With Injector Patents (Class 204/604)
  • Patent number: 6783647
    Abstract: Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: August 31, 2004
    Assignee: UT-Battelle, LLC
    Inventors: Christopher T. Culbertson, Stephen C. Jacobson, Maxine A. McClain, J. Michael Ramsey
  • Patent number: 6783649
    Abstract: The invention is directed to a high throughput capillary electrophoresis (CE) system, which comprises multiple mobile CE detector modules that are transportable by a programmable fluid-handling arm assembly to fixed samples in microtiter plate wells for analysis. The CE system of the invention is capable of simultaneously automating sample preparation and multiple CE analysis of the sample in a continuous timely process. The CE detector modules of the invention may be equipped with any suitable detection method, such as an ultraviolet (UV) absorbance or a laser-induced fluorescence (LIF) detector.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: August 31, 2004
    Assignee: Cetek Corporation
    Inventors: Herbert J. Hedberg, Brian Kangas, James L. Waters
  • Patent number: 6780617
    Abstract: A device for processing a biological sample includes a processing unit having at least one opening to receive a sample vessel and a plurality of processing stations positioned along the opening. The processing stations each have a compression member adapted to compress the sample vessel within the opening and thereby move the sample within the sample vessel among the processing stations. An energy transfer element can be coupled to one or more of the processing stations for transferring thermal energy to the sample at a processing station. The device can be used for PCR processing of nucleic acid samples. A sample vessel of the present invention can be a tubule flow-chamber having a plurality of segments separated by pressure gates. The sample vessel minimizes sample handling by providing a closed tubule in which distinct processing steps can be carried out in each of the segments of the tubule.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: August 24, 2004
    Assignee: Chen & Chen, LLC
    Inventor: Shuqi Chen
  • Patent number: 6773567
    Abstract: A method for fabricating a capillary element for electrokinetic transport of materials. The method comprises providing a first capillary element which has a first capillary channel disposed through its length. The capillary channel comprises first and second ends and an outer surface. A continuous layer of an electrically conductive material is applied along a length of the outer surface such that the continuous layer of electrically conductive material extends along the outer surface to a point proximal to, but not up to at least one of the first and second ends. The capillary element is then segmented into at least first and second separate capillary element portions at an intermediate point of the capillary element and the continuous layer.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: August 10, 2004
    Assignee: Caliper Life Sciences, Inc.
    Inventor: Jeffrey A. Wolk
  • Patent number: 6764648
    Abstract: A substrate with a plurality of microchannels is movably deployed with other movable objects that will load sample into the microchannels, stimulate molecular migration, read the results of the migration, remove and replace the substrate, and prepare for a new run. The other objects include a gripper for engaging and moving the substrate, an electrode array of fine wires suitable for fitting into the microchannels for electromigration, and a scanning detector for reading migration results. A sequence of automatic operations is established so that one substrate after another may be moved into position, loaded with sample, stimulated for molecular migration, read with a beam, and then removed and replaced with a fresh substrate.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: July 20, 2004
    Assignee: Amersham Biosciences (SV) Corp.
    Inventors: David J. Roach, Robert T. Loder, Jr., Thomas M. Armstrong, Dennis W. Harris, Stevan B. Jovanovich, Richard F. Johnston
  • Patent number: 6740219
    Abstract: A multi-capillary type electrophoresis analysis apparatus has a sample tray for containing a plurality of samples, wherein part of the sample tray is made from a conductive material. Samples are introduced by applying a high voltage from a high voltage power supply between the sample tray and a coupler in a state in which one-ends of the capillaries are inserted in the samples contained in the sample tray. The apparatus eliminates the necessity of individually inserting electrodes in a plurality of samples contained in the sample tray, thereby making easy works for analysis.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: May 25, 2004
    Assignees: Hitachi, Ltd., Naka Instruments Co., Ltd.
    Inventors: Kazumichi Imai, Osamu Uchida
  • Patent number: 6733645
    Abstract: Methods for determining total analyte concentrations and amounts, especially in combination with analyte separations are provided. Microfluidic devices are used to separate analyte mixtures and detect the individual analytes. Signal areas are summed for each individual analyte to quantitate the total analyte amount. Separate measurements of the total analyte sample are also used to determine total analyte concentration.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: May 11, 2004
    Assignee: Caliper Technologies Corp.
