Gas Feeding Patents (Class 204/265)
  • Publication number: 20030211375
    Abstract: An electrochemical system adapted to facilitate the direct injection of a variety of carbonaceous fuels or to perform steam electrolysis. The electrochemical system comprises either of three operating modes: a single stage fuel cell embodiment, a two stage fuel cell embodiment, and an electrolyzer embodiment. The system further includes a feed tube having appropriate seals introducing carbonaceous fuel or water directly into a fuel mixing chamber inside the electrochemical cell stack. One or more exit conduits allow the gas mixture to exit from the fuel mixing chamber.
    Type: Application
    Filed: May 8, 2002
    Publication date: November 13, 2003
    Applicant: Technology Management, Inc.
    Inventor: Robert C. Ruhl
  • Patent number: 6638400
    Abstract: An electrochemical cell for separating oxygen from the ambient air can be manufactured in a simple manner and inexpensively and both the electrodes and the electrolyte can be manufactured as thin layers. The electrochemical cell has a metallic housing plate (7), a gas-permeable carrier plate (11) located on the housing plate (7), a system of layers on the carrier plate (11), including a first electrode (13), an electrolyte (15) and a second electrode (17) exposed to the ambient air, wherein the oxygen generated is drawn off via a discharge opening at the housing plate (7).
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: October 28, 2003
    Assignee: Drägerwerk Aktiengesellschaft
    Inventor: Michael Riecke
  • Publication number: 20030173211
    Abstract: The invention describes an electrochemical half-cell, in particular for the electrolysis of aqueous solutions of hydrogen chloride, at least comprising a gas space, the gas space having a gas feed and a gas discharge as well as a liquid outlet, and a gas diffusion electrode which rests on an electrically conductive current distributor and makes an electrically conductive contact with the current distributor, the current distributor having a free area in the range from 5 to 65%, preferably from 10 to 60%, particularly preferably from 15 to 50%, based on the total area of the current distributor, and a thickness of from 0.3 mm to 5 mm, preferably from 0.35 to 0.6 mm.
    Type: Application
    Filed: January 30, 2003
    Publication date: September 18, 2003
    Inventors: Fritz Gestermann, Andreas Bulan, Richard Malchow, Hans-Dieter Pinter
  • Publication number: 20030155254
    Abstract: Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described for transporting oxygen from any oxygen-containing gas to any gas or mixture of gases that consume oxygen. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces. The element may further comprise (1) a porous substrate, (2) an electron-conductive metal, metal oxide or mixture thereof and/or (3) a catalyst.
    Type: Application
    Filed: December 6, 2001
    Publication date: August 21, 2003
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Wayne R. Kliewer
  • Patent number: 6596136
    Abstract: The invention relates to an electrochemical half cell (1) which consists of at least one membrane (4), an electrode (3) as anode or cathode which optionally produces gas, optionally an outlet (8; 16) for the gas and a support structure (12) linking the electrode which optionally produces gas with the back wall (15) of the half cell. The support structure (12) divides the interior (13) of the half cell (1) into vertically arranged channels (5, 9). The electrolyte (14) flows upwards in the electrode channels (9) facing the electrode (3) and flows downwards in the channels (5) facing away from the electrode (3). The electrode channels (9) and the channels (5) facing away from the electrode (3) are interlinked at their upper and lower ends.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: July 22, 2003
    Assignees: Uhdenora Technologies S.r.l., Bayer Aktiengesellschaft
    Inventors: Fritz Gestermann, Peter Fabian
  • Patent number: 6589403
    Abstract: There is provided an electrolysis gas converter, which prevents excessive gas generation and can maintain a constant amount of gas conversion even if outside air conditions such as humidity changes. The converter, which provides DC current to a jointed electrochemical device 8 comprising a solid polymer electrolytic film 3 between an anode 1 and a cathode 2 having a catalytic layer on a base substrate of conductive porous material, comprises means 11 and 17 which provide a fixed current to the jointed electrochemical device 8.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: July 8, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Akira Ikeda, Akihiko Iwata, Shigeo Ueguri, Yoshikazu Tsunoda
  • Patent number: 6576096
    Abstract: The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: June 10, 2003
    Assignee: Lynntech International, Ltd.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Publication number: 20030075448
    Abstract: The invention relates to an electrochemical gas generator including a substrate for providing a surface for electrode deposition, a first electrode deposited on the surface for providing an electrical connection with a conducting medium, a second electrode deposited on the substrate for generating a gas, and a plurality of members extending from at least one side of the first electrode placed alternately with a plurality of extensions protruding from at least one side of the second electrode for improving generator efficiency.
