Bath Contains Halide Other Than Sodium Chloride Patents (Class 205/409)
  • Patent number: 10033069
    Abstract: A cell cathode compartment comprises a granule bed comprising metal granules, metal halide granules, and sodium halide granules, a separator adjacent to the granule bed, a liquid electrolyte dispersed in the granule bed, and a porous absorbent disposed in the granule bed, wherein a transverse cross-sectional distribution of the porous absorbent in the granule bed varies in a longitudinal direction from a first position to a second position. In another embodiment, a cell cathode compartment comprises a granule bed comprising metal granules, metal halide granules, and sodium halide granules, a separator adjacent to the granule bed, a liquid electrolyte dispersed in the granule bed, and a porous absorbent coating on a surface adjacent to the granule bed.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: July 24, 2018
    Assignee: General Electric Company
    Inventors: Manikandan Ramani, Edward James Balaschak, Robert Christie Galloway, Raymond R. Cole, Jonathan Adam Bielik
  • Patent number: 7964146
    Abstract: The ability to switch at will between amperometric measurements and potentiometric measurements provides great flexibility in performing analyses of unknowns. Apparatus and methods can provide such switching to collect data from an electrochemical cell. The cell may contain a reagent disposed to measure glucose in human blood.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: June 21, 2011
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Sridhar G. Iyengar, Baoguo Wei, Sonny Vu, Eileen Huang, Joseph Flaherty, Steven Diamond, Martin Forest
  • Patent number: 7931794
    Abstract: The present invention relates to a method and system for electrolytic fabrication of cells. A cell can be formed of a silicon layer (cathode) sandwiched between layers of glass. One or more holes are formed in the silicon layer. An alkali metal enriched glass material is placed in or associated with the one or more holes. Electrolysis is used to make the alkali metal ions in the alkali metal enriched glass material combine with electrons from the silicon cathode to form neutral alkali metal atoms in the one or more holes.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: April 26, 2011
    Assignee: Princeton University
    Inventors: William Happer, Yuan-Yu Jau, Fei Gong, Katharine Estelle Jensen
  • Patent number: 7897028
    Abstract: Disclosed herein is an improved method for regenerating materials from a desulfurization/demetallation reaction. The desulfurization/demetallation reaction preferably has products including one or more of an alkali sulfide, polysulfide or hydrosulfide, or alkali earth sulfide, polysulfide, or hydrosulfide. The method includes the steps of reacting the desulfurization/demetallation products with a halogen, liberating and removing sulfur from the product, and then electrolyzing the halogenated products to separate the halogen from the alkali metal or alkali earth metal.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: March 1, 2011
    Assignee: Ceramatec, Inc.
    Inventors: John H. Gordon, Ashok V. Joshi
  • Patent number: 7608178
    Abstract: Electro-winning of active metal (e.g., lithium) ions from a variety of sources including industrial waste, and recycled lithium and lithium-ion batteries is accomplished with an electrolyzer having a protected cathode that is stable against aggressive solvents, including water, aqueous electrolytes, acid, base, and a broad range of protic and aprotic solvents. The electrolyzer has a highly ionically conductive protective membrane adjacent to the alkali metal cathode that effectively isolates (de-couples) the alkali metal electrode from solvent, electrolyte processing and/or cathode environments, and at the same time allows ion transport in and out of these environments. Isolation of the cathode from other components of a battery cell or other electrochemical cell in this way allows the use of virtually any solvent, electrolyte and/or anode material in conjunction with the cathode. The electrolyzer can be configured and operated to claim or reclaim lithium or other active metals from such sources.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: October 27, 2009
    Assignee: PolyPlus Battery Company
    Inventors: Lutgard De Jonghe, Steven J. Visco, Yevgeniy S. Nimon
  • Patent number: 7361276
    Abstract: A method of enhancing the concentration of a first inorganic compound in a first aqueous solution of a first process of a heavy chemical plant, the method comprising (a) feeding the first solution having the first compound at a first concentration and a first water vapor pressure to an osmotic membrane distillation means comprising a hydrophobic, gas and water vapor permeable membrane separating (i) a first chamber for receiving the first solution, from (ii) a second chamber for receiving a receiver feed aqueous solution having a second water vapor pressure lower than the first water vapor pressure; (b) feeding the receiver aqueous feed solution to the second chamber as to effect transfer of water vapor through the membrane from the first chamber to the second chamber, and to produce (i) a resultant first solution having a second concentration of the first compound greater than the first concentration and (ii) a diluted receiver feed aqueous solution; and (c) collecting the resultant first solution.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 22, 2008
    Assignee: Aker Kvaemer Canada Inc.
    Inventors: Zbigniew Twardowski, Thomas S. Drackett, Dmitri Bessarabov, Peter E. Fetissoff
  • Publication number: 20040178080
    Abstract: A low temperature alkali metal electrolysis process is provided. The process comprises carrying out the electrolysis in the presence of a co-electrolyte and an alkali metal halide. The co-electrolyte comprises (1) a nitrogen-containing compound and optionally one ore more Group IB halides, Group IIIA halides, Group VIII halides; (2) a Group IIIA halide, a Group VB halide, or combinations of a Group IIIA halide and a Group VB halide; or (3) water. Also provided is a low temperature electrolysis process, which comprises carrying out the process using a cathode that comprises (1) a liquid alkali metal; (2) an alloy of two or more metals selected from the group consisting of bismuth, lead, tin, antimony, indium, gallium, thallium, and cadmium; or (3) an electrically conductive liquid solvated alkali metal.
