Depositing Predominantly Single Metal Coating Patents (Class 205/261)
  • Publication number: 20090214927
    Abstract: Fuel cell bipolar plates are made by depositing a pinhole free corrosion resistant and/or a conductive layer on a metal plate using an atomic layer deposition method. In one embodiment, a conductive layer is deposited on an anodized metal plate using atomic layer deposition method. In another embodiment, at least one corrosion resistant metal oxide layer and at least one conductive layer are deposited on a metal plate individually using atomic layer deposition method. In yet another embodiment, a corrosion resistant and conductive metal oxynitride layer is deposited on a metal plate using an atomic layer deposition method.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 27, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gayatri Vyas Dadheech, Thomas A. Trabold, Mahmoud H. ABD Elhamid
  • Publication number: 20090212743
    Abstract: A molten salt composition is disclosed containing two or more types of molten salt MTFSI whose anion is an imide anion TFSI and whose cation is an alkali metal M exhibits a lower electrolyte melting point and a wider operating temperature range than a simple salt does. This brings about various advantages such as a wider range of materials that are chosen for use in batteries and the like.
    Type: Application
    Filed: March 22, 2006
    Publication date: August 27, 2009
    Inventors: Rika Hagiwara, Kazuhiko Matsumoto, Kenichiro Tamaki, Toshiyuki Nohira, Takuya Goto
  • Publication number: 20090212801
    Abstract: A high frequency probe preparation method for making a high frequency probe for high frequency testing to assure signal integrity by means of making a sleeve assembly subject to the size of a predetermined bare needle and then sleeving bare needle by the sleeve assembly to form a high-frequency probe is disclosed to include the steps of: a) providing an insulated tube, and b) forming a conducting layer on the outer surface of the insulated tube which having a metal layer for grounding. The insulated tube and the conducting layer constitute the sleeve assembly. The metal layer is formed by means of physical deposition, chemical deposition, mixture of physical and chemical deposition or electrochemical deposition.
    Type: Application
    Filed: May 1, 2009
    Publication date: August 27, 2009
    Applicant: MPI Corporation
    Inventors: Wei-Cheng Ku, Kuan-Chun Chou
  • Publication number: 20090208775
    Abstract: A composition and process for forming an electrodeposited coating comprising a co-deposit of a metal and MCrAlY particles. The composition includes a metal and a MCrAlY particles, and the electrodeposited coating comprises a metal matrix and MCrAlY particles dispersed in the matrix. In one aspect, a coating is provided that exhibits excellent oxidation resistance and tribological characteristics at high temperatures, including up to at least about 1350° F. A high temperature coating may comprise a nickel/cobalt alloy matrix comprising MCrAlY particles and chromium carbide particles dispersed in the nickel/cobalt matrix.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 20, 2009
    Inventors: Jeremy M. Payne, James E. Beach, Amitava Datta, Kenneth W. Cornett, Dominick G. More
  • Publication number: 20090205969
    Abstract: The invention relates to polymers which comprise at least partially cross-linked main chains constructed from repeat units of the general formula I and possibly repeat units of the general formula II and also possibly repeat units comprising five- or six-membered aza aromatics or nitrogen-containing heterocycles. Polymers of this type are used as additive in electroplating baths since these enable a better layer thickness distribution of the electroplated layer.
    Type: Application
    Filed: December 15, 2006
    Publication date: August 20, 2009
    Applicant: COVENTYA GmbH
    Inventors: Alexander Jimenez, Thorsten Kühler
  • Patent number: 7575665
    Abstract: Described is a method of reducing corrosion of a silver-containing surface comprising electro-depositing a layer of an iodine-containing material on the silver-containing surface at a charge density of about 80 mA*s (milliamps second)/cm2 or less. Also described is an electrical contact also produced by the method.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: August 18, 2009
    Assignee: Delphi Technologies, Inc.
