Laminated Or Coated (i.e., Composite Having Two Or More Layers) Patents (Class 204/290.01)
  • Patent number: 8349165
    Abstract: Soluble nickel and tin contained in a coating layer are eluted into an aqueous solution by bringing a cathode coated with a nickel-tin alloy into contact with an aqueous solution of an alkali metal hydrogen carbonate such as sodium hydrogen carbonate, thereby reducing the amounts of these metals eluted during electrolysis.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: January 8, 2013
    Assignee: Tokuyama Corporation
    Inventors: Yasuyuki Tanaka, Kenji Aoki
  • Patent number: 8349153
    Abstract: A method for fabricating a sheet-shaped electrode for an electrostatic coalescing device. A layered material structure including an electrically conductive layer for forming a conductive member of the electrode and two electrically non-conductive insulation layers are arranged in an envelope. The insulation layers include thermoplastic or thermoset material for forming the insulation of the electrode. The conductive layer is arranged between the insulation layers. The envelope is sealed. Gas is evacuated from the envelope. The material structure is heated to a temperature above the melting temperature of the thermoplastic material or above the curing temperature of the thermoset material so as to consolidate the material structure while keeping the material structure inside the evacuated envelope. The material structure is cooled and removed from the envelope.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: January 8, 2013
    Assignee: Hamworthy PLC
    Inventors: Tor Fjeldly, Peder Hansson, Pål Jahre Nilsen
  • Publication number: 20130001102
    Abstract: A process is described for the preparation of modified electrodes useful for the measurement of analytes in biological fluids, comprising the deposition of Prussian blue on screen printed electrodes, and the modified electrodes prepared via said process; the enzymatic electrodes and the biosensors comprising said modified electrodes and the method for the determination of analytes in biological fluids which uses said modified electrodes are also described.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 3, 2013
    Inventors: Giuseppe Palleschi, Francesco Ricci, Danila Moscone, Alessandro Poscia
  • Publication number: 20130001090
    Abstract: Bioelectrodes, methods of making bioelectrodes and methods of using bioelectrodes are provided. The bioelectrodes have an electrically-conductive substrate coated with an electroconductive polymer. The bioelectrode exhibits ohmic behavior over a range of about 1 Hz to about 100 KHz, where ohmic behavior means that the value of the impedance is independent of the signal frequency over the range of interest. The bioelectrode can transmit or receive an electrical signal between the electrically conductive substrate and the biological component through the conductive polymer.
    Type: Application
    Filed: February 11, 2011
    Publication date: January 3, 2013
    Applicant: GEORGETOWN UNIVERSITY
    Inventors: Judith F. Rubinson, Yohani P. Kayinamura, Anthony D. Kammerich, Yasmin N. Srivastava
  • Publication number: 20120312695
    Abstract: The present invention relates generally to conducting polymer composites for use in electrochemical applications and electrolysis applications, and methods of making the same. A composite material is provided that includes a conducting polymer; and a silsesquioxane compound. The composite material is used to prepare ion conducting membranes and membrane electrode assemblies (MEA).
    Type: Application
    Filed: December 3, 2010
    Publication date: December 13, 2012
    Applicant: OHIO UNIVERSITY
    Inventor: Anima B. Bose
  • Publication number: 20120315552
    Abstract: The present disclosure provides an electrode including an electrically conductive ink deposited thereon comprising: a nano-scale conducting material; a binding agent; and an enzyme; wherein said ink is essentially solvent free. In one embodiment, the ink includes at least one of a mediator, a cross-linking agent and a substrate as well. In one further embodiment, the electrode provided herein is used in a battery, fuel cell or sensor.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventors: Vojtech Svoboda, Jianjun Wei, Sameer Singhal
  • Publication number: 20120305390
    Abstract: An electrode for forming an electrochemical cell with a substrate and a method of forming said electrode. The electrode comprises a carrier provided with an insulating layer which is patterned at a front side. Conducting material in an electrode layer is applied in the cavities of the patterned insulating layer and in contact with the carrier. A connection layer is applied at the backside of the carrier and in contact with the carrier. The periphery of the electrode is covered by the insulating material.
