Specified Mask, Shield Or Shutter Patents (Class 204/298.11)
  • Patent number: 9382167
    Abstract: An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: July 5, 2016
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Gregory M. Fritz, Timothy P. Weihs, Justin A. Grzyb
  • Patent number: 9368331
    Abstract: The present invention provides a highly efficient magnetron sputtering apparatus in which a ground shield made of a magnetic material is disposed on the outer circumference of a target, the sputtering apparatus being capable of reducing unintended discharge between a cathode and the ground shield. The sputtering apparatus according to an embodiment includes: a backing plate connected to a power supply and having a target mounting surface; a magnet disposed on the back surface of the backing plate; a grounded shield containing a magnetic material and surrounding the target mounting surface; and a fixation part located between the shield and the backing plate at an outer circumference of the target mounting surface and serving as a magnetic member. This structure reduces magnetic field lines which pass through a space between the shield and the fixation part.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: June 14, 2016
    Assignee: Canon Anelva Corporation
    Inventors: Masato Shinada, Keisuke Ueda
  • Patent number: 9157144
    Abstract: It comprises a mask (11) having a first, a second and a third action edge (11a, 11b, 11c), and a drive means for moving the mask (11) relative to a substrate (12) in a uniaxial direction (A) whereby moving the mask at a fixed rate of movement to cause the edges to successively act on an identical substrate region while successively applying different materials thereto forms thin films of three components successively with respective film thickness gradients oriented in three different directions mutually angularly spaced apart by an angle of 120° to allow these films to overlap, thereby forming a ternary phase diagrammatic thin film 13.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: October 13, 2015
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideomi Koinuma, Yukio Yamamoto, Yuji Matsumoto, Ryota Takahashi
  • Patent number: 9109285
    Abstract: An apparatus includes a plurality of target electrodes having attachment surfaces, a substrate holder, a first shutter member provided between the plurality of target electrodes and the substrate holder and having a plurality of openings, a first separating portion disposed between the openings of the first shutter member on its surface of the target electrode side, and a second separating portion disposed between the first shutter member and the target electrodes. The first shutter member is driven so as to bring the first separating portion and the second separating portion toward each other so that an indirect path can be formed between the first separating portion and the second separating portion, and driven so as to bring the first separating portion and the second separating portion away from each other so that the first shutter plate can be rotated.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: August 18, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Yuji Kajihara, Yasushi Yasumatsu, Kazuya Konaga
  • Patent number: 9109283
    Abstract: A structure of reaction chamber of semiconductor sputtering equipment is disclosed, including a chamber case, an elevation platform, a plurality of target fixing elements, a carrier ring and a covering protective ring, wherein the contact surface of the target fixing element, the ring-shaped protruding surface of the carrier ring and the attachment surface of the covering protective ring are all coarse surfaces with uneven patterns. As such, during sputtering, the contact surface, ring-shaped protruding surface and attachment surface can withstand the deposition thickening and extend the cycle of cleaning components and life span so as to improve utilization rate of the equipment and reduce the manufacturing cost.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: August 18, 2015
    Assignee: SHIH HER TECHNOLOGIES INC.