    Inventor: Calvin Y. H. Chow
  • Patent number: 6730206
    Abstract: An improved microfluidics device and system for sample loading and injection are disclosed. The device includes three main channels—a separation channel, supply channel, and drain channel—for use in loading and injecting a sample from the supply channel. Pairs of peripheral channels connecting the supply channel with upstream and downstream regions of the separation channel, and connecting supply and drain channels to a downstream region of the separation channel promote fluid flow and/or ion in the channel network to effect (i) sample shaping in the separation channel, when an electrokinetic or pneumatic force is applied between the supply and drain channels, and (ii) sample pullback in the supply and drain channels, when an electrokinetic or pneumatic force is applied between opposite ends of the separation channel. The system incorporates the device, electrodes that interact with reservoirs in the device, and a control unit.
    Type: Grant
    Filed: March 17, 2001
    Date of Patent: May 4, 2004
    Assignee: Aclara Biosciences, Inc.
    Inventors: Antonio J. Ricco, Travis D. Boone
  • Patent number: 6730202
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CRE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: May 4, 2004
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20040079640
    Abstract: The invention is a method of performing electrophoresis that increases sample throughput and increases the efficiency and speed of the analysis of polynucleotides by electrophoresis. The method is performed by loading and running multiple sequential samples on each capillary gel without flushing or replacing the gel between samples.
    Type: Application
    Filed: October 25, 2002
    Publication date: April 29, 2004
    Inventors: Clarence Lew, Stephen L. Pentoney, David L. Yang
  • Patent number: 6709559
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: March 23, 2004
    Assignee: Caliper Technologies Corp.
    Inventors: Steven A. Sundberg, J. Wallace Parce, Calvin Y. H. Chow
  • Patent number: 6699378
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electrolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 2, 2004
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Patent number: 6699377
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 2, 2004
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20040011649
    Abstract: A method of injecting a sample into an electrophoresis capillary, in which method the capillary (1) is plunged into the sample and an electric field is applied between the ends of the capillary (1) to cause the sample to migrate into the capillary (1), the method being characterized in that the sample is previously introduced into a part (3) presenting a channel (4) of dimensions perpendicular to the direction in which said channel (4) extends that are smaller than about four times the outside diameter of the capillary (1), and in that in order to plunge the capillary (1) into the sample, said capillary (1) is introduced into said channel (4).
    Type: Application
    Filed: April 7, 2003
    Publication date: January 22, 2004
    Inventors: Gilbert Gauguet, Rainer Siebert
  • Patent number: 6675821
    Abstract: With a method of controlling the flow in a flow system where a liquid flow contains a particle concentration, the liquid flow is surrounded by a carrier liquid. The liquid flow and carrier liquid are led into a central channel in which there is provided an observation area (4) where measurements of the liquid flow are effected. The result of the measurements are used to lead the liquid flow into one of several channels, in that control liquids are introduced into the liquid flow before this reaches the channels, the control liquids being derived from a capillary pump structure which pumps on the basis of an electro-kinetic effect, e.g. an electro-osmotic effect. In a preferred embodiment, the pump structure consists of two capillary structures, to each of which an electrical field can be applied. Depending on the strength of the field, the amount of control liquid will be able to be controlled so that the liquid flow with the particle concentration can be led to one of two channels.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: January 13, 2004
    Assignee: Scandinavian Micro Biodevices A/S
    Inventor: Claus Barholm-Hansen
  • Patent number: 6676819
    Abstract: The invention provides a method of performing one- and two-dimensional electrophoresis with or without gel in an automated way. The two dimensional electrophoresis can be performed either separately or continuously. Both electrokinetic and hydrodynamic forces can be used to facilitate sample transfer from the first to the second dimension. The samples can be detected on-line by using common detectors like UV-Vis, laser induced fluorescence (LIF), and mass spectrometry (MS).
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: January 13, 2004
    Inventors: Yaoqing Diana Liu, James Jianmin Bao
  • Publication number: 20030201181
    Abstract: A hydrodynamic injector for substantially concurrently loading fluid samples to be analyzed into multiple capillary tubes of a capillary electrophoresis system. The injector includes an enclosure defining a pressure chamber for holding multiple receptacles, each containing a fluid sample, and apertures in the enclosure for passing capillary tubes into a position inside the pressure chamber and in fluid communication with the samples in respective receptacles. Electrodes on the enclosure extend into the pressure chamber for reception in the receptacles. The pressure chamber is pressurized with gas to substantially concurrently force the fluid samples from respective receptacles into the capillary tubes in preparation for a capillary electrophoresis operation.