    Type: Application
    Filed: March 26, 2012
    Publication date: December 6, 2012
    Inventors: Mikael Fredenberg, Patrik Möller, Peter Wiwen-Nilsson, Cecilia Aronsson, Matteo Dainese
  • Patent number: 8313624
    Abstract: An inert anode material for use in electrolytic processes comprises calcium ruthenate. [Note that the nominal formula for this compound is CaRuO3, although different stoichiometries may apply in practice].
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 20, 2012
    Assignee: Green Metals Limited
    Inventors: Derek John Fray, Gregory Russlan Doughty
  • Publication number: 20120267240
    Abstract: A photoelectrode including at least one polymer layer is provided. The at least one polymer layer defines the surface of the photoelectrode, or it defines an interlayer within the photoelectrode. The polymer layer can be made of a non-conductive polymer and have a thickness of 100 nm or less.
    Type: Application
    Filed: October 26, 2010
    Publication date: October 25, 2012
    Applicant: Agency for Science Technology and Research
    Inventors: Lin Ke, Surani Bin Dolmanan, Szu Cheng Lai
  • Publication number: 20120267242
    Abstract: The present invention relates to a spherical electrode and to a spherical electrode cell, and more particularly, to a method for forming an electrode on an ion-exchange resin or forming an electrolysis cell on an ion-exchange resin. The spherical electrode or spherical electrolysis cell of the present invention can be used for: electrolysis reactors, for example in hydrolysis for producing hydrogen and oxygen gas; for the production of oxidants by means of the electrolysis of electrolytes such as a sodium chloride solution and sodium chlorite; or fuel cells that generate electricity using oxygen and hydrogen.
    Type: Application
    Filed: November 26, 2009
    Publication date: October 25, 2012
    Applicants: ELCHEM TECH CO, LTD.
    Inventors: Sang Bong Moon, Tae-Lim Lee, Eun-Soo Kim, Yun-Ki Choi
  • Publication number: 20120244010
    Abstract: An electrode for an electrochemical machining process is provided. The electrode includes an electrically conductive member defining at least one passage and an insulating coating partially covering a side surface of the electrically conductive member. The insulating coating does not cover at least one of first and second exposed sections of the electrically conductive member, where the first and second exposed sections are separated by approximately 180 degrees and extend substantially along a longitudinal axis of the electrically conductive member. The insulating coating also does not cover an exposed front end of the electrically conductive member. An electrochemical machining method is also provided, for forming a non-circular hole in a workpiece using the electrode.
    Type: Application
    Filed: June 8, 2012
    Publication date: September 27, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bin Wei, Kevin Leon Bruce
  • Publication number: 20120228157
    Abstract: Nanostructures comprising carbon and metal catalyst that are formed on a substrate, such as a silicon substrate, are contacted with a composition that, among other useful modifications, protects the nano structures and renders them stable in the presence of oxidizing agents in an aqueous environment. The protected nano structures are rendered stable over an extended period of time and thereby remain useful during such period as components of an electrode, for example, for detecting electrochemical species such as free chlorine, total chlorine, or both in water.
    Type: Application
    Filed: November 11, 2010
    Publication date: September 13, 2012
    Applicant: NanoSelect, Inc.