    Inventors: Wen-Chin Ho, Tsung-Chih Chou, Shyue-Jer Chern
  • Patent number: 9090974
    Abstract: An electronic device manufacturing method includes a first step of moving a substrate holder close to a first shield member and locating a first projecting portion formed on the first shield member and having a ring shape and a second projecting portion having a ring shape and formed on a second shield member installed on the surface of the substrate holder at the outer peripheral portion of a substrate at a position to engage with each other in a noncontact state, a second step of, after the first step, sputtering a target while maintaining the first projecting portion and the second projecting portion at the position to engage with each other in the noncontact state, and a third step of, after the second step, setting the first shield member in an open state and sputtering the target to perform deposition on the substrate.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 28, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Nobuo Yamaguchi, Kazuaki Matsuo
  • Patent number: 9062379
    Abstract: Embodiments described herein generally relate to components for a semiconductor processing chamber, a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a process kit. In one embodiment a lower shield for encircling a sputtering target and a substrate support is provided. The lower shield comprises a cylindrical outer band having a first diameter dimensioned to encircle the sputtering surface of the sputtering target and the substrate support, the cylindrical band comprising a top wall that surrounds a sputtering surface of a sputtering target and a bottom wall that surrounds the substrate support, a support ledge comprising a resting surface and extending radially outward from the cylindrical outer band, a base plate extending radially inward from the bottom wall of the cylindrical band, and a cylindrical inner band coupled with the base plate and partially surrounding a peripheral edge of the substrate support.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: June 23, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Martin Lee Riker, Keith A. Miller, Anantha Subramani
  • Patent number: 9062372
    Abstract: A DC magnetron sputter reactor for sputtering deposition materials such as tantalum and tantalum nitride, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and capacitively coupled plasma (CCP) sputtering are promoted, either together or alternately, in the same chamber. Also, bottom coverage may be thinned or eliminated by inductively-coupled plasma (ICP) resputtering. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. CCP is provided by a pedestal electrode which capacitively couples RF energy into a plasma. The CCP plasma is preferably enhanced by a magnetic field generated by electromagnetic coils surrounding the pedestal which act to confine the CCP plasma and increase its density.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 23, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Xianmin Tang, John C. Forster, Umesh Kelkar
  • Patent number: 9034152
    Abstract: A reactive sputtering apparatus includes a chamber, a substrate holder provided in the chamber, a target holder which is provided in the chamber and configured to hold a target, a deposition shield plate which is provided in the chamber so as to form a sputtering space between the target holder and the substrate holder, and prevents a sputter particle from adhering to an inner wall of the chamber, a reactive gas introduction pipe configured to introduce a reactive gas into the sputtering space, an inert gas introduction port which introduces an inert gas into a space that falls outside the sputtering space and within the chamber, and a shielding member which prevents a sputter particle from the target mounted on the target holder from adhering to an introduction port of the reactive gas introduction pipe upon sputtering.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 19, 2015
    Assignee: CANON ANELVA CORPORATION
    Inventors: Nobuo Yamaguchi, Kazuaki Matsuo, Susumu Akiyama, Satoshi Uchino, Yoshimitsu Shimane
  • Patent number: 9034156
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 19, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Publication number: 20150129414
    Abstract: A physical vapor deposition (PVD) chamber, a process kit of a PVD chamber and a method of fabricating a process kit of a PVD chamber are provided. In various embodiments, the PVD chamber includes a sputtering target, a power supply, a process kit, and a substrate support. The sputtering target has a sputtering surface that is in contact with a process region. The power supply is electrically connected to the sputtering target. The process kit has an inner surface at least partially enclosing the process region, and a liner layer disposed on the inner surface. The substrate support has a substrate receiving surface, wherein the liner layer disposed on the inner surface of the process kit has a surface roughness (Rz), and the surface roughness (Rz) is substantially in a range of 50-200 ?m.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Wei BIH, Wei-Jen CHEN, Yen-Yu CHEN, Hsien-Chieh HSIAO, Chang-Sheng LEE, Wei-Chen LIAO, Wei ZHANG
  • Patent number: 9017534