    Type: Application
    Filed: May 12, 2003
    Publication date: October 30, 2003
    Applicant: Symyx Technologies, Inc.
    Inventors: Peijun Cong, Robert D. Doolen, Tony N. Wheeler
  • Publication number: 20030196896
    Abstract: A method and apparatus are disclosed for screening separation media for performance in capillary electrophoresis. In one aspect the invention comprises concurrently loading a plurality of capillaries from one corresponding end of each with a respective plurality of separation media, adding a sample to each capillary, advancing the samples through the capillaries under an applied electric field, measuring a property of the samples or components thereof as they advance through the capillaries, and using the measured properties to identify one or more preferred sets of separation media. At least one of the steps of loading or advancing are carried out simultaneously over the plurality of capillaries.
    Type: Application
    Filed: April 17, 2002
    Publication date: October 23, 2003
    Inventors: Thomas Harding McWaid, Oleg Kolosov, Gerrit Klaerner, Miroslav Petro, Son Hoai Nguyen, Sigrid Kuebler
  • Publication number: 20030188971
    Abstract: Capillary columns (102) pass through and are inserted in a rubber plate (14), held and fixed by elastic force of rubber, and two-dimensionally arranged on a sample injection side. It fixes the capillary columns (102) arranged on a plane in close contact by holding the same with a holder plate (6a) from below and with a rubber plate (16) from above on a detection side. In order to press the capillary columns (102) against the holder plate 6a and fix the same with the rubber plate (16), a holder plate (6b) fixing the rubber plate (16) to the holder plate (6a) on both sides of the arrangement of the capillary columns (102) is provided.
    Type: Application
    Filed: March 31, 2003
    Publication date: October 9, 2003
    Applicants: The Institute of Physical and Chemical Research, Shimadzu Corporation, Japan Science and Technology Corporation
    Inventors: Yoshihide Hayashizaki, Rintaro Yamamoto
  • Patent number: 6627446
    Abstract: A substrate with a plurality of microchannels is movably deployed with other movable objects that will load sample into the microchannels, stimulate molecular migration, read the results of the migration, remove and replace the substrate, and prepare for a new run. The other objects include a gripper for engaging and moving the substrate, an electrode array of fine wires suitable for fitting into the microchannels for electromigration, and a scanning detector for reading migration results. A sequence of automatic operations is established so that one substrate after another may be moved into position, loaded with sample, stimulated for molecular migration, read with a beam, and then removed and replaced with a fresh substrate.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: September 30, 2003
    Assignee: Amersham Biosciences (SV) Corp
    Inventors: David J. Roach, Robert T. Loder, Jr., Thomas M. Armstrong, Dennis W. Harris, Stevan B. Jovanovich, Richard F. Johnston
  • Patent number: 6605472
    Abstract: A method is provided for joining a microchip device to a capillary tube. The microchip device has a capillary channel opening onto an edge surface of the device. A short hole is drilled into the edge surface, aligned with the capillary channel. The drilling is done with a flat bottom, preferably by a two-step drilling process. Then, the end of the capillary can be inserted into the hole so that its end is substantially flush with the flat bottom of the hole, thereby eliminating dead volume. Testing has shown that this connection provides very little band broadening of samples transported through the capillary channel into the capillary tube. The tip of the capillary tube can be tapered, so that it is suitable for use as an electrospray source for a mass spectrometer.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: August 12, 2003
    Assignee: The Governors of the University of Alberta
    Inventors: Cameron Skinner, Thompson Tang, D. Jed Harrison, Nicolas Bings, Can Wang, Gregor Ocvirk, Jianjun Li, Pierre Thibault
  • Publication number: 20030116437
    Abstract: The present invention relates to a novel, small-scale, electrophoretic separation system based on photodefined polymers and electrode-defined sample injection. Diffusion and displacement coefficients may be modified by varying the gel concentration, the intensity of the incident UV radiation and the temperature at which the gel is run. The device is an major advance over current technology since it provides for a significant reduction in size of the micro-electrophoresis apparatus and a significant cost savings.
