With Group Viii Metal Or Metal Oxide (i.e., Iron Or Platinum Group Metal, Or Oxide Thereof) Patents (Class 208/120.35)
-
Patent number: 10844289Abstract: Methods of chemical looping include introducing a hydrocarbon-containing feed stream into a first reaction zone. The first reaction zone includes a moving catalyst bed reactor. The moving catalyst bed reactor includes a heterogeneous catalyst, and the heterogeneous catalyst includes a heat-generating metal oxide component. The method further includes cracking the hydrocarbon-containing feed stream in the presence of the heterogeneous catalyst of the moving catalyst bed reactor, reducing the metal oxide heat-generating component of the heterogeneous catalyst with hydrogen from a product stream to generate heat, and utilizing the heat to drive additional cracking of the hydrocarbon-containing feed stream. A chemical looping system includes at least one reduction reactor, which includes a moving catalyst bed reactor and a heterogeneous catalyst, and at least one oxidation reactor fluidly coupled to the reduction reactor.Type: GrantFiled: August 27, 2018Date of Patent: November 24, 2020Assignee: Saudi Arabian Oil CompanyInventors: Wei Xu, Ibrahim Abba, Rodrigo Sandoval Rivera, Ola Ali
-
Patent number: 8840779Abstract: A supported catalyst comprises a zeolite having a silica to alumina molar ratio of 500 or less, a first metal oxide binder having a crystallite size greater than 200 ? and a second metal oxide binder having a crystallite size less than 100 ?, wherein the second metal oxide binder is present in an amount less than 15 wt % of the total weight of the catalyst.Type: GrantFiled: February 7, 2011Date of Patent: September 23, 2014Assignee: ExxonMobil Research and Engineering CompanyInventors: Stephen J. McCarthy, Wenyih F. Lai, Darryl Donald Lacy, Robert Ellis Kay
-
Patent number: 8748680Abstract: A process for catalytic hydrotreatment of a pyrolysis oil derived from lignocelluloses is provided.Type: GrantFiled: November 23, 2010Date of Patent: June 10, 2014Assignee: Shell Oil CompanyInventors: Johannes Antonius Hogendoorn, Sascha Reinier Aldegonda Kersten, Lavanya Meesala, Ferran De Miguel Mercader, Argi Joachim Antonio Moppi, Colin John Schaverien
-
Patent number: 8658024Abstract: The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.Type: GrantFiled: August 2, 2012Date of Patent: February 25, 2014Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SinopecInventors: Jun Long, Wenbin Jiang, Mingde Xu, Huiping Tian, Yibin Luo, Xingtian Shu, Jiushun Zhang, Beiyan Chen, Haitao Song
-
Publication number: 20130153465Abstract: Systems and methods that include providing, e.g., obtaining or preparing, a material that includes a hydrocarbon carried by an inorganic substrate, and exposing the material to a plurality of energetic particles, such as accelerated charged particles, such as electrons or ions.Type: ApplicationFiled: February 15, 2013Publication date: June 20, 2013Applicant: XYLECO, INC.Inventor: Marshall Medoff
-
Publication number: 20130081980Abstract: The present invention relates to sulphur reduction catalyst additive composition comprising an inorganic porous support incorporated with metals; an alumino silicate or zeolite component; an alumina component and clay. More particularly the present invention relates to sulphur reduction catalyst additive composition comprising refinery spent catalyst as support. The primary sulphur reduction catalyst additive component of the catalyst composition contains metals of Period III or IV of the Periodic Table, preferably Zinc or Magnesium or combination thereof or one of the transition metals along with other metals.Type: ApplicationFiled: October 1, 2012Publication date: April 4, 2013Applicant: BHARAT PETROLEUM CORPORATION LIMITEDInventors: Dattatraya Tammannashastri GOKAK, Chiranjeevi THOTA, Pragya RAI, N. JOSE, P.S. VISWANATHAN
-
Patent number: 8318000Abstract: A method of producing a crude product from a hydrocarbon feed is provided. A hydrocarbon feed is contacted with a catalyst containing a Col. 6-10 metal or compound thereof to produce the crude product, where the catalyst has a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?.Type: GrantFiled: January 11, 2012Date of Patent: November 27, 2012Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Patent number: 8247631Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolitic compositions represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolitic compositions are active and selective in the catalytic cracking of hydrocarbons.Type: GrantFiled: June 21, 2010Date of Patent: August 21, 2012Assignee: UOP LLCInventors: Christopher P Nicholas, Deng-Yang Jan, Jaime G. Moscoso
