in the second electroplating cell (19) to from a palladium deposit on the nickel deposit. The second current (31) is greater than the first current (30) if the electroplating machine (10) is operating normally. The first current (30) and second current (31) are compared in a comparator (44) during the electroplating operation, and if the second current (31) is less than the first current (30), an error signal is generated on an output line (50). If desired, the electroplating machine (10) may be stopped in response to the error signal.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: February 13, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: David M. Drew, Paul R. Moehle
  • Patent number: 6179986
    Abstract: Disclosed is a novel proton-exchange membrane (PEM) based solid polymer electrolyte electrochemical oxygen control (EOC) system that can deplete and control the oxygen from a closed container to levels sufficient for both disinfestation and preservation. With the use of this electrochemical process, many insects that infest raw agricultural products and other produce can be exterminated, without detriment to the quality of the produce and without deposition of harmful residue, by reducing the ambient oxygen to a controlled low level for several days. The electrochemical process features the use of a bipolar stack comprised of a selected number of PEM cells connected electrically in series and separated by an electrically conductive bipolar plate. Each cell contains a membrane and electrode assembly, consisting of an anode structure and cathode structure in intimate contact with a PEM.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: January 30, 2001
    Assignee: Giner Electrochemical Systems LLC
    Inventors: Larry L. Swette, Anthony B. LaConti
  • Patent number: 6176997
    Abstract: Copper is extracted from a heap of low-grade ore by transforming the heap into an electrolytic cell, and imposing a voltage thereon. Anodic conditions of redox and pH cause the sulphide to break down, and the copper to pass into solution. The copper can be recovered elsewhere if the electrolyte is drawn off, or in-situ if allowed to plate onto the cathode. Electrodes are formed as grids of conductors, or as layers of e.g. graphite.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: January 23, 2001
    Assignee: Enpar Technologies Inc.
    Inventors: Gene Sidney Shelp, Ward Chesworth
  • Patent number: 6168692
    Abstract: An apparatus for generating alkali ion water includes an electrolytic cell. At least two electrodes are disposed in the electrolytic cell. A diaphragm disposed in the electrolytic cell extends between the electrodes. A dc voltage is supplied to the electrodes. A mean value of the dc voltage is varied at a given inclination. A first detecting device operates to detect an ac current and generate a signal representative thereof. The dc voltage is derived from the ac current. A second detecting device operates to detect the mean value of the dc voltage in response to the signal generated by the first detecting device. A third detecting device operates to detect an inclination in a variation in the mean value of the dc voltage in response to the mean value of the dc voltage which is detected by the second detecting device. The mean value of the dc voltage is controlled in response to the inclination detected by the third detecting device.
    Type: Grant
    Filed: June 1, 1994
    Date of Patent: January 2, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshisuke Sakai, Narumi Nagase