    Inventors: Charles R. Harrington, Neil R. Aukland
  • Publication number: 20090188808
    Abstract: Indium (In) electroplating solutions which are used to deposit compositionally pure, uniform, substantially defect free and smooth In films with near 100% plating efficiency and repeatability. In one embodiment the plating solution includes an In source, citric acid and its conjugate pair salt and a solvent. At a pH value of below 4.0, sub-micron thick In layers with close to 100% purity at close to 100% plating efficiency are produced. Such In layers are used in fabrication of electronic devices such as thin film solar cells.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 30, 2009
    Inventors: Jiaxiong Wang, Serdar Aksu, Bulent M. Basol
  • Publication number: 20090179279
    Abstract: Stabilized metal gate electrode for complementary metal-oxide-semiconductor (“CMOS”) applications and methods of making the stabilized metal gate electrodes are disclosed. Specifically, the metal gate electrodes are stabilized by alloying wherein the alloy comprises a metal selected from the group consisting of Re, Ru, Pt, Rh, Ni, Al and combinations thereof and an element selected from the group consisting of W, V, Ti, Ta and combinations thereof.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Applicant: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Hariklia Deligianni, Rajarao Jammy, Vamsi K. Paruchuri, Lubomyr T. Romankiw
  • Publication number: 20090173634
    Abstract: The present invention relates to gallium (Ga) electroplating methods and chemistries to deposit uniform, defect free and smooth Ga films with high plating efficiency and repeatability. Such layers may be used in fabrication of electronic devices such as thin film solar cells. In one embodiment, the present invention provides a solution for application on a conductor that includes a Ga salt, a complexing agent, a solvent, and a Ga-film having submicron thickness is facilitated upon electrodeposition of the solution on the conductor. The solution may further include one or both of a Cu salt and an In salt.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 9, 2009
    Applicant: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20090164027
    Abstract: The invention provides a process for producing a metal body, which leads in a simple and reliable way to formation of a defined surface topography, if desired also combined, in the range from 10 nm to 500 ?m on a metal base body or blank which is to have, in particular, nanoscale pores. For this purpose, a pulsating current is applied to a metal base body in an electrolysis bath, with the electrolysis bath comprising salt former ions matched to the material of the metal base body. Furthermore, the invention provides a dental implant having particularly advantageous surface properties, in which a nanostructure is superimposed on a surface microstructure and nitrogen atoms and/or nitrogen compounds are attached and/or included in the region of the surface.
    Type: Application
    Filed: January 27, 2007
    Publication date: June 25, 2009
    Inventor: Holger Zipprich
  • Publication number: 20090134036
    Abstract: An electrolytic processing method makes it possible to preferentially process a diffusion barrier layer while suppressing processing of an interconnect metal, thereby enabling omission of CMP or a lowering of processing pressure in CMP. The electrolytic processing method comprises: bringing a surface of a substrate (W) into contact with an electrolytic solution (48) comprising an organic solvent, such as propylene carbonate, and an electrolyte, such as lithium hexafluorophosphate, dissolved into the organic solvent, and optionally an inhibitor composed of a heterocyclic compound; and applying an electric potential, for example, a positive electric potential which is controlled at a value less than the decomposition voltage of the organic solvent, to the surface of the substrate (W) to carry out electrolytic processing of the substrate surface.
    Type: Application
    Filed: August 30, 2006
    Publication date: May 28, 2009
    Applicant: EBARA CORPORATION
    Inventors: Akira Kodera, Itsuki Kobata
  • Publication number: 20090117372
    Abstract: A wear-, erosion- and chemically-resistant material containing tungsten alloyed with carbon, the carbon being present in an amount of 0.01 wt % up to 0.97 wt % of the total weight, wherein the material preferably comprises a matrix of metallic tungsten with dispersed tungsten carbide nanoparticles having a particle size not greater than 50 nanometres, preferably not greater than 10 nanometres. The material is optionally also alloyed with fluorine, the fluorine being present in an amount of 0.01 wt % up to 0.4 wt % of the total weight. The material is extremely hard and tough.