    Type: Application
    Filed: October 22, 2002
    Publication date: June 26, 2003
    Applicant: The Regents Of The University Of Michigan
    Inventors: Mark A. Burns, Sundaresh N. Brahmasandra, Victor M. Ugaz
  • Publication number: 20030102221
    Abstract: Errors upon analysis caused by, fluctuation in electrophoresis time among plural capillaries in a multi-capillary electrophoresis apparatus is reduced. The multi-capillary electrophoresis apparatus contains a multi-capillary array that has an isolation medium filled therein for isolating a sample, has a sample injecting end on one end thereof, and has, at a position remote from the sample injecting end, a detector part for acquiring information depending on the sample, a voltage applying part for applying a voltage to an electrification path containing the sample injecting end and the detector part, a thermostat oven containing all or a part of the multi-capillary array except for the sample injecting end, a buffer container containing a buffer solution, in which the sample injecting end is immersed, and a temperature controlling part for controlling a temperature of the buffer solution.
    Type: Application
    Filed: September 18, 2002
    Publication date: June 5, 2003
    Inventors: Miho Ozawa, Masaya Kojima, Ryoji Inaba, Yoshitaka Kodama, Motohiro Yamazaki, Eric S. Nordman
  • Patent number: 6572750
    Abstract: A hydrodynamic injector for substantially concurrently loading fluid samples to be analyzed into multiple capillary tubes of a capillary electrophoresis system. The injector includes an enclosure defining a pressure chamber for holding multiple receptacles, each containing a fluid sample, and apertures in the enclosure for passing capillary tubes into a position inside the pressure chamber and in fluid communication with the samples in respective receptacles. Electrodes on the enclosure extend into the pressure chamber for reception in the receptacles. The pressure chamber is pressurized with gas to substantially concurrently force the fluid samples from respective receptacles into the capillary tubes in preparation for a capillary electrophoresis operation.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: June 3, 2003
    Assignee: Symyx Technologies, Inc.
    Inventors: Peijun Cong, Robert D. Doolen, Tony N. Wheeler
  • Patent number: 6572752
    Abstract: The troublesomeness during the setting of a plurality of capillaries is eliminated by composing pairs of electrodes, which are electrically connected to the common electrode, and capillaries. By bringing electrodes installed in the vicinity of each capillary disposed at the pitch of wells on the side of sample plate (within the area of the wells) into electrical contact with a common electrode, the capillaries and electrodes are made integral in construction. When a voltage is applied to the electrophoretic instrument via a common electrode portion, the voltage is applied to the electrodes for each capillary. This enables an inexpensive microtiter plate, etc. to be used and a multiple of capillaries to be simultaneously inserted, attached and detached.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: June 3, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Muneo Maeshima, Kazumichi Imai, Masaya Kojima, Satoshi Takahashi, Hiromi Yamashita
  • Patent number: 6569325
    Abstract: The present invention is a separation-detection device, which comprises high-voltage power supply, capillary chromatographic column and detection equipment. In addition, the present invention employs high-pressure pump. The device can apply pressure forward, backward or bi-directionally on the capillary column and rinse the column forward or backward with the high-pressure pump. Thus not only avoid bubble formation and current breakdown in column but also guarantee the high efficiency. It can run in several modes by changing different chromatographic columns.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: May 27, 2003
    Inventor: Chao Yan
  • Publication number: 20030094370
    Abstract: An electrophoresis chip is formed of a pair of transparent base plates. A sample introduction flow path and a separation flow path crossing each other are formed on a surface of one of the base plates, and the other base plate is provided with a separation buffer waste, a separation buffer reservoir, a loading buffer reservoir, and a loading buffer waste, which are formed as through holes at positions corresponding to ends of the flow paths. Further, a sample reservoir for injecting a sample therein is formed as a through hole on the sample introduction flow path at a position different from that of the loading buffer reservoir. Electrodes are disposed at the separation buffer waste, the separation buffer reservoir, the loading buffer reservoir, and the loading buffer waste. The electrode is not disposed at the sample reservoir.