    Inventors: Chunhong Li, Piu Francis Man, David J. Ruggieri
  • Publication number: 20120231353
    Abstract: The present invention relates to a process for producing an oxygen-consuming electrode that includes the steps of (a) producing a powder mixture consisting of at least one polymer as binder and a catalytically active component, (b) applying the powder mixture to an electrically conductive sheet-like support element, and (c) compacting and consolidating the powder mixture on the support element using rollers, wherein the rollers used in the compaction step c) comprises a surface coating of tungsten carbide and wherein the roller surface has a roughness of not more than 0.5 ?m.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 13, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Walter Klesper
  • Publication number: 20120228128
    Abstract: The present invention concerns an electrochemical pattern replication method, ECPR, and a construction of a conductive electrode for production of applications involving micro and nano structures. An etching or plating pattern, which is defined by a conductive electrode, a master electrode, is replicated on an electrically conductive material, a substrate. The master electrode is put in close contact with the substrate and the etching/plating pattern is directly transferred onto the substrate by using a contact etching/plating process. The contact etching/plating process is performed in local etching/plating cells, chat are formed in closed or open cavities between the master electrode and the substrate.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 13, 2012
    Inventors: Patrik Möller, Mikael Fredenberg, Peter Wiwen-Nilsson
  • Patent number: 8241471
    Abstract: An electrolytic system for generating hydrogen gas includes a pair of electrodes and an electrolyte. The electrolyte includes colloidal silver, colloidal magnesium, and a nano-metal comprising nano-nickel, nano-iron or a nano-nickel-iron alloy. The electrodes include a first electrode of a non-magnetic material. A second electrode includes an electrode precursor of a magnetic material or an electro-magnet. When in its magnetic state, the electrode precursor exerts a magnetic force of sufficient strength to pull the nano-metal of the electrolyte onto at least a portion of its surfaces, to form the second electrode.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: August 14, 2012
    Inventor: Linnard Gene Griffin
  • Patent number: 8236146
    Abstract: A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121) and an n-type semiconductor layer (122); a counter electrode (130) connected electrically to the conductor (121); an electrolyte (140) in contact with the surfaces of the n-type semiconductor layer (122) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). The photoelectrochemical cell (100) generates hydrogen by irradiation of the n-type semiconductor layer (122) with light.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 7, 2012
    Assignee: Panasonic Corporation
    Inventors: Takaiki Nomura, Takahiro Suzuki, Kenichi Tokuhiro, Tomohiro Kuroha, Noboru Taniguchi, Kazuhito Hatoh, Shuzo Tokumitsu
  • Patent number: 8221599
    Abstract: Embodiments of the present disclosure include an anode, devices and systems including the anode (e.g., electrochemical devices and photo-electrochemical devices), methods of using the anode, methods of producing H2 and O2 from H2O, Cl2, oxidixed organic feedstocks, oxidation for the detection and quantification of chemical species, and the like.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 17, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher E. D. Chidsey, Paul C. McIntyre
  • Publication number: 20120178115
    Abstract: The present invention relates to novel mutants of PQQ s-GDH containing an amino acid substitution in position 428 of the protein sequence of the wild type PQQ s-GDH of Acinetobacter calcoaceticus (SEQ.ID. NO:2). The invention also relates to the use of said PQQ s-GDH mutants for the development of glucose electrodes of interest in the assay of glucose, in particular of blood glucose in diabetic subjects, and for implementing biofuel cells that utilize glucose as fuel.
    Type: Application
    Filed: July 20, 2010
    Publication date: July 12, 2012
    Inventors: Nicolas Mano, Claire Stines-Chaumeil, Fabien Durand
  • Publication number: 20120138477
    Abstract: The invention relates to novel bipolar electrodes with a cathodic coating on one portion of the electrode and an anodic coating on another portion of the same electrode. The anodic coating is preferably a DSA coating and the cathodic coating is an alloy such as Fe3?xAl-1+xMyTz. The invention also relates to the use of said novel electrodes for synthesising sodium chlorate.