    Type: Application
    Filed: October 11, 2005
    Publication date: May 7, 2009
    Inventors: Yuri Zhuk, Yury Lakhotkin, Sergey Aleksandrov
  • Publication number: 20090098310
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Applicant: ZIMMER, INC.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
  • Patent number: 7507321
    Abstract: The present invention relates to gallium (Ga) electroplating methods and chemistries to deposit uniform, defect free and smooth Ga films with high plating efficiency and repeatability. Such layers may be used in fabrication of electronic devices such as thin film solar cells. In one embodiment, the present invention provides a solution for application on a conductor that includes a Ga salt, a complexing agent, a solvent, and a Ga-film having submicron thickness is facilitated upon electrodeposition of the solution on the conductor. The solution may further include one or both of a Cu salt and an In salt.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Solopower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Bulent M. Basol
  • Publication number: 20090075102
    Abstract: Electrochemically deposited indium composites are disclosed. The indium composites include indium metal or an alloy of indium with one or more ceramic materials. The indium composites have high bulk thermal conductivities. Articles containing the indium composites also are disclosed.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 19, 2009
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Nathaniel E. Brese, Edit Szocs, Felix J. Schwager, Michael P. Toben, Martin W. Bayes
  • Publication number: 20090045070
    Abstract: Disclosed herein are electrolytic cells comprising cathodes having a non-uniform current distribution and methods of use thereof.
    Type: Application
    Filed: February 6, 2007
    Publication date: February 19, 2009
    Inventor: Aaron J. Becker
  • Publication number: 20090008258
    Abstract: A porous catalyst structure with a high specific surface area comprising a porous substrate with a catalyst layer thereon is provided. The porous catalyst structure can be prepared by a process comprising depositing a metallic layer onto the surface of a porous, metallic substrate by electroplating, and optionally oxidizing the metallic layer into the metal oxide layer. Any conductive porous metallic substrate can be used as the substrate of the subject invention, and the metallic layer may comprise any suitable metal(s) and/or metal oxide(s) with desired catalytic function(s).
    Type: Application
    Filed: May 23, 2008
    Publication date: January 8, 2009
    Applicant: GREEN HYDROTEC INC.
    Inventors: Min Hon Rei, Shih Chung Chen, Yu Ling Kao, Chia Yeh Hung
  • Publication number: 20090004463
    Abstract: Techniques for reducing resistivity in metal interconnects using interface control are generally described. In one example, an apparatus includes a dielectric substrate, a barrier film coupled with the dielectric substrate, a liner film of a selected material coupled with the barrier film, and a metal coupled with the liner film defining an interface region between the metal and the liner film, the material of the liner film being selected to provide an interface density of state about equal to or less than ten times the density of state of the metal in bulk form.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Inventors: Michael Haverty, Sadasivan Shankar, Seongjun Park
  • Publication number: 20080314756
    Abstract: Presented are methods and systems for fabricating three-dimensional integrated circuits having large diameter through-hole vias. One embodiment of the present invention provides a method of processing a wafer having holes for through-hole vias. The method comprises plating a gapfill metal on the wafer. The method also comprises chemically or electrochemically deplating a portion of the overburden metal. The method further comprises using chemical mechanical planarization to planarize the gapfill metal and to remove the remaining overburden metal. Another embodiment of the present invention is an integrated system comprising a process chamber for containing the wafer, a plating component integrated with the process chamber, and a deplating component integrated with the process chamber. The plating component is configured to electrochemically plate a gapfill metal onto the wafer to a least partially fill the holes.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 7468123
    Abstract: The invention concerns a method for electrolytic coating of materials with aluminum, magnesium or aluminum and magnesium alloys. The method is characterized in that the material is pretreated by being immersed in an electrolytic solution, where it is anodized, the electrolytic coating being performed immediately after in the same electrolytic solution.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: December 23, 2008
    Assignee: Aluminal Oberflachentechnik GmbH & Co. KG
    Inventors: Jorg Heller, Hans De Vries, Matthias Hartel
  • Publication number: 20080257746
    Abstract: A method for producing a metal thin body by electroplating, in which the relative integrated intensity of the (111) plane of the metal thin body can be increased to 65% or greater. By carrying out electroplating using an electrolytic solution (plating solution) containing 5% in volume or greater of acetonitrile and water, in particular, using an electrolytic solution (plating solution) containing 10% in volume or greater of acetonitrile and water, the relative integrated intensity of the (111) plane can be increased to 65% or greater.