    Type: Application
    Filed: November 7, 2002
    Publication date: May 22, 2003
    Applicant: SHIMADZU CORPORATION
    Inventor: Toru Kaji
  • Publication number: 20030085126
    Abstract: A channel (140) is divised into portions (142, 144). The sidewalls of each channel portion (142, 144) have surface charges of opposite polarity. The two channel portions (142, 144) are physically connected together by a salt bridge (133), such as a glass frit or gel layer. The salt bridge (133) separates the fluids in channel (140) from an ionic fluid reservoir (135). To impart electroosmotic and electrophoretic forces along the channel (140) between parts A and B, respectively. Additionally, a third electrode (137) is placed in the reservoir (135).
    Type: Application
    Filed: December 18, 2002
    Publication date: May 8, 2003
    Applicant: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 6558523
    Abstract: An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: May 6, 2003
    Assignee: The Regents of the University of California
    Inventor: Stefan P. Swierkowski
  • Publication number: 20030070925
    Abstract: Methods and devices are described for concentration and cleanup of samples containing bio-molecule analytes (e.g., polynucleotides, such as DNA, RNA, PNA). Various embodiments provide for pH-mediated sample concentration and cleanup of nucleic acid samples with channel devices (e.g., cross-T format, microchannel devices).
    Type: Application
    Filed: September 9, 2002
    Publication date: April 17, 2003
    Applicant: APPLERA CORPORATION
    Inventor: Karl O. Voss
  • Patent number: 6547942
    Abstract: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: April 15, 2003
    Assignee: Caliper Technologies Corp.
    Inventors: J. Wallace Parce, Michael R. Knapp
  • Patent number: 6547943
    Abstract: The present invention provides capillary an electrophoresis system and method for multiple simultaneous analysis of a sample. The system and method of the invention allow the ends of a plurality of capillaries to simultaneously contact a single body of electrophoresis sample contained in a compartment of a container, such as a sample contained in a well of a micro-titer tray.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: April 15, 2003
    Assignee: Spectrumedix LLC
    Inventors: Thomas E. Kane, Li Qingbo
  • Publication number: 20030062265
    Abstract: A sample handling system in a multi-channel capillary electrophoresis apparatus is disclosed. The sample handling system includes a work surface for supporting a plurality of samples located at a plurality of work surface coordinates and a sample loading assembly comprising a plurality of loading wells. At least one of the loading wells includes a capillary fixedly positioned therein. The system further includes a programmable sample transfer device for automatically transferring a sample from a work surface coordinate to a loading well. The invention further includes methods for using the sample handling system.
    Type: Application
    Filed: November 4, 2002
    Publication date: April 3, 2003
    Applicant: PE Corporation (NY)
    Inventors: Howard Gregg King, John Shigeura, Eric S. Nordman, Sean Matthew Desmond
  • Patent number: 6533912
    Abstract: The apparatus and method of the present invention disclose a system in which multiple injections may be made into a capillary array. The injections are spaced in time with each injection followed by an interval of electrophoresis. Once all samples are loaded into the capillaries, continuous electrophoresis and detection is used to separate and detect target compounds within the sample. The interval between injections is matched to the target compound migration rate to be sufficient to allow the target compounds to be detectably separated when the compounds reach the detector.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: March 18, 2003
    Assignee: Molecular Dynamics, Inc.
    Inventors: Elaine S. Mansfield, Christine Peponnet, John S. Bashkin, Curtis R. Kautzer
  • Patent number: 6527933
    Abstract: The DNA sample preparation apparatus of the present invention comprises a base plate having a plurality of first grooves for fixing two or more kinds of DNA samples or primers to the inner surfaces of the grooves, respectively, a second groove communicating with the plurality of the first grooves, wherein a reaction solution is introduced into the first grooves to be reacted with the two or more kinds of said DNA samples or primers independently at the same time.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: March 4, 2003
    Assignee: Hitachi, Ltd.