    Type: Application
    Filed: April 8, 2010
    Publication date: June 7, 2012
    Applicants: MEEIR TECHNOLOGIE INC., HYDRO-QUEBEC
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 8192609
    Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and fluorine. They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and fluoride. The catalysts will facilitate the conversion of water to hydrogen gas and oxygen gas, even at pH neutral/room temperature reaction conditions. The resulting hydrogen gas is a means of storing renewable energy for use in hydrogen powered vehicles or the like.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: June 5, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James B. Gerken, Shannon S. Stahl
  • Patent number: 8192595
    Abstract: A transition metal/carbon nanotube composite includes a carbon nanotube and a transition metal oxide coating layer disposed on the carbon nanotube. The transition metal oxide coating layer includes a nickel-cobalt oxide.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: June 5, 2012
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Ho-jung Yang, Hyo-rang Kang, Kwang-bum Kim, Jin-go Kim
  • Publication number: 20120132544
    Abstract: An electrochemical sensor for measuring an analyte in a fluid, the electrochemical sensor having a first working electrode that includes a redox species sensitive to the analyte to be measured and a second working electrode made from a conducting substrate absent the redox species. The electrochemical sensor being capable of operation so that electrochemical effects of active contaminants in the fluid can be removed/attenuated from electrochemical signals produced by the reduction/oxidation of the redox species in the presence of the analyte.
    Type: Application
    Filed: August 5, 2011
    Publication date: May 31, 2012
    Applicant: Schlumberger Technology Corporation
    Inventors: Nathan Lawrence, Andrew Meredith
  • Patent number: 8172990
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising: a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the first electrode is configured to control the location of nucleation of the gas by substantially separating the location of electron transfer and nucleation.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: May 8, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Publication number: 20120103798
    Abstract: In one example embodiment, a protein-immobilized electrode is stably used for long time. In one example embodiment, a method of manufacturing the protein-immobilized electrode includes immobilizing cytochrome c552 having high stability to a chemically-stable gold electrode while maintaining electron transfer capability of the cytochrome c552. In one example embodiment, a self-assembled monolayer is formed on a gold electrode by using hydrophobic thiol and hydrophilic thiol. By dipping the gold electrode on which the self-assembled monolayer is formed in a cytochrome c552 solution, a protein-immobilized electrode in which a cytochrome c552 is immobilized to the gold electrode with the self-assembled monolayer in between is produced.
    Type: Application
    Filed: December 10, 2009
    Publication date: May 3, 2012
    Applicant: Sony Corporation
    Inventors: Seiji Yamada, Yoshio Goto, Yuichi Tokita
  • Publication number: 20120100441
    Abstract: The present invention relates to an oxygen-consuming electrode comprising a support in the form of a sheet-like structure and a coating comprising a gas diffusion layer and a catalytically active component, wherein the support is based on a material which can be at least partly removed by dissolution, decomposition, melting and/or vaporization. Furthermore, the use of this oxygen-consuming electrode in chloralkali electrolysis or fuel cell technology is described.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 26, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Jürgen Kintrup, Heinrich Morhenn
  • Publication number: 20120094216
    Abstract: A catalyst member comprising a blended mixture of nano-scale metal particles compressed with larger metal particles and sintered to form a structurally stable member of any desired shape. The catalyst member can be used in one of many different applications; for example, as an electrode in a fuel cell or in an electrolysis device to generate hydrogen and oxygen.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 19, 2012
    Applicant: QuantumSphere, Inc.
    Inventors: R. Douglas Carpenter, Robert Brian Dopp, Kimberly McGrath
  • Patent number: 8142626
    Abstract: An the electrode for electrolysis of an electrolytic solution comprises an electrode core serving as a base and a plurality of prominences formed on a surface of the electrode core, the prominences have each a leaf-shaped form and rises from the electrode core surface.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: March 27, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Masatoshi Sugimasa, Akiyoshi Komura, Masafumi Nojima
  • Patent number: 8142625
    Abstract: An electrochemical gas detector includes a superhydrophobic, nanostructured gas porous electrode. The electrode exhibits a physically disrupted porous region. In an embodiment, electrode material can be deposited around a templating material which is removed before use. Such electrodes exhibit repeatable and reproducible characteristics.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: March 27, 2012
    Assignee: Life Safety Distribution AG
    Inventor: Keith Francis Edwin Pratt
  • Publication number: 20120067745
    Abstract: Internally calibrated pH and other analyte sensors based on redox agents provide more accurate results when the redox active reference agent is in a constant chemical environment, yet separated from the solution being analyzed in such a way as to maintain electrical contact with the sample. Room temperature ionic liquids (RTIL) can be used to achieve these results when used as a salt bridge between the reference material and the sample being analyzed. The RTIL provides the constant chemical environment and ionic strength for the redox active material (RAM) and provides an electrolytic layer that limits or eliminates direct chemical interaction with the sample. A broad range of RAMs can be employed in a variety of configurations in such “Analyte Insensitive Electrode” devices.