-
Patent number: 8202815Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.Type: GrantFiled: December 26, 2008Date of Patent: June 19, 2012Assignee: General Electric CompanyInventors: Gregg Anthony Deluga, Daniel Lawrence Derr
-
Patent number: 8157985Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.Type: GrantFiled: June 2, 2011Date of Patent: April 17, 2012Assignee: UOP LLCInventors: Christopher P Nicholas, Deng-Yang Jan, Jaime G Moscoso
-
Patent number: 8137535Abstract: Systems and methods for producing and using one or more doped catalysts are provided. One or more coked-catalyst particles can be fluidized in the presence of one or more oxidants to provide a fluidized mixture. The coke from the one or more coked-catalyst particles can be removed to provide regenerated catalyst particles within the fluidized mixture. One or more doping agents can be distributed to the fluidized mixture, and the one or more doping agents can be deposited onto the surface of the regenerated catalyst particles to provide a regenerated, doped catalyst particle.Type: GrantFiled: January 29, 2008Date of Patent: March 20, 2012Assignee: Kellogg Brown & Root LLCInventor: Pritham Ramamurthy
-
Patent number: 8084383Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention is a cracking catalyst composition comprising a zeolite in combination with a Lewis Acid containing component, wherein the cracking catalyst composition comprises 0.2% Na2O or less. It has been found that sulfur compounds in hydrocarbon feeds to fluid catalytic cracking processes can be reduced by at least 15% compared to the same composition, which does not comprise the aforementioned Lewis Acid containing component.Type: GrantFiled: March 16, 2004Date of Patent: December 27, 2011Assignee: W.R. Grace & Co.-Conn.Inventors: Ruizhong Hu, Xinjin Zhao, Richard Franklin Wormsbecher, Michael Scott Ziebarth
-
Publication number: 20110266197Abstract: The present invention relates to a method of production of light olefins, with the objective of maximizing the production of propylene and in particular ethylene by the use of a special catalyst containing high-silica zeolite, whose composition also includes a dehydrogenating metal, so as to generate light olefins and appreciable deposition of coke on the catalyst. Gains in selectivity for light olefins are observed, and at the same time the energy deficiency of catalytic cracking in petrochemical operations with light hydrocarbons is minimized, avoiding problems due to the need to burn heating oil in the catalyst regenerating section to make up for the energy deficit of the converter.Type: ApplicationFiled: August 28, 2009Publication date: November 3, 2011Applicant: PETROLEO BRASILEIRO S.A. - PETROBRASInventors: Andrea de Rezende Pinho, Lam Yiu Lau
-
Publication number: 20110230697Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.Type: ApplicationFiled: June 2, 2011Publication date: September 22, 2011Applicant: UOP LLCInventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
-
Patent number: 8021642Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.Type: GrantFiled: June 13, 2007Date of Patent: September 20, 2011Assignee: Intevep, S.A.Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
-
Patent number: 8022003Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.Type: GrantFiled: August 6, 2010Date of Patent: September 20, 2011Assignee: Intevep, S.A.Inventors: Andres Quesada Perez, Gerardo Vitale Rojas
-
Patent number: 8012343Abstract: The present invention pertains to a process for the hydroprocessing of heavy hydrocarbon feeds, preferably in an ebullating bed process, by contacting the feed with a mixture of two hydroprocessing catalysts meeting specified pore size distribution requirements. The process combines high contaminant removal with high conversion, low sediment formation, and high process flexibility.Type: GrantFiled: December 5, 2003Date of Patent: September 6, 2011Inventors: Frans Lodewijk Plantenga, Katsuhisa Fujita, Satoshi Abe
-