    Inventor: Hideki Kambara
  • Patent number: 6524866
    Abstract: The invention relates to capillary electrophoretic methods for detecting ligands or hit compounds that can bind to a selected target at or above a selected binding strength. The method allows one to rank various ligands based on their relative affinity, i.e., the relative stability of the target/ligand complex during capillary electrophoresis under selected conditions. The method also enables selective detection of strong-to-moderate binding hit compounds, even in the presence of high concentrations of weaker, competitive hit compounds.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: February 25, 2003
    Assignee: Cetek Corporation
    Inventors: Dallas E. Hughes, James L. Waters, Yuriy M. Dunayevskiy
  • Patent number: 6517696
    Abstract: An electrode plate of a sample plate is set on the body of an electrophoretic apparatus, while a plug is inserted into a migration high voltage line connection hole and connected to a high-tension distribution cable. Each well of a base plate is inserted into a through hole of a well guide and further press-fit and engaged into a cavity of an electrode plate, for fixing the base plate to the electrode plate. Thereafter a sample is introduced into each well of the base plate and an end of a capillary column is dipped into each well for applying a migration voltage and electrophoretically injecting the sample into the capillary column.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: February 11, 2003
    Assignees: The Institute of Physical and Chemical Research, Shimadzu Corporation, Japan Science and Technology Corporation
    Inventors: Yoshihide Hayashizaki, Shin Nakamura, Makoto Hazama, Hideshi Fujiwake
  • Publication number: 20030015425
    Abstract: A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to fill the microchannel with a first liquid, to introduce a second liquid into the first liquid and to eject fluid from the microchannel.
    Type: Application
    Filed: December 21, 2001
    Publication date: January 23, 2003
    Applicant: Coventor Inc.
    Inventors: Sebastian Bohm, John Gilbert
  • Publication number: 20030017609
    Abstract: The present invention relates to a microdevice for separating the components of a fluid sample. A cover plate is arranged over the first surface of a substrate, and, in combination with a microchannel formed in the first surface, defines a separation conduit for separating the components of the fluid sample. A sample inlet port in fluid communication with the conduit allows a fluid sample introduced from a sample source to be conveyed in a defined sample flow path such that the sample fluid travels, in order, through the sample inlet port, the separation conduit and a sample outlet port. The microdevice also includes an integrated introducing means for controllably introducing a volume of the fluid sample from a sample source into the sample inlet port and through the separation conduit. A method for separating the components of a fluid sample using the microdevice is also provided.
    Type: Application
    Filed: July 17, 2001
    Publication date: January 23, 2003
    Inventors: Hongfeng Yin, Kevin Killeen
  • Publication number: 20030007898
    Abstract: A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to fill the microchannel with a first liquid, to introduce a second liquid into the first liquid and to eject fluid from the microchannel.
    Type: Application
    Filed: December 21, 2001
    Publication date: January 9, 2003
    Applicant: Coventor, Inc.
    Inventors: Sebastian Bohm, John Gilbert
  • Publication number: 20020197733
    Abstract: A fluid interface port in a microfluidic system and a method of forming the fluid interface port is provided. The fluid interface port comprises an opening formed in the side wall of a microchannel sized and dimensioned to form a virtual wall when the microchannel is filled with a first liquid. The fluid interface port is utilized to fill the microchannel with a first liquid, to introduce a second liquid into the first liquid and to eject fluid from the microchannel.
    Type: Application
    Filed: December 21, 2001
    Publication date: December 26, 2002
    Applicant: Coventor, Inc.
    Inventors: Sebastian Bohm, John Gilbert
  • Publication number: 20020195343
    Abstract: A fluid interface port in a separation device for separating a sample into different components is provided. The separation device includes an array of separation channels and the fluid interface port comprises an opening formed in the side wall of a separation channel sized and dimensioned to form a virtual wall when the separation channel is filled with a separation medium. The fluid interface port is utilized to introduce a liquid sample into the separation medium. The fluid interface ports formed in the array of separation channels are organized into one or more sample injectors. A cathode reservoir is multiplexed with one or more separation channels. To complete an electrical path, an anode reservoir which is common to some or all separation channels is also provided.
    Type: Application
    Filed: January 24, 2002
    Publication date: December 26, 2002
    Applicant: Coventor, Inc.
    Inventors: Sebastian Bohm, John Gilbert
  • Publication number: 20020189946
    Abstract: Methods of sample loading and separation in a microfluidics device are described. The methods provide high resolution and high signal intensity, using, in a preferred embodiment, a simple two-electrode injection scheme with isotachophoretic (ITP) stacking, followed by ZE separation in the same channel.
    Type: Application
    Filed: March 29, 2002
    Publication date: December 19, 2002
    Applicant: Aclara BioSciences, Inc.