    Abstract: Disclosed is a vacuum deposition apparatus which suppresses mutual interference of magnetic fields generated by multiple magnetic-field applying mechanisms for evaporation sources. The vacuum deposition apparatus includes a deposition chamber; a magnetic-field applying mechanism of sputtering evaporation source disposed in the deposition chamber; a magnetic-field applying mechanism of arc evaporation source disposed in the same deposition chamber; and magnetic-field shielding units arranged so as to cover partially or entirely at least one of these magnetic-field applying mechanisms for evaporation sources (preferably the magnetic-field applying mechanism of sputtering evaporation source). Portions (portions to face a target material upon dosing) of openable units of magnetic-field shielding units are preferably made from a non-magnetic material.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 28, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Kenji Yamamoto, Satoshi Hirota
  • Patent number: 9017526
    Abstract: The disclosed embodiments relate to methods and apparatus for removing material from a substrate. In various implementations, conductive material is removed from a sidewall of a previously etched feature such as a trench, hole or pillar on a semiconductor substrate. In practicing the techniques herein, a substrate is provided in a reaction chamber that is divided into an upper plasma generation chamber and a lower processing chamber by a corrugated ion extractor plate with apertures therethrough. The extractor plate is corrugated such that the plasma sheath follows the shape of the extractor plate, such that ions enter the lower processing chamber at an angle relative to the substrate. As such, during processing, ions are able to penetrate into previously etched features and strike the substrate on the sidewalls of such features. Through this mechanism, the material on the sidewalls of the features may be removed.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: April 28, 2015
    Assignee: Lam Research Corporation
    Inventors: Harmeet Singh, Alex Paterson
  • Patent number: 8999121
    Abstract: The present invention provides a sputtering apparatus and a film-forming method capable of forming a magnetic film having a reduced variation in the orientation of the magnetic anisotropy. The sputtering apparatus of the present invention is equipped with a rotatable cathode and a rotatable stage. The stage can have an electrostatic chuck. Moreover, the stage may electrically be connected with a bias power source capable of applying a bias voltage to the stage. Furthermore, the stage may have the electrostatic chuck and electrically be connected with the bias power source.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Kyosuke Sugi, Tetsuya Endo, Einstein Noel Abarra
  • Patent number: 8992749
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: March 31, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Patent number: 8986522
    Abstract: A wafer holder including a wafer stage and a wafer stage outer-ring surrounding the wafer stage wherein the wafer stage has a diameter smaller than the diameter of a wafer loaded on the wafer stage, the wafer stage outer-ring has an inner diameter at the upper side of the outer-ring which is larger than the diameter of the wafer loaded on the wafer stage, and the upper surface of the outer-ring lies above the upper surface of the wafer loaded on the wafer stage.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 24, 2015
    Assignee: Canon Anelva Corporation
    Inventor: Sunil Wickramanayaka
  • Publication number: 20150075981
    Abstract: The present invention relates to a rotating magnetron sputtering target and a corresponding magnetron sputtering device. The rotating magnetron sputtering target comprises a cylindrical target, a pole shoe and a plurality of magnetrons. The magnetron comprises a first magnetic pole arranged on a central portion thereof and two second magnetic poles arranged on both sides thereof, and the first and the second magnetic poles have opposite polarities. The rotating magnetron sputtering target and the corresponding magnetron sputtering device of the present invention improve the plasma density within a coating region, so that it forms a film with better quality and better uniformity.
    Type: Application
    Filed: June 14, 2012
    Publication date: March 19, 2015
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO. LTD.
    Inventor: Hao Kuo
  • Publication number: 20150075980
    Abstract: Apparatus for physical vapor deposition are provided. In some embodiments, an apparatus for use in a physical vapor deposition substrate processing chamber includes a process shield having a central opening passing through a body of the process shield and defining a processing volume of the substrate processing chamber, wherein the process shield comprises an annular dark space shield fabricated from a ceramic material and an annular ground shield fabricated from a conductive material, and wherein a ratio of a length of the annular dark space shield to a length of the annular ground shield is about 2:1 to about 1.6:1.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: THANH NGUYEN, RONGJUN WANG, MUHAMMAD M. RASHEED, XIANMIN TANG
  • Publication number: 20150075979
    Abstract: There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) adapted to create vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the 32 engraved surface (10a) of the intaglio printing plate (10).
    Type: Application
    Filed: April 12, 2013
    Publication date: March 19, 2015
    Inventors: François Gremion, Laurent Claude
  • Publication number: 20150068887
    Abstract: According to one embodiment, a method of manufacturing a magnetoresistive element includes intermittently exposing a surface of a base substrate to sputter particles from a sputter target, and thereby forming a thin film on the base substrate.