    Type: Application
    Filed: October 22, 2001
    Publication date: April 24, 2003
    Inventors: Avinash Dalmia, Otto J. Prohaska
  • Patent number: 6547947
    Abstract: A method and apparatus for water treatment. The method comprises supplying an oxygen-containing gas to cathode 6 to yield hydrogen peroxide, supplying an inorganic acid to anode 5 through an acid solution addition opening 4 to yield an oxidation product, e.g., hypochlorous acid, and using both the hydrogen peroxide and oxidation product thus generated to treat a liquid to be treated. The atmosphere around the cathode surface is kept neutral to acidic due to the acidity of the coexisting oxidation product to thereby inhibit the deposition of metal hydroxides.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: April 15, 2003
    Assignee: Permelec Electrode Ltd.
    Inventors: Masaharu Uno, Shuhei Wakita, Shuji Nakamatsu, Yoshinori Nishiki
  • Patent number: 6544400
    Abstract: A hydrogen source system delivers a controlled fuel stream to applications, using wicking to control the contact between a mixture of NaBH4, NaOH and H2O and a hydrolyzing catalyst to create a feedback mechanism to automatically maintain a constant pressure production supply of hydrogen. A small compact device packaged for storage, the system operates in any orientation and is mobile. The system is a small portable packaged hydrogen generator for small fuel cells to power applications that are currently powered by batteries. These packaged devices have higher energy per unit mass, higher energy per unit volume, are more convenient for energy users, environmentally less harmful, and less expensive than conventional power sources.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: April 8, 2003
    Assignee: Manhattan Scientifics, Inc.
    Inventors: Robert G. Hockaday, Patrick S. Turner, Marc D. DeJohn, Carlos J. Navas, Heathcliff L. Vaz, L. Luke Vazul
  • Patent number: 6527921
    Abstract: An electrochemical cell stack comprising stack walls and a plurality of electrolytic cells within the stack walls, each cell comprising cell members selected from an anode a cathode; a membrane separator frame formed of a non-conductive material and having a frame first planar peripheral surface; a frame second planar peripheral surface; and a central portion defining a membrane-receiving aperture; a membrane within the aperture to provide an anolyte circulation chamber and a catholyte circulation chamber distinct one from the other within the frame, an impermeable cell end wall formed of a non-conductive material between the anode and cathode and the anodes and cathodes of adjacent cells of said stack; wherein each of said anode, said cathode, said separator frame and said end wall has a portion defining an anolyte flow inlet channel, a catholyte flow inlet channel, a spent anolyte channel and a spent catholyte channel; said anolyte flow inlet channel and said spent anolyte channel are in communication with
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: March 4, 2003
    Inventors: Donald W Kirk, John W Graydon, Steven J Thorpe
  • Publication number: 20020110726
    Abstract: The invention relates to a gas diffusion electrode (1) comprising a hydrophobic gas diffusion layer (3b), a reaction layer (3a), and a hydrophilic layer (5) arranged in the mentioned order wherein the reaction layer (3a) is arranged to a barrier layer (4), which barrier layer (4), on its opposite side, is arranged to the hydrophilic layer (5). The invention also relates to a method for manufacturing such a gas diffusion electrode (1), and to an electrolytic cell, and use thereof.
    Type: Application
    Filed: November 9, 2001
    Publication date: August 15, 2002
    Inventors: Bernd Busse, Lars-Erik Bergman
  • Patent number: 6432284
    Abstract: A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: August 13, 2002
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Thomas I. Valdez
  • Patent number: 6398928
    Abstract: Service water is filtered by an active carbon pre-filter. The pre-filtered water is forced into a reverse osmosis membrane by a pump to produce pure water, and the pure water is processed to remove specific substances that consume ozone. Then, an ion-exchange resin treats a part of the low-ozone-consuming water and removes electrolytes from it to produce proper ultrapure water, which is supplied through a gas-liquid separating vessel to an electrolysis cell to produce ozone-containing gas. Another portion of the liquid in a lower space in the vessel is sent through a line to a separate temperature-controlled container. The returned liquid is mixed with the gas from the electrolysis cell by using an aspirator and ejector. Part of the high-concentration ozone water can be supplied through the temperature controlled container, a solenoid valve and a needle valve to an ozone water discharge device.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: June 4, 2002
    Assignee: Take-One Office, Ltd.