    Type: Application
    Filed: December 8, 2006
    Publication date: October 23, 2008
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Toshiaki Ono, Yasuo Komoda
  • Publication number: 20080230395
    Abstract: A surface treatment with a zirconium ion that enables sufficient throwing power and superior anti-corrosion properties to be exhibited when thus surface treated metal base material is subjected to cation electrodeposition coating is provided. A metal surface treatment liquid thereof for cation electrodeposition coating includes zirconium ions, copper ions, and other metal ions, and having a pH of 1.5 to 6.5, in which: the other metal ions are at least one selected from the group consisting of tin ions, indium ions, aluminum ions, niobium ions, tantalum ions, yttrium ions and cerium ions; the concentration of zirconium ions is 10 to 10,000 ppm; the concentration ratio of the copper ions to the zirconium ions is 0.005 to 1 on a mass basis; and the concentration ratio of the other metal ions to the copper ions is 0.1 to 1,000 on a mass basis.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Inventors: Toshio Inbe, Hiroshi Kameda, Thomas Kolberg
  • Publication number: 20080210567
    Abstract: The present invention relates to electrodeposition material for the electrochemical deposition of a corrosion-protective layer of TiO2 on an electrically conductive substrate comprising a titanium compound, a complexing agent, an accelerator, water and optionally organic solvents, buffering agents and one or more additives, characterized in that the titanium compound is titanyl sulfate and/or titanyl oxalate, the complexing agent is selected from the group consisting of citric acid, citrates, tartaric acid, tartrates, lactic acid, lactates, gluconic acid, gluconates, polyhydroxy-polycarbonic acids, ethylenediaminetetraacetate, methylglycinediacetate, iminodisuccinate, nitrilotriacetic acid and nitrilotriacetate, triethanolamine, phosphonic acid and phosphonates, polyaspartic acid and polyaspartates, polyacrylic acid and polyacrylates and the accelerator is selected from the group consisting of H2O2 and organic peroxides.
    Type: Application
    Filed: December 20, 2007
    Publication date: September 4, 2008
    Inventors: Subbian Karuppuchamy, Naoki Suzuki, Seishiro Ito, Schweinsberg Matthias, Hans Dolhaine, Frank Wiechmann, Christine Schroeder
  • Publication number: 20080187675
    Abstract: Disclosed herein arc novel liposome compositions generally including a foreign inclusion (e.g., diamond) component, and a liposome (e.g., i paucilamellar liposome) component. Also disclosed are methods of using these composition for plating and plate obtained thereby. Novel liposome compositions including components such as diamonds, are also disclosed, which can be used in a variety of applications, such as in abrasive, cosmetic or medical applications.