    Type: Application
    Filed: March 26, 2004
    Publication date: September 16, 2004
    Inventors: Jeffery S. Thompson, Howard M. Blank, Walter John Simmons, Oswald Robert Bergmann
  • Patent number: 6787019
    Abstract: A low temperature electrolysis process that can be used for producing an alkali metal from an alkali metal halide is provided, which comprises electrolyzing an electrolyte composition comprising at least one alkali metal halide and a co-electrolyte comprising (a) a halide or halides of Group IIIA, Group IB, or Group VIII metals and (b) a halide-donating compound.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: September 7, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Stephen Ernest Jacobson, Dennie Turin Mah
  • Patent number: 6730210
    Abstract: A low temperature alkali metal electrolysis process is provided. The process comprises carrying out the electrolysis in the presence of a co-electrolyte and an alkali metal halide. The co-electrolyte comprises (1) a nitrogen-containing compound and optionally one ore more Group IB halides, Group IIIA halides, Group VIII halides; (2) a Group IIIA halide, a Group VB halide, or combinations of a Group IIIA halide and a Group VB halide; or (3) water. Also provided is a low temperature electrolysis process, which comprises carrying out the process using a cathode that comprises (1) a liquid alkali metal; (2) an alloy of two or more metals selected from the group consisting of bismuth, lead, tin, antimony, indium, gallium, thallium, and cadmium; or (3) an electrically conductive liquid solvated alkali metal.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: May 4, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Jeffery S. Thompson, Howard M. Blank, Walter John Simmons, Oswald Robert Bergmann
  • Patent number: 6669836
    Abstract: An electrolysis process is provided which comprises carrying out the process in an electrolyte that comprises an alkali metal halide and a strontium halide. The process can be carried out at a current density in the range of from about 7 to about 10 kA/m2.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: December 30, 2003
    Assignee: New Mexico Tech Research Foundation
    Inventors: Stephen John Keppler, Thomas A. Messing, Kevin Bernard Proulx, Davendra Kumar Jain
  • Publication number: 20030015434
    Abstract: A process for purification of molten salt electrolytes containing magnesium chloride in which oxygen-containing impurities such as magnesium hydroxychloride are destroyed both electrolytically and chemically. The process comprises passing a direct current through a magnesium chloride-containing molten salt electrolyte, thereby electrolyzing a portion of the oxygen-containing impurities at the anode. In addition, the voltage and current of the direct current are sufficiently high to cause electrolysis of a small proportion of the magnesium chloride present in the electrolyte to thereby produce finely dispersed droplets of elemental magnesium in the electrolyte. The droplets of elemental magnesium react chemically with oxygen-containing impurities present in the electrolyte. The purified electrolyte is transferred to an electrolytic cell for the production of magnesium metal and chlorine gas.
    Type: Application
    Filed: July 18, 2001
    Publication date: January 23, 2003
    Applicant: Hatch Associates Ltd.
    Inventors: Roger C. Urquhart, Roman Deshko, Sami Mourad
  • Patent number: 6368486
    Abstract: A low temperature alkali metal electrolysis process for carrying out the electrolysis in the presence of a co-electrolyte and an alkali metal halide. The co-electrolyte comprises (1) a nitrogen-containing compound and optionally one ore more Group IB halides, Group IIIA halides, Group VIII halides; (2) a Group IIIA halide, a Group VB halide, or combinations of a Group IIIA halide and a Group VB halide; or (3) water. Further provided is an electrolyte comprising an alkali metal halide and a co-electrolyte that comprises (1) a nitrogen-containing compound and optionally one ore more Group IB halides, Group IIIA halides, Group VIII halides or (2) a Group IIIA halide, a Group VB halide, or combinations of a Group IIIA halide and a Group VB halide.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: April 9, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Jeffrey S. Thompson, Howard M. Blank, Walter John Simmons, Oswald Robert Bergmann
  • Patent number: 6235183
    Abstract: A process for preparing sodium and aluminum chloride electrochemically is described in which, in an electrolytic cell containing aluminum as an anode and sodium as a cathode which are separated from one another by a sodium ion-conducting solid electrolyte, a fused electrolyte essentially containing sodium tetrachloroaluminate is electrolyzed in the anode compartment, aluminum chloride formed in this process is evaporated from the electrolytic cell and sodium is removed from the cathode compartment.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: May 22, 2001
    Assignee: Basf Aktiengesellschaft
    Inventors: Hermann Pütter, Günther Huber, Luise Spiske, Hans Stark, Dieter Schläfer, Gerhard Pforr
  • Patent number: 6117303
    Abstract: Lithium chloride improves electrolytic cell efficiency and performance when included in the electrolyte. Self-aligning cell diaphragms improve cell efficiency and reduce maintenance.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: September 12, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Oswald Robert Bergmann, Howard M. Blank, Russell Bertrum Diemer, Jr., David Jain, Thomas A. Messing, Walter John Simmons