    Type: Application
    Filed: January 16, 2014
    Publication date: March 12, 2015
    Inventors: Makoto NAGAMINE, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Kazuya SAWADA, Toshihiko NAGASE
  • Patent number: 8974649
    Abstract: In some embodiments of the present invention, a shield is provided wherein the shield comprises a ceramic insulation material. The ceramic insulation material fills the space between the shield and the substrate surface and maintains a gap of less than about 2 mm and advantageously, less than about 1 mm. The shield may further be connected to ground through a low-pass filter operable to prevent the loss of high frequency RF power through the shield to ground but allow the dissipation of charge from the shield to ground through a low frequency or DC signal. In some embodiments, the ceramic insulating material further comprises a removable ceramic insert. The ceramic insert may be used to select the size of the aperture. The ceramic insert further comprises a slot operable to isolate the bottom lip of the ceramic insert from the upper portion for a PVD deposition.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: March 10, 2015
    Assignee: Intermolecular, Inc.
    Inventors: ShouQian Shao, Kent Riley Child, James Tsung, Hong Sheng Yang
  • Patent number: 8973526
    Abstract: A plasma deposition apparatus includes a cathode assembly including a cathode disk and a water-coolable cathode holder supporting the cathode disk, an anode assembly including a water-coolable anode holder, a substrate mounted on the anode holder to serve as an anode, and a substrate holder mounting and supporting the substrate, and a reactor for applying a potential difference between opposing surfaces of the cathode assembly and the anode assembly under a vacuum state to form plasma of a raw gas. The cathode disk comes into thermal contact with the cathode holder using at least one of a self weight and a vacuum absorption force so as to permit thermal expansion of the cathode disk.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 10, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Wook Seong Lee, Young Joon BaiK, Jong-Keuk Park, Gyu Weon Hwang, Jeung-hyun Jeong
  • Patent number: 8974648
    Abstract: The present invention provides a reactive sputtering method and a reactive sputtering apparatus which suppress a film quality change caused by a temperature variation in continuous substrate processing. An embodiment of the present invention performs reactive sputtering while adjusting a flow rate of reactive gas according to the temperature of a constituent member facing a sputtering space. Specifically, a temperature sensor is provided on a shield and the flow rate is adjusted according to the temperature. Thereby, even when a degassing amount of a film adhering to the shield changes, a partial pressure of reactive gas can be set to a predetermined value. For a resistance change layer constituting a ReRAM, a perovskite material such as PrCaMn03 (PCMO), LaSrMnO3 (LSMO), and GdBaCoxOy (GBCO), a two-element type transition metal oxide material which has a composition shifted from a stoichiometric one, such as nickel oxide (NiO), vanadium oxide (V2O5), and the like are used.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 10, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Yuichi Otani, Takashi Nakagawa
  • Patent number: 8968537
    Abstract: Embodiments of the invention provide sputtering targets utilized in physical vapor deposition (PVD) and methods to form such sputtering targets. In one embodiment, a sputtering target contains a target layer disposed on a backing plate, and a protective coating layer—usually containing a nickel material—covering and protecting a region of the backing plate that would otherwise be exposed to plasma during the PVD processes. In many examples, the target layer contains a nickel-platinum alloy, the backing plate contains a copper alloy (e.g., copper-zinc), and the protective coating layer contains metallic nickel. The protective coating layer eliminates the formation of highly conductive, copper contaminants typically derived by plasma erosion of the copper alloy contained within the exposed surfaces of the backing plate. Therefore, the substrates and the interior surfaces of the PVD chamber remain free of such copper contaminants during the PVD processes.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Muhammad M. Rasheed, Rongjun Wang
  • Patent number: 8956516
    Abstract: Embodiments of the invention relate generally to semiconductor device fabrication and processes, and more particularly, to an apparatus and a system for implementing arrangements of magnetic field generators configured to facilitate physical vapor deposition (“PVD”) and/or controlling impedance matching associated with a non-metal-based plasma used to modify a non-metal film, such as a chalcogenide-based film.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: February 17, 2015
    Assignee: Semicat, Inc.
    Inventors: Jin Hyun Kim, Michael Nam, Jae Yeol Park, Jonggu Park
  • Patent number: 8956513
    Abstract: There is provided a substrate processing method, in which a throughput can be improved even in case the time for recovery processing for restoring the state of a processing chamber is longer than the time for predetermined processing to be performed in the processing chamber. Substrates are alternately transferred to two processing chambers C, D, and the same film forming processing is performed on the substrates in the processing chambers C, D in parallel with each other. When the number of substrates processed in the processing chamber C has reached a predetermined number (11 substrates), dummy sputtering processing in the film forming chamber C is started and also 23rd-25th substrates of the first lot are transferred to the film forming chamber D to thereby perform film forming processing until the dummy sputtering processing is finished.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: February 17, 2015
    Assignee: Ulvac, Inc.