    Type: Application
    Filed: September 10, 2007
    Publication date: August 7, 2008
    Applicant: Frank C. Scarpa
    Inventors: Frank C. Scarpa, Dennis Johnson
  • Publication number: 20080179193
    Abstract: This invention relates to a composite target material which is prepared a thin film on the substrates via electroplating or electroless plating method. The thin film contains phosphorus or boron atoms. The ratio of phosphorus or boron atoms of the thin film is controlled by the solution or process parameters of electroplating or electroless plating process. The multi-elements functional thin film, which possesses optimum contents of phosphorus or boron atoms by coating process, can be used for high-temperature applications because of its better thermal cyclic properties and mechanical properties.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Jenq-Gong Duh, Fan-Bean Wu
  • Publication number: 20080171141
    Abstract: Methods for fabricating light-emitting diode (LED) array structures comprising multiple vertical LED stacks coupled to a single metal substrate is provided. The LED array structure may comprise two, three, four, or more LED stacks arranged in any configuration. Each of the LED stacks may have an individual external connection to make a common anode array since the p-doped regions of the LED stacks are all coupled to the metal substrate, or some to all of the n-doped regions of the LED stacks may be electrically connected to create a parallel LED array. Such LED arrays may offer better heat conduction and improved matching of LED characteristics (e.g., forward voltage and emission wavelength) between the individual LED stacks compared to conventional LED arrays.
    Type: Application
    Filed: January 11, 2007
    Publication date: July 17, 2008
    Inventors: WEN-HUANG LIU, Jui-Kang Yen
  • Patent number: 7399423
    Abstract: In a through hole closing process, a metal plate is attached to one surface of a conductive base member having a plurality of through holes by the use of a magnet, in a copper plating process, a copper plating layer is formed on the conductive base member and the metal plate exposed within the through holes, from the side of the conductive base member where the metal plate is not attached, thereby to fill up the through holes, in a film forming process, a Pd alloy film is formed by plating on the surface of the conductive base member after removal of the metal plate, and in a removal process, the copper plating layer is removed by selective etching, thereby to produce a hydrogen production filter that is used in a reformer of a fuel cell so as to be capable of stably producing high purity hydrogen gas.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: July 15, 2008
    Assignee: Dai Nippon Insatsu Kabushiki Kaisha
    Inventors: Hiroshi Yagi, Takanori Maeda, Yoshinori Oota, Yasuhiro Uchida
  • Publication number: 20080142371
    Abstract: A method for forming a modified platinum aluminide coating on a turbine engine component surface includes the step of forming a platinum layer on the turbine engine component surface. A bath is then prepared, including a mixture of a primary alcohol and a tertiary alcohol, and an electrolyte including an yttrium salt. Then, yttrium from the yttrium salt is electrodeposited onto the platinum layer. The component is heated to diffuse the yttrium into the platinum layer to form a modified platinum layer. Aluminum is then deposited onto the modified platinum layer, and the component is heated to diffuse the aluminum into the modified platinum layer to form a modified platinum aluminide layer.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventor: Devlin M. Gualtieri
  • Publication number: 20080067076
    Abstract: A novel method, which is suitable to substantially reduce the presence of oxygen micro-bubbles in an electroplating bath solution, is disclosed. The method includes the addition of aerobic bacteria to the electroplating bath solution to consume oxygen in the solution. Reduction of the oxygen content in the electroplating bath solution prevents oxygen micro-bubbles from forming in the solution and becoming trapped between the solution and the surface of a metal seed layer on a substrate to block the electroplating of a metal film onto the seed layer. Consequently, the presence of surface pits and other structural defects in the surface of the electroplated metal film is substantially reduced.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 20, 2008
    Inventors: Ming-Yuan Cheng, Hsien-Ping Feng, Hsi-Kuei Cheng, Kei-Wei Chen, Jung-Chin Tsao, Steven Lin, Ray Chuang
  • Publication number: 20080053834
    Abstract: A plated film having superior uniformity and adhesiveness is provided without requiring a surface roughening process of the resin by a permanganate treatment and a tin-containing catalyst adhering treatment. The material to be plated is treated by a pre-treatment solution including anionic surfactant, organic solvent, and alkaline components, then treated by a solution including anionic surfactant and precious metal ions, and plated by electroless plating.