    Inventors: Akihisa Koganezawa, Norikazu Takada
  • Publication number: 20020060148
    Abstract: A method of manufacturing a thin film electrochemical apparatus is disclosed. A near net shape ceramic element is molded including a planar base region and a plurality of tubular regions. The planar base region is infiltrated with a non-conductive material. Each of the tubular regions is infiltrated with a porous conductive material. A porous catalytic electrode material is applied onto the infiltrated regions to form one of a cathodic and anodic surface. A ceramic electrolyte coating is deposited onto the porous catalytic electrode material. A porous catalytic electrode material is applied onto the deposited ceramic electrolyte coating. A porous conductive material is deposited onto the porous catalytic electrode to form the other of the cathodic and anodic surface.
    Type: Application
    Filed: December 4, 2001
    Publication date: May 23, 2002
    Applicant: Litton Systems, Inc.
    Inventors: Scott R. Sehlin, Vincent L. Sprenkle
  • Patent number: 6383349
    Abstract: An electrolytic cell using an oxygen cathode, for use in an ion-exchange membrane electrolytic soda process or the like, the electrolytic cell having; a structure, wherein, for effective supply and discharge of a caustic liquid and for an effective handling of a caustic liquid leakage, provided on an outer-side edge of the electrolytic cell are an upper chamber as a caustic liquid discharge outlet, a lower chamber as a caustic liquid introduction inlet, and a caustic-liquid room frame connected via a caustic liquid passage to thereby reduce a caustic liquid leakage; a structure, wherein a lower gas chamber is provided at the lower outer end of a cathode element to thereby handle a caustic liquid leakage from a gas diffusion electrode to a gas room; or a structure which uses a gas-liquid permeating gas diffusion electrode to supply an oxygen gas from an upper chamber communicating with a gas room and discharge a gas and a caustic liquid into a lower chamber.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: May 7, 2002
    Assignees: Toagosei Co., Ltd., Mitsui Chemicals, Inc., Kaneka Corporation, Chlorine Engineers Corp., Ltd.
    Inventors: Akihiro Sakata, Koji Saiki, Hiroaki Aikawa, Shinji Katayama, Kenzo Yamaguchi
  • Patent number: 6375827
    Abstract: An electrochemical treating apparatus comprising an electrolytic cell comprising an anode and a cathode spaced apart from the anode, the anode including an electrode material made of diamond and the cathode including an electrode material made of diamond. Also disclosed is an electrochemical treating method for electrochemically decomposing a substance contained in a gas or solution, which comprises introducing a gas or solution containing a substance to be treated into the electrolytic cell, passing an electric current through the electrolytic cell, and recovering a treated gas or solution. In a preferred embodiment, the electrolytic cell comprises an anode including an electrode material made of diamond, a cathode including an electrode material made of diamond and an ion exchange resin or an ion exchange membrane as an electrolyte disposed between the anode and the cathode.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: April 23, 2002
    Assignee: Permelec Electrode Ltd.
    Inventors: Tateki Kurosu, Shuhei Wakita, Miwako Nara, Shuji Nakamatsu, Yoshinori Nishiki
  • Patent number: 6368473
    Abstract: A sodium chloride electrolytic cell is provided, comprising a gas diffusion electrode that allows smooth supply and discharge of catholyte for electrolyzing sodium chloride and allows oxygen gas to come in good contact therewith. The sodium chloride electrolytic cell comprises an anode chamber having an anode into which an aqueous solution of sodium chloride and a cathode chamber having the foregoing gas diffusion electrode for producing an alkaline aqueous solution, the anode chamber and the cathode chamber being divided by an ion exchange membrane. The sodium chloride electrolytic cell is arranged to effect electrolysis in such a manner that there occurs no pressure differential between the catholyte chamber and the gas chamber in the gas diffusion electrode. Further, a nickel mesh substance is fitted in a concave portion having the same size as that of the gas diffusion electrode formed in the central portion of a thin nickel plate.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: April 9, 2002
    Assignees: Toagosei Co., Ltd., Mitsui Chemicals, Inc., Kaneka Corporation, Chlorine Engineers Corp., Ltd.