    Type: Application
    Filed: March 10, 2010
    Publication date: March 22, 2012
    Applicant: Senova Systems, Inc.
    Inventors: Joseph A. Duimstra, Lee Leonard, Gregory G. Wildgoose, Eric Lee
  • Patent number: 8129076
    Abstract: To accelerate a film formation rate in forming a negative electrode active material film by vapor deposition using an evaporation source containing Si as a principal component, and to provide an electrode for lithium batteries which is superior in productivity, and keeps the charge and discharge capacity at high level are contemplated. The method of manufacturing an electrode for lithium batteries of the present invention includes the steps of: providing an evaporation source containing Si and Fe to give a molar ratio of Fe/(Si+Fe) being no less than 0.0005 and no greater than 0.15; and vapor deposition by melting the evaporation source and permitting evaporation to allow for vapor deposition on a collector directly or through an underlying layer. The electrode for lithium batteries of the present invention includes a collector, and a negative electrode active material film which includes SiFeyOx (wherein, 0<x<2, and 0.0001?y/(1+y)?0.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: March 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Satoshi Shibutani, Yuko Ogawa, Kazuyoshi Honda
  • Publication number: 20120037512
    Abstract: Electrodes for electrolysis of water, for encouraging growth of algae and aerobic bacteria, for removing suspended solids from wastewater during treatment, or for rendering water sterile and potable have a concrete coating over a metallic or carbon fibre core. The coating is from 2 to 50 mm thick; preferably 5 to 25 mm thick. Preferably, a DC current passed between the immersed electrodes periodically reversed but there is no visible “rusting” at the anode if the DC current is steady. The resistive nature of the concrete tends to suppress concentrations of current upon the electrode surface.
    Type: Application
    Filed: April 15, 2010
    Publication date: February 16, 2012
    Inventor: Maurice James Robertson
  • Publication number: 20120012472
    Abstract: The invention relates to novel compositions of disubstituted bipyridyl osmium complexes useful for the synthesis of labeled proteins, nucleic acids, and for the modification of electrodes.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 19, 2012
    Applicant: OHMX CORPORATION
    Inventors: Michael Ahrens, Paul A. Bertin, Harry B. Gray, Thomas J. Meade
  • Publication number: 20120000770
    Abstract: Probe-based methods are provided for formation of one or more nano-sized or micro-sized elongated structures such as wires or tubes. The structures extend at least partially upwards from the surface of a substrate, and may extend fully upward from the substrate surface. The structures are formed via a localized electrodeposition technique. The electrodeposition technique of the invention can also be used to make modified scanning probe microscopy probes having an elongated nanostructure at the tip or conductive nanoprobes. Apparatus suitable for use with the electrodeposition technique are also provided.