Patent number: 8007765Abstract: The present invention relates to a microporous crystalline material characterized in that it has the following chemical composition in the calcined from: xX2O3:nYO2:mGeO2 in which (n+m) is at least 5, X is one or more trivalent elements, Y corresponds to one or more tetravalent elements other than Ge, “x” may have any value, including zero, and the ratio Y/Ge is greater than 0.1, and it has a characteristic X-ray diffraction pattern. Its also relates to a method for preparing it and to its use in the conversion of organic-compounds supplies.Type: GrantFiled: February 22, 2007Date of Patent: August 30, 2011Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de ValenciaInventors: Manuel Moliner Marin, Maria Jose Diaz Cabanas, Angel Cantin Sanz, Avelino Corma Canos
-
Patent number: 8002970Abstract: The present invention concerns doped catalysts on a mixed zeolite/alumino-silicate support with a low macropore content, and hydrocracking/hydroconversion and hydrotreatment processes employing them. The catalyst comprises at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and group VIII of the periodic table and a doping element in a controlled quantity selected from phosphorus, boron and silicon, and a support based on zeolite Y defined by a lattice parameter a of the unit cell in the range 24.40×10?10 m to 24.15×10?10 m and silica-alumina containing a quantity of more than 5% by weight and 95% by weight or less of silica (SiO2).Type: GrantFiled: December 13, 2005Date of Patent: August 23, 2011Assignee: IFP Energies NouvellesInventors: Patrick Euzen, Patrick Bourges, Christophe Gueret, Carole Bobin, Alexandra Chaumonnot, Hugues Dulot
-
Publication number: 20110192766Abstract: A supported catalyst comprises a zeolite having a silica to alumina molar ratio of 500 or less, a first metal oxide binder having a crystallite size greater than 200 ? and a second metal oxide binder having a crystallite size less than 100 ?, wherein the second metal oxide binder is present in an amount less than 15 wt % of the total weight of the catalyst.Type: ApplicationFiled: February 7, 2011Publication date: August 11, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Stephen J. McCarthy, Wenyih F. Lai, Darryl Donald Lacy, Robert Ellis Kay
-
Patent number: 7981273Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.Type: GrantFiled: June 22, 2009Date of Patent: July 19, 2011Assignee: UOP LLCInventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
-
Patent number: 7976697Abstract: A NOx reduction composition and process of using the composition to reduce the content of NOx emissions and gas phase reduced nitrogen species released from the regeneration zone during fluid catalytic cracking of a hydrocarbon feedstock into lower molecular weight components is disclosed. The process comprises contacting a hydrocarbon feedstock during a fluid catalytic cracking (FCC) process wherein a regeneration zone of an fluid catalytic cracking unit (FCCU) is operated in a partial or incomplete combustion mode under FCC conditions, with a circulating inventory of an FCC cracking catalyst and a particulate NOx reduction composition. The NOx reduction composition has a mean particle size of greater than 45 ?m and comprises (1) a zeolite component having (i) a pore size of form 2-7 A Angstroms and (ii) a SiO2 to Al2O3 molar ratio of less than 500, and (2) at least one noble metal selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, ruthenium, rhenium and mixtures thereof.Type: GrantFiled: March 24, 2006Date of Patent: July 12, 2011Assignee: W. R. Grace & Co.-Conn.Inventors: M. Sundaram Krishnamoorthy, Michael Scott Ziebarth, George Yaluris, Roger Jean Lussier, John Allen Rudesill
-
Publication number: 20110127193Abstract: The present invention relates to a catalyst for catalytic cracking fluidized-bed, and the technical problems to be primarily solved by the present invention are high reaction temperature, low cryogenic activity of catalysts and worse selectivity during the preparation of ethylene-propylene by catalytically cracking naphtha. The present invention uses the composition having the chemical formula (on the basis of the atom ratio): AaBbPcOx, so as to magnificently solve said problems. The present invention therefore can be industrially used to produce ethylene and propylene by catalytically cracking naphtha.Type: ApplicationFiled: December 23, 2010Publication date: June 2, 2011Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY SINOPECInventors: Zaiku Xie, Guangwei Ma, Weimin Yang, Hui Yao, Liang Chen