    Inventors: Nagakazu Furuya, Akihiro Sakata, Koji Saiki, Hiroaki Aikawa, Shinji Katayama, Kenzo Yamaguchi
  • Patent number: 6368472
    Abstract: An apparatus for generating electrolytic products, including chlorine and ozone, that includes an electrolytic cell having a cathode in a cathode chamber, an anode in an anode chamber, an electrode chamber separating element disposed between the cathode and anode and sight tubes for visualizing the amount of catholyte and anolyte in the electrolytic chambers is provided. The cathode and the anode include first sides, that are contained within the electrode chambers and participate in the cell's oxidation-reduction reactions, and second sides that project outside of the electrode chambers and which may serve as replacement surfaces for the first sides.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: April 9, 2002
    Inventor: Byron Duvon McGuire
  • Patent number: 6368488
    Abstract: An electrode (10, 112) containing platinum has its surface modified with sulfur, tellurium, or selenium, or compounds thereof, which renders the surface highly selective for the conversion of oxygen to hydrogen peroxide. The high selectivity of the electrode, and its ability to function in acidic electrolytes make it suitable to a variety of electrochemical processes. In a preferred embodiment, an oxygen concentration device (A) incorporating the electrode as a cathode (10) also includes an anode (12) and a selective membrane (14), formed from a solid polymer electrolyte material, between the anode and the cathode. An oxygen-containing atmosphere is brought into contact with the cathode where it is converted to hydrogen peroxide. The hydrogen peroxide passes through the membrane to the anode where it is reconverted to purified oxygen.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: April 9, 2002
    Assignee: Case Western Reserve University
    Inventor: Daniel A. Scherson
  • Publication number: 20020003085
    Abstract: An electrochemical cell that receives an inlet stream of air and produces an outlet stream of a high oxygen concentration of gas. The cell is made up of a plurality of layers and preferably a porous electrolyte comprised of yttria stabilized zirconia (YSZ) that allows only oxygen ions to pass therethrough and which is covered on its sides with electrodes comprised of lanthanum strontium manganate (LSM) which in turn are coated with a layer of platinum to aid in the even distribution of the electrical current. An electrical current is passed through the electrodes to produce a voltage difference therebetween. The layers of YSZ and LSM are formed by a sol-gel process.
    Type: Application
    Filed: January 19, 2001
    Publication date: January 10, 2002
    Inventors: Ravi R. Chandran, Lisa Klein, Sandra Mege
  • Publication number: 20020000385
    Abstract: An electrochemical cell system includes a hydrogen electrode; an oxygen electrode; a membrane disposed between the hydrogen electrode and the oxygen electrode; and a compartmentalized storage tank. The compartmentalized storage tank has a first fluid storage section and a second fluid storage section separated by a movable divider. The compartmentalized storage tank is in fluid communication with the electrochemical cell. Further, an electrochemical cell includes a hydrogen electrode; an oxygen electrode; an electrolyte membrane disposed between and in intimate contact with the hydrogen electrode and said oxygen electrode; an oxygen flow field disposed adjacent to and in intimate contact with the oxygen electrode; a hydrogen flow field disposed adjacent to and in intimate contact with the hydrogen electrode; a water flow field disposed in fluid communication with the oxygen flow field; and a media divider disposed between the oxygen flow field and the water flow field.