    Type: Application
    Filed: June 7, 2011
    Publication date: January 5, 2012
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Min-Feng Yu, Abhijit P. Suryavanshi
  • Publication number: 20110315551
    Abstract: An electrode for active oxygen species comprising a conductive component with a polymer membrane of a metal porphyrin complex formed on the surface is disclosed. The electrode for active oxygen species can detect active oxygen species such as superoxide anion radicals, hydrogen peroxide, and .OH and other active radical species (NO, ONOO—, etc.) in any environment including in vivo environment as well as in vitro environment. The electrode thus can be used for specifying various diseases and examining active oxygen species in food or in water such as tap water and sewage water.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Applicants: Makoto YUASA, Hitoshi TAKEBAYASHI, Masahiko ABE
    Inventors: Makoto YUASA, Masahiko ABE, Aritomo Yamaguchi, Asako Shiozawa, Masuhide Ishikawa, Katsuya Eguchi, Shigeru Kido
  • Publication number: 20110315557
    Abstract: A method of fabricating a motheye mold according to the present invention includes the steps of: (a) anodizing a surface of an aluminum film (10a) via an electrode (32a) that is in contact with the surface, thereby forming a porous alumina layer which has a plurality of very small recessed portions; (b) after step (a), allowing the porous alumina layer to be in contact with an etchant, thereby enlarging the very small recessed portions of the porous alumina layer; and (c) after step (b), further anodizing the surface to grow the plurality of very small recessed portions. The aluminum film is made of aluminum with a purity of 99.99 mass % or higher. The electrode includes a first electrode portion (32a1) which is made of aluminum with a purity of 99.50 mass % or lower and a second electrode portion (32a2) which is made of aluminum with a higher purity than the aluminum of the first electrode portion and which is interposed between the surface and the first electrode portion.
    Type: Application
    Filed: March 2, 2010
    Publication date: December 29, 2011
    Inventors: Hidekazu Hayashi, Tokio Taguchi, Kazuhiko Tsuda
  • Publication number: 20110303554
    Abstract: An enzyme electrode that enables rapid degradation of bisphenol-A (BPA) in a contaminated sample and/or monitoring of BPA concentration in a contaminated sample. The enzyme electrode includes a working electrode having one or more selected enzymes that are capable of degrading BPA linked to the working electrode. The selected enzymes linked to the working electrode are capable of degrading BPA at an enhanced rate in response to an applied voltage. The electrode can be used to monitor BPA concentration in a contaminated sample by measuring current flow through the electrode in response to an applied voltage.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Shinobu Oguchi
  • Publication number: 20110297534
    Abstract: An apparatus and method for hydrogenating a sample, such as a semiconductor wafer. The invention utilizes a top electrode comprising a UV-transparent dielectric and a metal contact to provide an electric field to the sample while the sample is irradiated with UV light and hydrogenated with a hydrogenating gas or gasses. The field may be applied to the sample at a number of different pressures, temperatures and concentrations of gas to manipulate the rate and type of hydrogenation. Further, the method of hydrogenating the sample may be used in conjunction with masking and etching techniques.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 8, 2011
    Applicant: Amethyst Research, Inc.
    Inventors: Orin W. Holland, Ryan J. Cottier, Terry D. Golding, Khalid Hossain, Ronald Paul Hellmer
  • Patent number: 8070924
    Abstract: The present invention provides an electrode for generation of hydrogen comprising: a conductive substrate; a catalytic layer formed on the conductive substrate and containing at least one platinum group metal selected from the group consisting of Pt, Ir, Ru, Pd and Rh; and a hydrogen adsorption layer formed on the catalytic layer. The present invention also provides an electrode for generation of hydrogen comprising: a conductive substrate, a catalytic layer formed on the conductive substrate and containing: at least one platinum group metal selected from the group consisting of Pt, Ir, Ru, Pd and Rh and/or at least one oxide of said platinum group metals; and at least one metal selected from the group consisting of lanthanum series metals, valve metals, iron series metals and silver and/or at least one oxide of said metals; and a hydrogen adsorption layer formed on the catalytic layer.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: December 6, 2011
    Assignee: Permelec Electrode Ltd.
    Inventors: Takeo Ohsaka, Shunsuke Sata, Miwako Nara, Yoshinori Nishiki
  • Publication number: 20110233055
    Abstract: A cathode for receiving electro deposition of metal, the cathode comprising a planar conductive sheet and raised portions disposed on at least one surface of the planar conductive sheet, wherein the planar conductive sheet and the raised portions are integrally formed.