    Inventors: Shinya Nakamura, Yoshinori Fujii, Hideto Nagashima
  • Publication number: 20150034481
    Abstract: The present invention provides a fastening member which involves only a low risk of contamination even after repeatedly performing a detachment operation, and to provide a vacuum device including it. One embodiment is a fastening member comprising: a head section including a head-upper-face portion, a seating face portion, and a head-side-face portion; and a shaft section and including a threaded portion on an end portion thereof on the opposite side from the head section, wherein the threaded portion is given hardness higher than at least those of the other portions of the fastening member, and when the member is attached to the inner wall of the chamber with the fastening member, the threaded portion is threadedly engaged with an internally threaded portion provided in the inner wall of the chamber, and the sealing face portion presses the member against the inner wall of the chamber.
    Type: Application
    Filed: September 10, 2014
    Publication date: February 5, 2015
    Inventor: Shigenori ISHIHARA
  • Publication number: 20150027307
    Abstract: The present invention relates to a method for preparing a hydrogen separation membrane capable of preventing the plating of Pd inside a porous support and a porous shielding layer when a separation membrane is prepared; a hydrogen separation membrane prepared therefrom; and a use thereof. In addition, the present invention relates to a device for preparing a hydrogen separation membrane; and a method for preparing a hydrogen separation membrane using the device, and in particular, relates to a device for preparing a hydrogen separation membrane capable of stably growing a Pd-containing separation membrane for hydrogen gas separation as a plating solution grows from the upper surface of a porous support to a uniform thickness by simply shielding the lower surface of the porous support when a hydrogen separation membrane is prepared using an electroless plating method.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 29, 2015
    Inventors: Shin Kun Ryi, Beom Seok Seo, Jong Soo Park, Dong Wook Lee, Sung Wook Lee
  • Patent number: 8920618
    Abstract: Apparatuses and methods for high-deposition-rate sputtering for depositing layers onto a substrate are disclosed. The apparatuses generally comprise a process chamber; one or more sputtering sources disposed within the process chamber, wherein each sputtering source comprises a sputtering target; a substrate support disposed within the process chamber; a shield positioned between the sputtering sources and the substrate, the shield comprising an aperture positioned under each sputtering source; and a transport system connected to the substrate support capable of positioning the substrate such that one of a plurality of site-isolated regions on the substrate can be exposed to sputtered material through the aperture positioned under each of the sputtering sources; wherein the spacing between the sputtering target and the substrate is less than 100 mm. The apparatus enables high deposition rate sputtering onto site-isolated regions on the substrate.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: December 30, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Hong Sheng Yang, Zhendong Hong, Chi-I Lang
  • Publication number: 20140374250
    Abstract: A sputtering apparatus includes a deposition preventing plate arranged between a substrate stage and a plurality of cathode electrodes, and a shutter plate arranged between the deposition preventing plate and the substrate stage. The deposition preventing plate has holes at positions respectively facing a plurality of targets held by the plurality of cathode electrodes. Concentric concavo-convex shapes centered on the rotation axis of the shutter plate are formed on surfaces, that face each other, of the deposition preventing plate and the shutter plate.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Inventor: Shigenori ISHIHARA
  • Patent number: 8916032
    Abstract: The present invention discloses an improved method of LED reflector manufacturing process where the method includes providing a substrate, wherein said substrate comprises a reflector unit, and a Light Emitting Diode; providing a shield member with ferromagnetic property; placing said shield member over the desired area of over the substrate; providing a magnet where said shield member is attracted to; placing said magnet immediately below the substrate wherein said magnet is capable of immobilizing the shield member over the substrate; performing a vacuum deposition coating; and removing the magnet and the shield member.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: December 23, 2014
    Inventors: Roger Wen Yi Hsu, Shu-Yu Hsu, Shu-His Hsu
  • Publication number: 20140367250
    Abstract: A deposition system for depositing a thin film photovoltaic cell on a flexible substrate comprises an enclosure that is fluidically isolated from an environment external to the enclosure, and a plurality of deposition chambers in the enclosure. At least one deposition chamber of the plurality of deposition chambers comprises a magnetron sputtering apparatus that directs a material flux of one or more target materials towards a portion of the flexible substrate that is disposed in the at least one deposition chamber of the plurality of deposition chambers. A substrate payout roller in the enclosure provides a flexible substrate that is directed through each of the plurality of deposition chambers to a substrate take-up roller in the enclosure. At least one guide roller in the enclosure is configured to direct the flexible substrate to or from a given deposition chamber among the plurality of deposition chambers.