    Type: Application
    Filed: December 14, 2000
    Publication date: January 3, 2002
    Inventors: Jason K. Shiepe, Trent M. Molter
  • Patent number: 6331232
    Abstract: Apparatus for the reduction of nitrogen oxides in gas streams are disclosed comprising an oxygen ion-conducting substrate, an anode disposed on the substrate, a cathode disposed on the substrate, and a voltage source connected to the anode and the cathode in which the cathode is comprised of gold so that the nitrogen oxides are adsorbed and dissociated on the cathode, nitrogen may recombine into nitrogen gas on the cathode, and oxygen ions are transported through the substrate from the cathode to the anode. Methods for the reduction of nitrogen oxides in gas streams are also disclosed.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: December 18, 2001
    Assignee: Volvo Car Corporation
    Inventors: Staffan Lundgren, Edward Jobson, Anders Unosson, Per Salomonsson
  • Patent number: 6299744
    Abstract: A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: October 9, 2001
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Thomas I. Valdez
  • Patent number: 6287432
    Abstract: Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: September 11, 2001
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Patent number: 6270636
    Abstract: The present invention is an integrated screen comprising a screen portion having openings and an integral protector edge disposed about the periphery of the screen portion. This integrated screen protector edge can be utilized individually as the membrane support/flow field in an electrochemical cell or in conjunction with one or more subsequent screen layers. When utilized with subsequent screen layers, the integrated screen protector edge is disposed adjacent to and in intimate contact with the membrane assembly.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: August 7, 2001
    Assignee: Proton Energy Systems, Inc.
    Inventors: Robert H. Byron, Jr., Trent M. Molter, Mark E. Dristy
  • Patent number: 6267864
    Abstract: Methods and devices for transforming less desirable chemical species into more desirable or useful chemical forms are disclosed. The specifications can be used to treat pollutants into more benign compositions and to produce useful chemicals from raw materials and wastes. The methods and devices disclosed utilize continuous or temporary pulse of electrical current induced by electromagnetic field and high surface area formulations. The invention can also be applied to improve the performance of existing catalysts and to prepare novel devices.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: July 31, 2001
    Assignee: Nanomaterials Research Corporation
    Inventors: Tapesh K. Yadav, Bijan K. Meramadi
  • Patent number: 6264807
    Abstract: A oxygen generation system comprising a plurality of cells arranged in a stack. Each cell is comprised of a BICUVOX electrolyte and a pair of Inconel® electrodes placed in electrical contact with the BICUVOX electrolyte to produce a flow of oxygen therethrough. The BICUVOX electrolyte is comprised of a square thin plate. The electrodes are plates having the same dimensions as the electrolyte. The electrode plates are machined with gas flow channels oriented to separate high purity oxygen gas flow from oxygen-depleted gas flow. The stack is enclosed in a tubular manifold composed of magnesium oxide and has a diameter slightly larger than the diagonal length of the electrolyte and electrode plates. The stack is sealed at its four corners to the inside surface of the manifold creating four separate passages for flow of oxygen-containing gas, high purity oxygen gas, and oxygen-depleted gas.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: July 24, 2001
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Jerold E. Fenner, Nathan A. Dillon, Ming-Shih Wong
  • Patent number: 6264820
    Abstract: A gas generator comprising a layer of first material are provided with a layer of second material on one surface and a layer of third material on the other opposing surface is provided. The application of an external potential results in the flow of gas from one side of the generator to another due to the properties of the materials presented. The use of an electrolyte material as the first material and mixed conductors as the second and/or third materials is particularly beneficial in obtaining high flow rates. The use of the generator to produce oxygen for injection into a methane stream is particularly preferred.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: July 24, 2001
    Assignee: British Nuclear Fuels PLC
    Inventors: Robert Glyn Lewin, Stephen Vernon Barnett, Andrew Timothy Ince, Christopher William Brace, Peter Hugh Middleton
  • Publication number: 20010007304
    Abstract: An ozone storage/recovery method comprises a process for supplying an ozone-containing gas, generated by an ozone generator, to an ozone adsorbent tank filled with an ozone adsorbent contained at least one high-silica material selected from the group consisting of a high-silica pentacile zeolite, a dealumination faujasite and a mesoporous silicate, causing the adsorbent to adsorb ozone at a temperature of 0° C. or below, and storing the ozone, and a process for desorbing the ozone adsorbed by the adsorbent in the ozone adsorbent tank and recovering the ozone from the adsorbent tank, whereby ozone can be supplied as required.