    Type: Application
    Filed: September 8, 2009
    Publication date: September 29, 2011
    Applicant: STEELMORE HOLDINGD PTY LTD
    Inventor: Jason Robert Cerezo
  • Patent number: 8021799
    Abstract: The embodiments generally relate to a high performance ceramic anode which will increase flexibility in the types of fuels that may be used with the anode. The embodiments further relate to high-performance, direct-oxidation SOFC utilizing the anodes, providing improved electro-catalytic activity and redox stability. The SOFCs are capable of use with strategic fuels and other hydrocarbon fuels. Also provided are methods of making the high-performance anodes and solid oxide fuel cells comprising the anodes exhibiting improved electronic conductivity and electrochemical activity.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 20, 2011
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Raymond J. Gorte, John M. Vohs, Michael D. Gross
  • Patent number: 8022004
    Abstract: Various embodiments provide an electrode comprising a conductive substrate, a first layer of a mixture comprising iridium oxide in a crystalline phase and tantalum oxide in an amorphous phase on a portion of an outer surface of the conductive substrate, and a second layer of the mixture comprising iridium oxide in an amorphous phase and tantalum oxide in an amorphous phase on an outer surface of the first layer.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: September 20, 2011
    Assignee: Freeport-McMoran Corporation
    Inventors: Scot P Sandoval, Michael D Waite, Masatsugu Morimitsu, Casey J Clayton
  • Publication number: 20110210004
    Abstract: The invention relates to a method for preparing metal nanoparticle-modified boron-doped diamond the method comprising generating a strong oxidising agent by acid treating a front surface of the boron-doped diamond prior to deposition of the metal nanoparticles onto the front surface of the boron-doped diamond. The metal nanoparticle-modified boron-doped diamond resulting from the acid wash has a front surface which is oxygen terminated. The metal nanoparticle-modified boron-doped diamond may be used in electrodes as an oxygen sensor, the electrode may be made by preparing a boron-doped diamond column; insulating the column so that only a front surface of the column is exposed; polishing the front surface of the column; acid-treating the front surface of the column; and depositing metal nanoparticles onto the front surface of the column.
    Type: Application
    Filed: January 6, 2009
    Publication date: September 1, 2011
    Inventors: Patrick Unwin, Julie Macpherson, Mark Newton
  • Publication number: 20110198230
    Abstract: Soluble nickel and tin contained in a coating layer are eluted into an aqueous solution by bringing a cathode coated with a nickel-tin alloy into contact with an aqueous solution of an alkali metal hydrogen carbonate such as sodium hydrogen carbonate, thereby reducing the amounts of these metals eluted during electrolysis.
    Type: Application
    Filed: November 12, 2009
    Publication date: August 18, 2011
    Inventors: Yasuyuki Tanaka, Kenji Aoki
  • Publication number: 20110192728
    Abstract: A metallic oxygen evolving anode for electrowinning aluminium by decomposition of alumina dissolved in a cryolite-based molten electrolyte, and operable at anode current densities of 1.1 to 1.3 A/cm2, comprises an alloy of nickel, iron, manganese, optionally copper, and silicon. Preferably, the alloy is composed of 64-66 w % Ni; Iron; 25-27 w % Fe; 7-9 w % Mn; 0-0.7 w % Cu; and 0.4-0.6 w % Si. The weight ratio Ni/Fe is in the range 2.1 to 2.89, preferably 2.3 to 2.6, the weight ratio Ni/(Ni+Cu) is greater than 0.98, the weight ratio Cu/Ni is less than 0.01, and the weight ratio Mn/Ni is from 0.09 to 0.15. The alloy surface can comprise nickel ferrite produced by pre-oxidation of the alloy. The alloy, optionally with a pre-oxidised surface, can be coated with an external coating comprising cobalt oxide CoO.