-
Patent number: 7943038Abstract: Processes for producing one or more olefins are provided. In one or more embodiments, a doped catalyst can be prepared by fluidizing one or more coked-catalyst particles in the presence of one or more oxidants to provide a fluidized mixture. At least a portion of the coke can be removed from the coked-catalyst particles to provide regenerated catalyst particles. One or more doping agents can be distributed throughout the fluidized mixture, depositing on the surface of the regenerated catalyst particles to provide doped catalyst particles. One or more hydrocarbon feeds can be fluidized with the doped catalyst particles to provide a reaction mixture which can be cracked to provide a first product containing propylene, ethylene, and butane.Type: GrantFiled: January 29, 2008Date of Patent: May 17, 2011Assignee: Kellogg Brown & Root LLCInventor: Pritham Ramamurthy
-
Patent number: 7918991Abstract: Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a NOx reducing zeolite having a pore size ranging from about 2 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio of less than about 500 and being stabilized with a metal or metal ion selected from the group consisting of zinc, iron and mixtures thereof. Preferably, the NOx reducing zeolite particles are bound with an inorganic binder to form a particulate composition. In the alternative, the NOx reducing zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst.Type: GrantFiled: March 24, 2006Date of Patent: April 5, 2011Assignee: W. R. Grace & Co.-Conn.Inventors: Michael Scott Ziebarth, M. Sundaram Krishnamoorthy, Roger Jean Lussier
-
Publication number: 20100264066Abstract: Alumina binder obtained from aluminum sulfate, the process of preparing the binder and the process of using the binder to prepare catalyst compositions are disclosed. Catalytic cracking catalyst compositions, in particularly, fluid catalytic cracking catalyst composition comprising zeolites, optionally clay and matrix materials bound by an alumina binder obtained from aluminum sulfate are disclosed.Type: ApplicationFiled: June 11, 2007Publication date: October 21, 2010Inventor: Ranjit Kumar
-
Patent number: 7803267Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.Type: GrantFiled: April 29, 2005Date of Patent: September 28, 2010Assignee: W. R. Grace & Co.-Conn.Inventors: Arthur W. Chester, Terry G. Roberie, Hye Kyung C. Timken, Michael S. Ziebarth
-
Patent number: 7718051Abstract: Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.Type: GrantFiled: September 17, 2007Date of Patent: May 18, 2010Assignee: Battelle Energy Alliance, LLCInventors: Daniel M. Ginosar, Lucia M. Petkovic, David N. Thompson
-
Patent number: 7686943Abstract: The invention relates to a process for upgrading hydrocarbonaceous feedstreams by hydroprocessing using bulk bimetallic catalysts. More particularly, the invention relates to a catalytic hydrotreating process for the removal of sulfur and nitrogen from a hydrocarbon feed such as a fuel or a lubricating oil feed. The catalyst is a bulk catalyst containing at leas one Group VIII metal and at least one Group VIB metal. The catalyst is prepared hydrothermally.Type: GrantFiled: October 25, 2006Date of Patent: March 30, 2010Assignee: ExxonMobil Research and Engineering CompanyInventors: Stuart L. Soled, Sabato Miseo, Sonja Eijsbouts, Frans L. Plantenga
-
Patent number: 7655136Abstract: The invention concerns a process for producing middle distillates from a paraffinic feed produced by Fischer-Tropsch synthesis, using a hydrocracking/hydroisomerization catalyst which comprises: at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and group VIII of the periodic table; 0.01% to 6% of phosphorus as a doping element; and a non-zeolitic support based on mesoporous alumina-silica.Type: GrantFiled: June 27, 2006Date of Patent: February 2, 2010Assignee: Institut Francais du PetroleInventors: Patrick Euzen, Christophe Gueret, Vincenzo Calemma
-