    Type: Application
    Filed: March 13, 2001
    Publication date: July 12, 2001
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD
    Inventors: Jun Izumi, Akinori Yasutake, Nariyuki Tomonaga, Hiroyuki Tsutaya
  • Patent number: 6258221
    Abstract: A flame adjusting device includes a tank for receiving a fluid and includes an upper portion and a lower portion coupled to a coupler with hoses. The coupler is coupled to a gas generator. A control device is disposed between the coupler and an upper hose and is used for controlling the gas to flow through the hoses and to adjust the gas flowing out of the tank. The gas is a gaseous fuel and is supplied to a facility for generating a flame. The temperature generated by the flame may thus also be adjusted.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: July 10, 2001
    Inventor: Wen Chang Lin
  • Patent number: 6251239
    Abstract: This invention relates to an electrochemical half cell having a gas diffusion electrode as an anode or cathode, in which the gas space behind the gas diffusion electrode is optionally partitioned, for pressure equalization, into gas compartments which are joined to the gas diffusion electrode and which can be removed from the half cell or changed as a unit.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: June 26, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Fritz Gestermann, Hans-Dieter Pinter, Jens Camphausen
  • Patent number: 6217728
    Abstract: An electrolysis cell for carrying out chemical reactions include an electrolyte chamber (2) with a fixed-bed electrode (2F), a gas chamber (1) filled with filling bodies (1F), a gas diffusion electrode with an ion-exchanging separator (3) applied on the electrolyte-chamber side. The ion-exchanging separator is applied onto the gas diffusion electrode by a method comprising a single or multiple application of a solution of an ion-exchanging material in a solvent onto the electrocatalytically active layer of the gas diffusion electrode and at least partial evaporation of the solvent after each coating. The electrolysis cell may be used for the oxidation and reduction of organic or inorganic components dissolved in the electrolyte.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: April 17, 2001
    Assignee: Degussa-Huls AG
    Inventors: Thomas Lehmann, Patrik Stenner, Andreas Küver
  • Patent number: 6203692
    Abstract: A process for separating chlorine gas from a mixture with other gases is disclosed. In the process, chlorine gas, either as an impure gas or as dissolved gas in hydrochloric acid, is reduced at the cathode of an electrochemical cell to form chloride ions, which are discharged at the anode of the same cell as pure chlorine gas. An apparatus for performing the process is also disclosed.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: March 20, 2001
    Inventors: Srinivasan Sarangapani, Tilak Bommaraju
  • Patent number: 6171368
    Abstract: Apparatus and an associated method of operation are disclosed for removal of gaseous contaminants, particularly oxygen, from closed containers. The apparatus is economical, simple to install and operate, of convenient size, and highly effective. A gas extractor communicates with a container for a gas-sensitive product. A high gas concentration in the container causes operation of the extractor until the gas concentration is reduced to a desired low level, when the extractor operation stops. Separate sensors and controllers responsive to concentrations can be present, or the extractor can be self-actuated by use as a power source of a battery which operates on gas generated by operation of the extractor. The system preferably is used for oxygen extraction from containers holding oxygen-sensitive contents. The preferred extractor includes an electrochemical cell which has a ion-permeable membrane disposed between two electrodes.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: January 9, 2001
    Assignee: Med-E-Cell
    Inventors: Henri J. R. Maget, Robert J. Rosati
  • Patent number: 6165332
    Abstract: The invention relates to an electrochemical half cell (1) comprising at least one electrode space (3, 15) for receiving an electrolyte (100), a gas space (2), and at least one gas diffusion electrode (14) as anode or cathode separating the gas space (2) and electrode space (3, 15), in which the gas space (2) is subdivided into two or more superimposed gas pockets (2a, 2b), in which gas inflow and gas outflow takes place through separate openings (7) and (12a, 12b, 12c, 12d) and the pressure on the electrolyte side of the electrode (14) is compensated by an opening in the respective gas pocket (2a, 2b) for the electrolyte.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: December 26, 2000
    Assignee: Bayer Aktiengesellschaft
    Inventors: Fritz Gestermann, Hans Dieter Pinter
  • Patent number: 6159349
    Abstract: An electrolytic cell for producing a brine containing hydrogen peroxide is disclosed. Units for hydrogen peroxide production 3 and units for water electrolysis 2 are alternately arranged in the same electrolytic cell 1. Electrolysis is conducted while supplying hydrogen gas and oxygen gas generating in the respective water electrolysis units to a gas diffusion anode 11 and a gas diffusion cathode 13 of each unit for hydrogen peroxide production, to thereby obtain a brine containing hydrogen peroxide in a high concentration. Furthermore, because the anode of the hydrogen peroxide production units is a hydrogen gas diffusion anode having a reduced oxidizing ability, halogen ions contained in the seawater do not yield harmful halogenated organic substances.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: December 12, 2000
    Assignee: Permelec Electrode Ltd.