    Type: Application
    Filed: June 7, 2007
    Publication date: March 6, 2008
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventor: Rikiya Shimizu
  • Publication number: 20080057336
    Abstract: A surface-treated metal material having, formed on the surface of a metal base member, an inorganic surface-treating layer that contains inorganic components or, further, having an organic surface-treating layer formed on the inorganic surface-treating layer, the inorganic surface-treating layer containing at least M (M is at least one of Ti, Zr or Al), O and F. The organic surface-treating layer comprises a silane coupling agent containing Si in an amount of 0.8 to 30 mg/m2 or a phenol-type water-soluble organic compound. The surface treatment without using chromium can be applied to various metal base members featuring excellent environmental friendliness, excellent resistance against discoloration even when applied to tin-plated steel plates, and offering excellent characteristics such as the close adhesion to the organic resin coating, adhesive property, corrosion resistance and dent resistance.
    Type: Application
    Filed: June 22, 2004
    Publication date: March 6, 2008
    Applicants: TOYO SEIKAN KAISHA, LTD, TOYO KOHAN CO,, LTD.
    Inventors: Wataru Kurokawa, Hiroshi Matsubayashi, Mitsuhide Aihara, Shigeya Takahashi, Masanobu Matsubara, Masatoshi Ishida, Norimasa Maida
  • Publication number: 20080035489
    Abstract: Methods of plating electrical contacts on a photosensitive device are provided. Also provided are methods of plating electrical contacts on solar cells.
    Type: Application
    Filed: October 27, 2006
    Publication date: February 14, 2008
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: George R. Allardyce, Kevin Bass, Joachim Rasch
  • Patent number: 7326327
    Abstract: A halide based stress reducing agent is added to the bath of a rhodium plating solution. The stress reducing agent reduces stress in the plated rhodium, increasing the thickness of the rhodium that can be plated without cracking. In addition, the stress reducing agent does not appreciably decrease the wear resistance or hardness of the plated rhodium.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: February 5, 2008
    Assignee: FormFactor, Inc.
    Inventors: Michael Armstrong, Gayle Herman, Greg Omweg, Ravindra V. Shenoy
  • Patent number: 7297247
    Abstract: A method of fabricating a sputtering target for sputter depositing material onto a substrate in a sputtering chamber is described. In one embodiment of the method, a preform having a surface is formed and a layer of sputtering material is electroplated onto the surface of the preform to form the target. The method can be applied to form a sputtering target having a non-planar surface.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: November 20, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Anthony Vesci, Scott Dickerson
  • Publication number: 20070237977
    Abstract: A flexible thin metal film system is made by directly depositing an electrically-conductive metal onto the metal surface of a self-metallized polymeric film.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Donald L. Thomsen, Robert G. Bryant
  • Publication number: 20070221506
    Abstract: A cycle of electroplating is repeated in an electroplating bath containing at least one metal ion selected from cobalt, nickel and iron, a buffering agent and a conducting agent by use of a soluble anode. The concentration of the conducting agent in an initially prepared electroplating bath is set at 70 to 95% of a saturated concentration. The electroplating is repeated in such a way that a first replenishment solution containing a buffering agent and a conducting agent at concentrations of 0.5 to 1.2 times the concentrations in the initially prepared electroplating bath and free of the metal ion is added so as to replenish the agents that have been reduced in amount during the course of the electroplating and a concentration of the conducting agent in the electroplating bath after the replenishment of the first replenishment solution is adjusted to 70 to 95% of a saturated concentration thereof.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 27, 2007
    Applicant: C. Uyemura & Co., Ltd.