Patent number: 7641787Abstract: Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a particulate NOx composition containing particles of a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio of less than about 500. Preferably, the NOx reduction composition contains NOx reduction zeolite particles bound with an inorganic binder. In the alternative, the NOx reduction zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst. Compositions in accordance with the invention are very effective for the reduction of NOx emissions released from the regenerator of a fluid catalytic cracking unit operating under FCC process conditions without a substantial change in conversion or yield of cracked products.Type: GrantFiled: November 7, 2008Date of Patent: January 5, 2010Assignee: W.R. Grace & Co.-Conn.Inventors: George Yaluris, Michael Scott Ziebarth, Xinjin Zhao
-
Publication number: 20090288990Abstract: The present invention relates to a catalyst for catalytic cracking fluidized-bed, and the technical problems to be primarily solved by the present invention are high reaction temperature, low cryogenic activity of catalysts and worse selectivity during the preparation of ethylene-propylene by catalytically cracking naphtha. The present invention uses the composition having the chemical formula (on the basis of the atom ratio): AaBbPcOx, so as to magnificently solve said problems. The present invention therefore can be industrially used to produce ethylene and propylene by catalytically cracking naphtha.Type: ApplicationFiled: August 15, 2006Publication date: November 26, 2009Applicants: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology SinopecInventors: Zaiku Xie, Guangwei Ma, Weimin Yang, Hui Yao, Jingxian Xiao, Liang Chen
-
Patent number: 7601881Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.Type: GrantFiled: January 30, 2008Date of Patent: October 13, 2009Assignee: UOP LLCInventors: Ralph D. Gillespie, Feng Xu
-
Patent number: 7582202Abstract: A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.Type: GrantFiled: February 10, 2004Date of Patent: September 1, 2009Assignees: Akzo Nobel N.V., Albemarle Netherlands B.V.Inventors: William Jones, Paul O'Connor, Dennis Stamires
-
Patent number: 7563745Abstract: The invention relates to a shaped catalyst or catalyst precursor containing a catalytically active component or a precursor therefore, the component selected from elements of Group VIII of the Periodic Table of the Elements, supported on a carrier, which catalyst or catalyst precursor is an elongated shaped particle having three protrusions each extending from and attached to a central position, wherein the central position is aligned along the longitudinal axis of the particle, the cross-section of the particle occupying the space encompassed by the outer edges of six circles around a central circle, each of the six circles touching two neighboring circles while three alternating circles are equidistant to the central circle and may be attached to the central circle, minus the space occupied by the three remaining outer circles and including the six interstitial regions.Type: GrantFiled: June 6, 2003Date of Patent: July 21, 2009Assignee: Shell Oil CompanyInventors: Arend Hoek, Hans Michiel Huisman, Carolus Matthias Anna Maria Mesters
-
Patent number: 7497942Abstract: In the regeneration of a cracking catalyst in a regeneration zone operated in a partial combustion mode, NH3 and HCN in the regenerator flue gas are reduced by incorporating into the regenerator precious metals such as ruthenium, rhodium, iridium, or mixtures thereof.Type: GrantFiled: June 6, 2003Date of Patent: March 3, 2009Assignee: BASF Catalysts, LLCInventor: Mingting Xu
-
Publication number: 20090050527Abstract: A NOx reduction composition and process of using the composition to reduce the content of NOx emissions and gas phase reduced nitrogen species released from the regeneration zone during fluid catalytic cracking of a hydrocarbon feedstock into lower molecular weight components is disclosed. The process comprises contacting a hydrocarbon feedstock during a fluid catalytic cracking (FCC) process wherein a regeneration zone of an fluid catalytic cracking unit (FCCU) is operated in a partial or incomplete combustion mode under FCC conditions, with a circulating inventory of an FCC cracking catalyst and a particulate NOx reduction composition. The NOx reduction composition has a mean particle size of greater than 45 ?m and comprises (1) a zeolite component having (i) a pore size of form 2-7 A Angstroms and (ii) a SiO2 to Al2O3 molar ratio of less than 500, and (2) at least one noble metal selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, ruthenium, rhenium and mixtures thereof.Type: ApplicationFiled: March 24, 2006Publication date: February 26, 2009Inventors: M. Sundaram Krishnamoorthy, Michael Scott Ziebarth, George Yaluris, Roger Jean Lussier, John Allen Rudesill