    Inventors: Shuhei Wakita, Yoshinori Nishiki, Takayuki Shimamune, Yasuo Nakajima, Masaaki Katoh, Yoshiyuki Kawaguchi, Takahiro Ashida, Masaharu Uno
  • Patent number: 6117288
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: September 12, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 6113757
    Abstract: An electrolytic cell for producing an alkali hydroxide using a gas diffusion cathode. A moistened oxygen-containing gas is uniformly supplied to the surface of the gas diffusion cathode by means of a gas distributing mechanism, such as at least one gas diffuser pipe having a plurality of openings facing the cathode surface.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: September 5, 2000
    Assignee: Permelec Electrode Ltd.
    Inventors: Takayuki Shimamune, Masashi Tanaka, Shuhei Wakita, Takahiro Ashida, Yoshinori Nishiki
  • Patent number: 6113773
    Abstract: A seawater electrolysis apparatus for generating hydrogen peroxide from seawater by electrolysis to thereby treat the seawater. The seawater electrolysis apparatus comprises an electrolytic cell, a gas diffusion electrode partitioning the electrolytic cell into a gas chamber and an electrolysis chamber, an insoluble metal electrode disposed in the electrolysis chamber as an anode, an inlet and an outlet for passing seawater through the electrolysis chamber, an inlet for supplying an oxygen-containing gas to the gas chamber, and means for passing and diffusing at least part of the gas supplied to the gas chamber passing through the gas diffusion electrode and into the seawater, respectively.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: September 5, 2000
    Assignee: Permelec Electrode Ltd.
    Inventors: Takayuki Shimamune, Yasuo Nakajima, Yoshiyuki Kawaguchi
  • Patent number: 6103075
    Abstract: The invention pertains to linear electrochemical functional elements which have strip-shaped ion-exchange membranes (IEMs) and/or hydrogen-diffusion electrodes accessible at the ends which are enclosed on all sides in an insulating manner by a jacket of a solid material. The invention describes the structure, production, and use of the functional elements in electrochemical measuring techniques. In one embodiment, a charge state indicator is created by the incorporation of a lead/lead sulfate half-cell into a lead/lead oxide cell. This coupling takes place via a linear functional element in the form of an installed ion-exchanger membrane. It makes it possible to measure three voltage values on the cell and to evaluate them in order to determine the current charge state by conventional methods.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: August 15, 2000
    Inventors: August Winsel, Hans Sauer
  • Patent number: 6045938
    Abstract: The invention pertains to linear electrochemical functional elements which consist of strip-shaped ion-exchange membranes (IEMs) and/or hydrogen-diffusion electrodes accessible at the ends which are enclosed on all sides in an insulating manner by a jacket of a solid material. The invention describes the structure, production and use of the functional elements in electrochemical measuring techniques.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: April 4, 2000
    Inventors: August Winsel, Hans Sauer
  • Patent number: 6045684
    Abstract: An on-site process and apparatus for producing hydrogen peroxide at a high efficiency substantially from brine and oxygen-containing gas alone as raw materials while removing alkaline earth metals. Sea water concentrated by an electrodialytic apparatus 2 or the like as a raw material is supplied to an impurity removing apparatus 10 where caustic soda produced in an acid-alkali producing apparatus 11 at a subsequent stage and/or carbon dioxide gas is added to remove alkaline earth metals contained in sea water in the form of a hydroxide or carbonate precipitate. Separately, the acid-alkali producing apparatus 11 performs a salt separating operation to produce caustic soda which is then supplied to a hydrogen peroxide generator 28 to produce an alkaline aqueous solution of hydrogen peroxide.