    Inventor: Toru Murakami
  • Patent number: 7241396
    Abstract: In a through hole closing process, a metal plate is attached to one surface of a conductive base member having a plurality of through holes by the use of a magnet, in a copper plating process, a copper plating layer is formed on the conductive base member and the metal plate exposed within the through holes, from the side of the conductive base member where the metal plate is not attached, thereby to fill up the through holes, in a film forming process, a Pd alloy film is formed by plating on the surface of the conductive base member after removal of the metal plate, and in a removal process, the copper plating layer is removed by selective etching, thereby to produce a hydrogen production filter that is used in a reformer of a fuel cell so as to be capable of stably producing high purity hydrogen gas.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: July 10, 2007
    Assignee: Dai Nippon Insatsu Kabushiki Kaisha
    Inventors: Hiroshi Yagi, Takanori Maeda, Yoshinori Oota, Yasuhiro Uchida
  • Patent number: 7235165
    Abstract: An electroplating solution may be formulated as an aqueous solution of oxalic acid, trisodium phosphate and ammonium sulfate. Such solutions may be used for both brush plating and bath plating, and are suitable for use with a variety of plating metals and substrate metals without the need to add plating metal ions to the solution in the form of metal salts, chelates or complexes.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: June 26, 2007
    Inventor: Richard Lacey
  • Patent number: 7182849
    Abstract: Electrochemical plating polymer additives and method which reduces metal overburden in an electroplated metal while optimizing gap fill capability are disclosed. The polymer additives are provided in an electrochemical plating bath solution and may include low cationic charge density co-polymers having aromatic and amine functional group monomers. The low cationic charge density polymers may include benzene or pyrollidone functional group monomers and imidazole or imidazole derivative functional group monomers.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: February 27, 2007
    Assignee: Taiwan Semiconducotr Manufacturing Co., Ltd.
    Inventors: Chien-Hsueh Shih, Shaulin Shue
  • Patent number: 7112287
    Abstract: In a through hole closing process, a metal plate is attached to one surface of a conductive base member having a plurality of through holes by the use of a magnet, in a copper plating process, a copper plating layer is formed on the conductive base member and the metal plate exposed within the through holes, from the side of the conductive base member where the metal plate is not attached, thereby to fill up the through holes, in a film forming process, a Pd alloy film is formed by plating on the surface of the conductive base member after removal of the metal plate, and in a removal process, the copper plating layer is removed by selective etching, thereby to produce a hydrogen production filter that is used in a reformer of a fuel cell so as to be capable of stably producing high purity hydrogen gas.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: September 26, 2006
    Assignee: Dai Nippon Insatsu Kabushiki Kaisha
    Inventors: Hiroshi Yagi, Takanori Maeda, Yoshinori Oota, Yasuhiro Uchida
  • Patent number: 7105082
    Abstract: A composition for electrodeposition of a metal on a work piece, which electrodeposition is conducted at an electrodeposition temperature, is provided. The composition comprises a metal salt, a polymer suppressor having a cloud point, an accelerator and an electrolyte. If the cloud point is greater than the electrodeposition temperature, an anion is also present in an amount sufficient to lower the cloud point of the polymer suppressor to a temperature approximately no greater than the electrodeposition temperature.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: September 12, 2006
    Assignee: Novellus Systems, Inc.
    Inventor: Vishwas Hardikar
  • Patent number: 7087315
    Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: August 8, 2006
    Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.
    Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
  • Patent number: 6974531
    Abstract: A conductive material is electroplated onto a platable resistive metal barrier layer(s) employing a plating bath optionally comprising a super filling additive and a suppressor, and by changing the current or voltage as a function of the area of plated metal. A structure is also provided that comprises a substrate, a platable metal barrier layer(s) located on the substrate and a relatively continuous uniform electroplated layer of a conductive material located on the platable resistive metal barrier layer.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: December 13, 2005
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Andricacos, Hariklia Deligianni, Wilma Jean Horkans, Keith T. Kwietniak, Michael Lane, Sandra G. Malhotra, Fenton Read McFeely, Conal Murray, Kenneth P. Rodbell, Philippe M. Vereecken
  • Patent number: 6916412
    Abstract: An electrochemical processing chamber which can be modified for treating different workpieces and methods for so modifying electrochemical processing chambers. In one particular embodiment, an electrochemical processing chamber 200 includes a plurality of walls 510 defining a plurality of electrode compartments 520, each electrode compartment having at least one electrode 600 therein, and a virtual electrode unit 530 defining a plurality of flow conduits, with at least one of the flow conduits being in fluid communication with each of the electrode compartments. This first virtual electrode unit 530 may be exchanged for a second virtual electrode unit 540, without modification of any of the electrodes 600, to adapt the processing chamber 200 for treating a different workpiece.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: July 12, 2005
    Assignee: Semitool, Inc.