-
Publication number: 20090050528Abstract: Particulate compositions for promoting CO oxidation in FCC processes are provided, the compositions comprising an anionic clay support having at least one dopant, wherein at least one compound comprising iridium, rhodium, palladium, copper, or silver is deposited on the anionic clay support, and the composition is substantially free of platinum.Type: ApplicationFiled: June 9, 2008Publication date: February 26, 2009Applicant: ALBEMARLE NETHERLANDS B.V.Inventors: Darrell Ray Rainer, Julie Ann Francis, Jorge Alberto Gonzalez, Lin Luo
-
Publication number: 20080308455Abstract: The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.Type: ApplicationFiled: December 28, 2005Publication date: December 18, 2008Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPECInventors: Jun Long, Wenbin Jiang, Mingde Xu, Huiping Tian, Yibin Luo, Xingtian Shu, Jiushun Zhang, Beiyan Chen, Haitao Song
-
Patent number: 7435332Abstract: This invention relates to a process for cracking hydrocarbon oils. The process comprises contacting a hydrocarbon oil with a catalyst that has been contacted with an atmosphere containing a reducing gas, separating cracked products and the catalyst, and regenerating the catalyst. The catalyst is a cracking catalyst containing a metal component, or a catalyst mixture of a cracking catalyst containing a metal component and a cracking catalyst free of metal component. The catalyst is contacted with the atmosphere containing a reducing gas at a temperature of 100 to 900° C. for at least 1 second, and the amount of the atmosphere containing a reducing gas is not less than 0.03 cubic meters of reducing gas per ton of the cracking catalyst containing a metal component per minute, at a pressure of 0.1-0.5 MPa in the reduction reactor. The process has enhanced capability for desulfurizing and cracking heavy oils.Type: GrantFiled: September 27, 2004Date of Patent: October 14, 2008Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing SinopecInventors: Jun Long, Huiping Tian, Yujian Liu, Yuxia Zhu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
-
Patent number: 7431825Abstract: The present invention describes novel methods for reducing sulfur in gasoline with hydrotalcite like compound additives, calcined hydrotalcite like compounds, and/or mixed metal oxide solution solutions. The additives can optionally further comprise one or more metallic oxidants and/or supports. The invention is also directed to methods for reducing gasoline sulfur comprising contacting a catalytic cracking feedstock with a mixed metal oxide compound comprising magnesium and aluminum and having an X-ray diffraction pattern displaying a reflection at least at a two theta peak position at about 43 degrees and about 62 degrees, wherein the ratio of magnesium to aluminum in the compound is from about 1:1 to about 10:1.Type: GrantFiled: December 5, 2003Date of Patent: October 7, 2008Assignee: Intercat, Inc.Inventors: Albert A. Vierheilig, Bruce Keener
-
Patent number: 7390395Abstract: The present invention relates to new crystalline molecular sieve SSZ-56 prepared using a N,N-diethyl-2-methyldecahydroquinolinium cation as a structure directing agent, methods for synthesizing SSZ-56 and processes employing SSZ-56 in a catalyst.Type: GrantFiled: June 16, 2006Date of Patent: June 24, 2008Inventor: Saleh Elomari
-
Patent number: 7371316Abstract: A catalytic composition useful for cracking and reducing the viscosity of heavy hydrocarbons. The catalytic composition comprises Portland cement, a volcanic ash component, titanium dioxide, and a transition metal salt. Optionally, a hydrogen source is added to the catalytic composition.Type: GrantFiled: July 24, 2003Date of Patent: May 13, 2008Inventor: Jeffrey P. Newton
-