    Type: Grant
    Filed: April 16, 1998
    Date of Patent: April 4, 2000
    Assignees: Permelec Electrode Ltd., Katayama Chemical, Inc.
    Inventors: Shuhei Wakita, Masaharu Uno, Takayuki Shimamune, Yoshinori Nishiki, Kunio Nishimura
  • Patent number: 6042703
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: March 28, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 6042704
    Abstract: A storage stable fluid delivery device including a gas generator in which moisture (water) is involved in the gas generation reaction in which moisture containment is utilized to prevent or retard water loss as disclosed. The moisture containment may be a moisture impermeable membrane as a permanent part of the device and may be utilized in conjunction with the gas generator when the membrane has high gas permeability for the gas being generated. The fluid delivered by such device is typically a liquid having some particular utility in its environment. The liquid dispensed may be a pharmaceutical or some other liquid having a beneficial or curative effect upon an animal or human patient or it may be a liquid such as an insecticide, fumigant, fragrance or other liquid having a relatively high vapor pressure.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: March 28, 2000
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, John H. Gordon, John J. McEvoy
  • Patent number: 6039853
    Abstract: The invention relates to an electrochemical half-cell (1) with a gas diffusion electrode (7) as cathode or anode wherein the gas chamber (6) is divided in particular into two or more gas pockets (6a, 6b, 6c) arranged one above another, the electrode chamber (2) of the half-cell (1) being divided into compartments (2a, 2b, 2c) which for the passage of the electrolyte (23), are connected to one another in cascade fashion via chutes (17), (18), (19).
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: March 21, 2000
    Assignee: Bayer Aktiengesellschaft
    Inventors: Fritz Gestermann, Hans-Dieter Pinter, Karl-Ludwig Metzger, Heiko Herold
  • Patent number: 6037075
    Abstract: An electrically non-conductive plate structure, for use in high pressure electrochemical cells employing ion-exchange membranes that creep or flow under pressure, is provided. Such plate structures are provided with a means for impeding membrane creep or flow when the cells are subjected to high axial loadings. When two such structures are positioned on either side of an ion-exchange membrane, so as to forcibly contact the surfaces thereof, such structures serve to contain, and thereby form a fluid tight seal with, the membrane while maintaining the electrical integrity of the cell.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: March 14, 2000
    Assignee: United Technologies Corporation
    Inventors: Kurt M. Critz, Andrei Leonida, Robert J. Roy
  • Patent number: 6017439
    Abstract: A liquid mixture is efficiently separated using a separating membrane against which the liquid is sprayed, the membrane being intermittently heated to increase separation without subjecting the liquid mixture to high heat. The method is suited to flammable, toxic and temperature sensitive liquid mixtures.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: January 25, 2000
    Assignee: The University of Queensland
    Inventor: Raymond Peter Gannon
  • Patent number: 6015483
    Abstract: A process for removing NO from exhaust in which NO-containing exhaust is guided to a first electrode on which the NO is anodically oxidized to NO.sup.+, the NO.sup.+ is subsequently transported through an NO.sup.+ -conducting solid electrolyte to a second electrode on which the NO is cathodically reduced.
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: January 18, 2000
    Assignee: DORNIER GmbH
    Inventors: Carsten Plog, Renato Andorf, Ralf Mueller, Wolfgang Schaefer, Armin Kayser
  • Patent number: RE37042
    Abstract: The invention relates to a process for electrochemically converting anhydrous hydrogen halide, such as hydrogen chloride, hydrogen fluoride, hydrogen bromide and hydrogen iodide, to essentially dry halogen gas, such as chlorine, fluorine, bromine and iodine gas, respectively. In a preferred embodiment, the present invention relates to a process for electrochemically converting anhydrous hydrogen chloride to essentially dry chlorine gas. This process allows the production of high-purity chlorine gas. In this process, molecules of essentially anhydrous hydrogen chloride are transported through an inlet of an electrochemical cell. The molecules of the essentially anhydrous hydrogen chloride are oxidized at the anode of the cell to produce essentially dry chlorine gas and protons, which are transported through the membrane of the cell. The transported protons are reduced at the cathode to form either hydrogen gas or water.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: February 6, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: James Arthur Trainham, III, Clarence Garlan Law, Jr., John S. Newman