    Inventors: Daniel J. Woodruff, Kyle M. Hanson, Steve L. Eudy, Curtis A. Weber, Randy Harris
  • Patent number: 6911068
    Abstract: A metal plating bath containing organic compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The organic compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the organic compounds that inhibit or retard additive consumption can be employed to copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: June 28, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6890416
    Abstract: An electroplating apparatus prevents anode-mediated degradation of electrolyte additives by creating a mechanism for maintaining separate anolyte and catholyte and preventing mixing thereof within a plating chamber. The separation is accomplished by interposing a porous chemical transport barrier between the anode and cathode. The transport barrier limits the chemical transport (via diffusion and/or convection) of all species but allows migration of ionic species (and hence passage of current) during application of sufficiently large electric fields within electrolyte.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: May 10, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Evan E. Patton, Robert L. Jackson, Jonathan D. Reid
  • Patent number: 6884335
    Abstract: A negative bias is applied to an integrated circuit wafer immersed in an electrolytic plating solution to generate a DC current. After about ten percent to sixty percent of the final layer thickness has formed in a first plating time, biasing is interrupted during short pauses during a second plating time to generate substantially zero DC current. The pauses are from about 2 milliseconds to 5 seconds long, and typically about 10 milliseconds to 500 milliseconds. Generally, about 2 pauses to 100 pauses are used, and typically about 3 pauses to 15 pauses. Generally, the DC current density during the second plating time is greater than the DC current density during the initial plating time. Typically, the integrated circuit wafer is rotated during electroplating. Preferably, the wafer is rotated at a slower rotation rate during the second plating time than during the first plating time.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: April 26, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Eric G. Webb, Jonathan D. Reid, John H. Sukamto, Sesha Varadarajan, Margolita M. Pollack, Bryan L. Buckalew, Tariq Majid
  • Patent number: 6878411
    Abstract: The invention concerns a bath for the electrochemical deposition of high-gloss white rhodium coatings and a whitening agent for the same. The brightness or degree of whiteness of the deposited coatings is significantly increased by means of compounds having the formula R—SOm—H, wherein m is the numbers 3 or 4 and R is a straight-chain or branched chain or cyclic alkyl group having up to 20 C atoms, as a whitening agent. The thickness of the coating that can be deposited without a bloom is also significantly increased.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: April 12, 2005
    Assignee: Umicore Galvanotechnik GmbH
    Inventor: Uwe Manz
  • Publication number: 20040247920
    Abstract: A halide based stress reducing agent is added to the bath of a rhodium plating solution. The stress reducing agent reduces stress in the plated rhodium, increasing the thickness of the rhodium that can be plated without cracking. In addition, the stress reducing agent does not appreciably decrease the wear resistance or hardness of the plated rhodium.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 9, 2004
    Applicant: FormFactor, Inc.
    Inventors: Michael Armstrong, Gayle Herman, Greg Omweg, Ravindra V. Shenoy
  • Patent number: 6825512
    Abstract: An active part of a sensor is formed, for example, by micro-machined silicon wafers bearing electronic elements, electrical conductors, connection pads, and pins. The pads are electrically connected to the pin ends by conductive elements. Then the wafer and the pin ends are plunged into an electrolytic bath to make an electrolytic deposit of conductive metal on the pin ends, the pads, and the conductive elements that connect them. Finally, this metal is oxidized or nitrized to form an insulating coat on the pin ends, the pads, and the conductive elements that connect them. Such a sensor may find particular application as a sensor designed to work in harsh environments.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: November 30, 2004
    Assignee: Thales
    Inventors: Bertrand Leverrier, Marie-Dominique Bruni-Marchionni