Patent number: 7361264Abstract: The present invention is directed to methods for mitigating the deleterious effect of at least one metal on an FCC catalyst. This objective is achieved by using a mixed metal oxide compound comprising magnesium and aluminum, that has not been derived from a hydrotalcite compound, and having an X-ray diffraction pattern displaying at least a reflection at a two theta peak position at about 43 degrees and about 62 degrees, wherein the ratio of magnesium to aluminum in the compound is from about 0.6:1 to about 10:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1:1 to about 6:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 10:1. In another embodiment, the invention is directed to methods wherein the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 6:1.Type: GrantFiled: May 25, 2005Date of Patent: April 22, 2008Assignee: Intercat, Inc.Inventor: Albert A. Vierheilig
-
Patent number: 7347929Abstract: The present invention describes novel methods for reducing sulfur in gasoline with hydrotalcite like compound additives, calcined hydrotalcite like compounds, and/or mixed metal oxide solution. The additives can optionally further comprise one or more metallic oxidants and/or supports. The invention is also directed to methods for reducing gasoline sulfur comprising contacting a catalytic cracking feedstock with a mixed metal oxide compound comprising magnesium and aluminum and having an X-ray diffraction pattern displaying a reflection at least at a two theta peak position at about 43 degrees and about 62 degrees, wherein the ratio of magnesium to aluminum in the compound is from about 1:1 to about 10:1.Type: GrantFiled: December 31, 2003Date of Patent: March 25, 2008Assignee: Intercat, Inc.Inventors: Albert A. Vierheilig, Bruce Keener
-
Patent number: 7347930Abstract: A novel process for cracking olefins including contacting a hydrocarbon oil with a catalyst in a riser reactor having multiple reaction zones under cracking reaction conditions; separating reaction products and the catalyst; regenerating at least a part of spent catalyst obtained, contacting a part of the regenerated catalyst with the hydrocarbon in the first reaction zone; contacting the other part of the spent catalyst and/or regenerated catalyst in at least one reaction zone after the first reaction zone with the products obtained in previous reaction zones.Type: GrantFiled: October 15, 2004Date of Patent: March 25, 2008Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SinopecInventors: Jun Long, Yuxia Zhu, Huiping Tian, Yujian Liu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
-
Patent number: 7220349Abstract: The invention concerns a process for producing middle distillates from an effluent produced by a Fischer-Tropsch unit, comprising optional fractionation to obtain at least one heavy fraction with an initial boiling point in the range 120-200° C., said heavy fraction or said effluent optionally being hydrotreated, then bringing it into contact with a first amorphous hydrocracking/hydroisomerization catalyst that contains at least one noble group VIII metal, the effluent obtained is distilled, then the residual fraction boiling above the middle distillates and/or a portion of the middle distillates is brought into contact with a second amorphous hydrocracking/hydroisomerization catalyst containing at least one noble group VIII metal. The invention also concerns a unit.Type: GrantFiled: July 8, 2002Date of Patent: May 22, 2007Assignees: Institut Francais du Petrole, AGIP Petroli S.p.A., ENI S.p.A., EniTecnolgie SpAInventors: Eric Benazzi, Christophe Gueret
-
Patent number: 7125817Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Group 3 and one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur, wherein the elements from Groups 3, Groups 4–15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.Type: GrantFiled: February 20, 2003Date of Patent: October 24, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: John D. Y. Ou, Neeraj Sangar
-
Patent number: 7122492Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Groups 1 and 2; one or more elements from Group 3; one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.Type: GrantFiled: February 5, 2003Date of Patent: October 17, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: John D. Y. Ou, Neeraj Sangar
-
Patent number: 7090767Abstract: A method for processing a gasoline range hydrocarbon stream wherein a single reactor/distillation tower stream is fractionated into a light fraction and a heavy fraction, the light fraction is hydrodesulfurized, the heavy fraction is optionally hydrocracked and then hydrodesulfurized, and the light and heavy fractions are separately recovered.Type: GrantFiled: May 2, 2002Date of Patent: August 15, 2006Assignee: Equistar Chemicals, LPInventors: Mark P. Kaminsky, Kenneth M. Webber