    Type: Application
    Filed: January 18, 2013
    Publication date: December 18, 2014
    Applicant: NUVOSUN, INC.
    Inventors: Bruce D. Hachtmann, Josef Bonigut, Qing Qian, Dennis R. Hollars, Xiaodong Liu
  • Patent number: 8911601
    Abstract: Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a deposition ring and a pedestal assembly. The components of the process kit work alone, and in combination, to significantly reduce their effects on the electric fields around a substrate during processing.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: December 16, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Muhammad Rasheed, Keith A. Miller, Rongjun Wang
  • Patent number: 8906207
    Abstract: The present disclosure includes a method for control of a film composition with co-sputter physical vapor deposition. In one implementation, the method includes: positioning first and second PVD guns above a substrate, selecting first and second collimators having first and second sets of physical characteristics, positioning the first and second collimators between the first and second PVD guns and the substrate, sputtering at least one material from the first and second PVD guns through the first and second collimators upon application of a first power and second power, wherein the first PVD gun has a first deposition rate from the first collimator at the first power, and the second PVD gun has a second deposition rate from the second collimator at the second power.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: December 9, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Hong Sheng Yang, Chi-I Lang, Tony Chiang
  • Publication number: 20140353150
    Abstract: A sputtering apparatus for depositing a deposition material on a substrate, the sputtering apparatus including a chamber; a target in the chamber, the target including the deposition material; and a shield between the substrate and an inner wall of the chamber, the shield including a plurality of sub-shields.
    Type: Application
    Filed: April 15, 2014
    Publication date: December 4, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jae-Bum PARK, Bo-Hwan PARK, Eui-Jung KANG
  • Patent number: 8900426
    Abstract: A sputtering apparatus including a target holder configured to hold at least two targets; a substrate holder configured to hold a substrate; a first shutter plate arranged between the target holder and the substrate holder, the first shutter plate having at least two holes and being capable of rotating around an axis; a second shutter plate arranged between the first shutter plate and the substrate holder, the second shutter plate having at least two holes and being capable of rotating around the axis; wherein the first and second shutter plates are rotated such that paths are simultaneously created between the at least two targets and the substrate through the at least two holes of the rotated first shutter plate and the at least two holes of the rotated second shutter plate, and a film is formed on the substrate by co-sputtering of the at least two targets.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: December 2, 2014
    Assignee: Canon Anelva Corporation
    Inventors: Shuji Nomura, Ayumu Miyoshi, Hiroshi Miki
  • Publication number: 20140342102
    Abstract: In a system and method of depositing material on a substrate, a shadow mask, including one or more apertures therethrough, in intimate contact with the substrate is provided inside of a chamber or reactor. Material ejected from a solid target material is deposited on one or more portions of the substrate after passage through the one or more apertures of the shadow mask. Desirably, a target-to-substrate distance is within a mean free path length at a specified deposition pressure. Alternatively, an electric field acts on a process gas to create a plasma that includes ionized atoms or molecules of the material that are deposited on one or more portions of the substrate after passage through the one or more apertures of the shadow mask.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 20, 2014
    Applicant: ADVANTECH GLOBAL, LTD
    Inventors: Thomas F. Ambrose, Byron B. Brocato, Jong Guang Pan
  • Publication number: 20140311895
    Abstract: To improve the result of a glow discharge process is disclosed to be performed in a Physical Vapor Deposition (PVD) coating apparatus comprising a door, at least 2 lateral rotating cathodes with targets. The apparatus is equipped by rotating shields or tube shutters (4). The method comprises the steps of operating the apparatus so that the arc of said second electrode (2) burns directly to said door. The rotary shield or tube shutter on a first electrode (1) is open and said rotary shield or tube shutter (4) on a second electrode (2) is closed. Then a positive potential is applied on said first electrode (1), so that a potential between said second electrode (2) and said first electrode (1) is applied. The positive potential applied on said first electrode (1) is selected so that the electron stream does not burn only against the door since the electrons being affected by the higher potential to said first electrode (1).