    Inventors: Ann K. Wainright, Stephen J. Williams
  • Patent number: 6495016
    Abstract: A microfluidic microchip includes a channel structure having a delivery channel connected in a substance conductive manner to a separation channel. Laterally offset discharge channels are at connection points displaced from a connection point between the delivery and separation channels. Between the connection points on the one hand and the connection point on the other are channel sections having concordant channel lengths. By imposing suitable electrical potentials along these channel sections, the filling volumes present in the channel sections are satisfactorily homogenous after a certain period of time to form a representative part of a substance specimen. Substance volume units are formed in these channel sections. The lengths of the volume units are determined exclusively by the lengths of the channel sections. Pulse-shaped substance volume sequences are injected into the separation channel.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: December 17, 2002
    Assignee: Agilent Technologies, Inc.
    Inventor: Bernd Nawracala
  • Publication number: 20020185377
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: July 30, 2002
    Publication date: December 12, 2002
    Applicant: Caliper Technologies Corp.
    Inventors: Steven A. Sundberg, J. Wallace Parce, Calvin Y.H. Chow
  • Publication number: 20020185379
    Abstract: The present invention provides an improved microchip measurement apparatus 15 comprising an external reservoir 24 connected via an input line 28 and output line 29 to a well 21 disposed on the microchip 20. The reservoir and well are preferable sealed and a pump 26 is connected to the input line so as to enable a continuous flow of liquid from the reservoir to the well. Advantageously, the present invention allows for the volume of liquid in the well to be kept constant, thereby improving the overall measurement accuracy.
    Type: Application
    Filed: April 12, 2002
    Publication date: December 12, 2002
    Applicant: Agilent Technologies, Inc.
    Inventors: Walter Schrenk, Tobias Preckel
  • Patent number: 6491804
    Abstract: In a method for controlling sample introduction in microcolumn separation techniques, more particularly in capillary electrophoresis (CE), where a sample is injected as a sample plug into a sampling device which comprises at least a channel for the electrolyte buffer and a supply and drain channel for the sample. The supply and drain channels discharge into the electolyte channel at respective supply and drain ports. The distance between the supply port and the drain port geometrically defines a sample volume. The injection of the sample plug into the electrolyte channel is accomplished electrokinetically by applying an electric field across the supply and drain channels for a time at least long enough that the sample component having the lowest electrophoretic mobility is contained within the geometrically defined volume. The supply and drain channels each are inclined to the electrolyte channel. Means are provided for electrokinetically injecting the sample into the sample volume.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: December 10, 2002
    Assignee: Zeptosens AG
    Inventors: Andreas Manz, D. Jed Harrison, Carlo S. Effenhauser
  • Publication number: 20020179447
    Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
    Type: Application
    Filed: July 30, 2002
    Publication date: December 5, 2002
    Applicant: Caliper Technologies Corp.
    Inventors: Steven A. Sundberg, J. Wallace Parce, Calvin Y.H. Chow
  • Publication number: 20020179446
    Abstract: The present invention easies a connection between electrodes of a capillary array device and a connection plate for supplying a high voltage to the electrodes.
    Type: Application
    Filed: July 9, 2002
    Publication date: December 5, 2002
    Inventors: Syouzou Kasai, Yoshiyuki Okishima, Tomonari Morioka, Yasushi Shimizu, Hiroyuki Tanaka, Takayasu Furukawa, Noriyuki Shimoda, Seiichi Ugai
  • Publication number: 20020177238
    Abstract: Non-planar microfluidic devices and methods for transferring fluids between vessels and microfluidic devices are provided. The devices may be contoured to physically contact non-planar vessels, such as pipes, tubes, vials, or syringes to establish fluid communication between a vessel and a microfluidic device. Devices according to the invention may be constructed from flexible, rigid, or combinations of flexible and rigid materials. In certain embodiments, microfluidic devices are composed of sandwiched stencils, and self-adhesive tapes may be used for one or more layers. A microfluidic device may be removably attached to a vessel with a non-permanent adhesive or adhesive layer. Continuously wrapped microfluidic devices fashioned from a single layer, in addition to rewindable microfluidic devices constructed from multiple layers, are provided. A multi-plunger syringe permits a microfluidic device or other reservoir coupled to the vessel to be filled on the draw stroke of the syringe plunger.
    Type: Application
    Filed: May 23, 2001
    Publication date: November 28, 2002
    Inventors: Christoph D. Karp, Stephen D. O'Connor, Vincent K. Gustafson