    Type: Application
    Filed: September 1, 2009
    Publication date: August 11, 2011
    Applicant: RIO TINTO ALCAN INTERNATIONAL LIMITED
    Inventor: Thinh Trong Nguyen
  • Publication number: 20110185905
    Abstract: An electric precipitator to collect contaminants, such as dust, using electrical attraction. The electric precipitator includes high-voltage electrode plates and low-voltage electrode plates alternately stacked to form an electrification region and a collection region in an air flow direction, wherein each of the high-voltage electrode plates includes a discharge electrode to generate discharge between the discharge electrode and an opposite electrode so that contaminants are electrified in the electrification region and a collection electrode disposed over the electrification region and the collection region to collect the electrified contaminants in the collection region.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun Ho Jl, In Sang Hwang, Hyong Soo Noh, Byeong Cheol Yoon, Kochiyama Yasuhiko, Du Seop Yoon, So Young Yun, Jun Young Lee
  • Publication number: 20110168550
    Abstract: Embodiments described herein provide methods and systems for manufacturing faster charging, higher capacity energy storage devices that are smaller, lighter, and can be more cost effectively manufactured at a higher production rate. In one embodiment, a graded cathode structure is provided. The graded cathode structure comprises a conductive substrate, a first porous layer comprising a first cathodically active material having a first porosity formed on the conductive substrate, and a second porous layer comprising a second cathodically active material having a second porosity formed on the first porous layer. In certain embodiments, the first porosity is greater than the second porosity. In certain embodiments, the first porosity is less than the second porosity.
    Type: Application
    Filed: November 23, 2010
    Publication date: July 14, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Connie P. Wang, Sergey D. Lopatin, Robert Z. Bachrach, Godfrey Sikha
  • Publication number: 20110168546
    Abstract: There are disclosed a material of an electrode for electrolysis which can highly efficiently generate an ozone water by the electrolysis of water, an electrode for electrolysis, and a manufacturing method of the electrode for electrolysis. The material of the electrode for electrolysis which is an alloy comprising platinum and silver and having a concentration of silver from 1 wt % or more to 50 wt % or less is used as a surface layer formed on the surface of a base member, whereby in the electrolysis by the electrode for electrolysis, active oxygen species such as ozone and OH radicals can efficiently be generated with a low current density.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 14, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Masaaki Nemoto
  • Publication number: 20110147205
    Abstract: A method for producing nanostructured coatings on a substrate, comprising: preparing a nanocrystalline powder of a powder size comprised between 1 and 60 ?m; and combining cleaning the surface of the substrate and cold spraying the nanocrystalline powder on the surface of the substrate, and a system for producing nanocrystalline coatings on a substrate, comprising a spray head, a cleaning head and a handling system monitoring the spray head and the cleaning head relative to the substrate to be coated, the spray head being a first cold spray head, the first cold spray head depositing on the substrate at least one nanocrystalline powder, the cleaning head optimizing the surface being coated with the at least one layer of nanocrystalline powder.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 23, 2011
    Inventors: Daniel GUAY, Eric Irissou, Jean Gabriel Legoux, Lionel Roue
  • Publication number: 20110139629
    Abstract: An electrode material, an electrode and a process for hydrogen chloride electrolysis based on platinum metal as catalyst, in which the electrode material has a nanosize mixture of platinum particles and silver particles, is described.
    Type: Application
    Filed: August 12, 2009
    Publication date: June 16, 2011
    Applicant: Bayer Material Science AG
    Inventors: Rainer Weber, Jürgen Kintrup, Wolfgang Schuhmann, Michael Bron, Artjom Maljusch, Chikka Nagaiah Tharamani
  • Patent number: 7961452
    Abstract: The semiconductor photoelectrode of the present invention includes a metallic substrate having irregularities in a surface and a semiconductor layer which is formed on the surface of the metallic substrate and composed of a photocatalytic material. This can increase the light absorption efficiency and, furthermore, prevent recombination of charges.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 14, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Oi, Yasukazu Iwasaki, Kazuhiro Sayama