    Type: Application
    Filed: May 3, 2012
    Publication date: October 23, 2014
    Inventors: Tibor Cselle, Jllek Mojmir
  • Publication number: 20140284210
    Abstract: A sputtering apparatus includes a backing plate, a fixing portion, and a shield surrounding the periphery of a target and having an opening. The fixing portion fixes the target to the backing plate by pressing the peripheral portion of the target against the backing plate. The shield includes a facing portion facing the backing plate without the fixing portion intervening between them, and an outer portion formed outside the facing portion. The gap between the facing portion and the backing plate is smaller than the gap between the outer portion and the backing plate. The inner surface of the shield, which faces a processing space, includes a portion which inclines such that the distance between the inner surface and the backing plate decreases from the outer portion to the facing portion.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Applicant: CANON ANELVA CORPORATION
    Inventor: Shigenori ISHIHARA
  • Publication number: 20140262764
    Abstract: Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: ALAN RITCHIE, JOHN C. FORSTER, MUHAMMAD RASHEED
  • Publication number: 20140262765
    Abstract: A deposition method comprises flowing a first gas into a metallization zone maintained at a first pressure. A second gas flows into a reaction zone maintained at a second pressure. The second pressure is less than the first pressure. A rotating drum includes at least one substrate mounted to a surface of the drum. The surface alternately passes through the metallization zone and passes through the reaction zone. A target is sputtered in the metallization zone to create a film on the at least one substrate. The film on the at least one substrate is reacted in the reaction zone.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 18, 2014
    Applicant: Vaeco, Inc.
    Inventor: Richard DeVito
  • Publication number: 20140262763
    Abstract: Embodiments of a process kit for substrate process chambers are provided herein. In some embodiments, a process kit for a substrate process chamber may include a ring having a body and a lip extending radially inward from the body, wherein the body has a first annular channel formed in a bottom of the body; an annular conductive shield having a lower inwardly extending ledge that terminates in an upwardly extending portion configured to interface with the first annular channel of the ring; and a conductive member electrically coupling the ring to the conductive shield when the ring is disposed on the conductive shield.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MUHAMMAD M. RASHEED, KIRANKUMAR SAVANDAIAH, WILLIAM JOHANSON, ZHENBIN GE, GOICHI YOSHIDOME
  • Publication number: 20140262766
    Abstract: A processing apparatus for processing a substrate in a vacuum processing space in a chamber includes a shield arranged in the chamber, and a holding portion configured to hold the shield by a magnetic force. The holding portion has a holding surface on which a first magnet is arranged. The shield includes a second magnet configured to generate an attraction force with respect to the first magnet, and a receiving portion configured to receive a tool configured to move the shield with respect to the holding portion.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: CANON ANELVA CORPORATION
    Inventor: Yasushi Yasumatsu
  • Publication number: 20140251789
    Abstract: Methods and apparatus for processing a substrate in a physical vapor deposition (PVD) chamber are provided herein. In some embodiments, a process kit shield used in a substrate processing chamber may include a shield body having an inner surface and an outer surface, a process kit shield impedance match device coupled between the shield body and ground, wherein the process kit shield impedance match device is configured to adjust a bias voltage of the process kit shield, a cavity formed on the outer surface of the shield body, and one or more magnets disposed within the cavity.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventor: KEITH A. MILLER
  • Publication number: 20140242501
    Abstract: A deposition chamber shield having a stainless steel coating of from about 100 microns to about 250 microns thick wherein the coated shield has a surface roughness of between about 300 microinches and about 800 microinches and a surface particle density of less than about 0.1 particles/mm2 of particles between about 1 micron and about 5 microns in size and no particles below about 1 micron in size, and process for production thereof is disclosed.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicants: SEMATECH, INC., ASAHI GLASS CO., LTD.
    Inventors: Vibhu Jindal, Junichi Kageyama
  • Publication number: 20140238849
    Abstract: Sputtering chambers including one or more first sputtering targets within the sputtering chamber and one or more second sputtering targets are generally provided. Each first sputtering target comprises a source material, and each second sputtering target comprises the source material and a dopant. A conveyor system is configured to transport a plurality of substrates through the sputtering chamber to deposit a thin film onto a surface of each substrate. A power source is electrically connected to each of the first sputtering targets and the second sputtering target. A target shield can also be included within the sputtering chamber, and can be positioned between a portion of the second sputtering target and the conveyor system. The dopant can be present within the second sputtering target as a discrete insert within a cavity defined by the source material. Methods are also provided for making a sputtering target and depositing a thin film.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicant: First Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Stacy Ann Black, Robert Dwayne Gossman, Patrick Lynch O'Keefe
  • Patent number: 8795488
    Abstract: In some embodiments, a feed structure to couple RF energy to a target may include a body having a first end to receive RF energy and a second end opposite the first end to couple the RF energy to a target, the body further having a central opening disposed through the body from the first end to the second end; a first member coupled to the body at the first end, wherein the first member comprises a first element circumscribing the body and extending radially outward from the body, and one or more terminals disposed in the first member to receive RF energy from an RF power source; and a source distribution plate coupled to the second end of the body to distribute the RF energy to the target, wherein the source distribution plate includes a hole disposed through the plate and aligned with the central opening of the body.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 5, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Muhammad Rasheed, Lara Hawrylchak, Michael S. Cox, Donny Young, Kirankumar Savandaiah, Alan Ritchie
  • Patent number: 8795487
    Abstract: Embodiments of the present invention provide improved methods and apparatus for physical vapor deposition (PVD) processing of substrates. In some embodiments, an apparatus for physical vapor deposition (PVD) may include a target assembly having a target comprising a source material to be deposited on a substrate, an opposing source distribution plate disposed opposite a backside of the target and electrically coupled to the target along a peripheral edge of the target, and a cavity disposed between the backside of the target and the source distribution plate; an electrode coupled to the source distribution plate at a point coincident with a central axis of the target; and a magnetron assembly comprising a rotatable magnet disposed within the cavity and having an axis of rotation that is aligned with a central axis of the target assembly, wherein the magnetron assembly is not driven through the electrode.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 5, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Alan Ritchie, Keith Miller
  • Patent number: 8795466
    Abstract: Apparatus and methods are provided that enable processing of patterned layers on substrates using a detachable mask. Unlike prior art where the mask is formed directly over the substrate, according to aspects of the invention the mask is made independently of the substrate. During use, the mask is positioned in close proximity or in contact with the substrate so as to expose only portions of the substrate to processing, e.g., sputtering or etch. Once the processing is completed, the mask is moved away from the substrate and may be used for another substrate. The substrate may be cycled for a given number of substrates and then be removed for cleaning or disposal.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Intevac, Inc.
    Inventors: Michael S. Barnes, Terry Bluck
  • Patent number: 8790499
    Abstract: A process kit for a sputtering chamber comprises a deposition ring, cover ring, and a shield assembly, for placement about a substrate support in a sputtering chamber. The deposition ring comprising an annular band with an inner lip extending transversely, a raised ridge substantially parallel to the substrate support, an inner open channel, and a ledge radially outward of the raised ridge. A cover ring at least partially covers the deposition ring, the cover ring comprising an annular plate comprising a footing which rests on a surface about the substrate support, and downwardly extending first and second cylindrical walls.
    Type: Grant
    Filed: November 12, 2006
    Date of Patent: July 29, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Donny Young, Alan Alexander Ritchie, Ilyoung (Richard) Hong, Kathleen A. Scheible