With Group Viii Metal Or Metal Oxide Patents (Class 208/137)
  • Patent number: 6241876
    Abstract: A process, preferably in a counter-current configuration, for selectively cracking carbon-carbon bonds of naphthenic species using a low acidic catalyst, preferably having a crystalline molecular sieve component and carrying a Group VIII noble metal. The diesel fuel products are higher in cetane number and diesel yield.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: June 5, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6218591
    Abstract: The present invention relates to new crystalline zeolite SSZ-36 prepared using a cyclic or polycyclic quaternary ammonium cation templating agent.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: April 17, 2001
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gregory S. Lee, Stacey I. Zones, Yumi Nakagawa, Susan T. Evans
  • Patent number: 6210563
    Abstract: A process is provided for selectively producing diesel fuel with increased cetane number from a hydrocarbon feedstock. The process includes contacting the feedstock with a catalyst which has a large pore crystalline molecular sieve material component having a faujasite structure and alpha acidity of less than 1, preferably about 0.3 or less. The catalyst also contains a dispersed Group VIII noble metal component which catalyzes the hydrogenation/hydrocracking of the aromatic and naphthenic species in the feedstock.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: April 3, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6207042
    Abstract: A catalytic reforming process comprising the catalytic conversion of hydrocarbons to aromatics, said process comprising treating a halided zeolite catalyst (hiz-cat) containing a Group VIII metal at commercial startup conditions and then reforming hydrocarbons, wherein said catalyst is prepared by washing a bound zeolite catalyst base or a bound zeolite catalyst before halide addition. A preferred hiz-cat is a non-acidic Pt K L-zeolite catalyst prepared by a process that includes the steps of preparing a calcined silica-bound K L-zeolite catalyst base; washing said bound zeolite catalyst base with a liquid comprising water; and incorporating Pt and halogen-containing compound(s) comprising chlorine and fluorine into said washed catalyst base. Ammonium chloride and ammonium fluoride are preferred halide sources.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: March 27, 2001
    Assignee: Chevron Chemical Company LLC
    Inventors: Dennis L. Holtermann, Charles R. Wilson, Wayne S. Masumura, Michio Sugimoto, Hiroshi Ohashi
  • Patent number: 6203695
    Abstract: A process for hydrotreating a hydrocarbon feed, comprising subjecting said feed to hydrotreating conditions in the presence of a catalyst comprising an essentially alumina-based extruded support, essentially constituted by a plurality of juxtaposed agglomerates, optionally at least one catalytic metal or a compound of a catalytic metal from group VIB (group 6 of the new periodic table notation) and/or optionally, at least one catalytic metal or a compound of a catalytic metal from group VIII (group 8, 9 and 10 of the new periodic table notation), in which the sum S of the group VIB and VIII metals, expressed as the oxides, is 0% to 50% by weight, and wherein each of these agglomerates is partly in the form of packs of flakes and partly in the form of needles, said needles being uniformly dispersed both about the packs of flakes and between the flakes, in which the alumina agglomerates are obtained by forming a starting alumina originating from rapid dehydration of hydrargillite and in which the amount of alum
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: March 20, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Slavik Kazstelan, Frédéric Morel, Stéphane Kressmann, Philippe Courty
  • Patent number: 6190539
    Abstract: A catalytic reforming process comprising the catalytic conversion of hydrocarbons to aromatics, said process comprising treating a halided zeolite catalyst (hiz-cat) containing a Group VIII metal at commercial startup conditions and then reforming hydrocarbons, wherein said catalyst is prepared by washing a bound zeolite catalyst base or a bound zeolite catalyst before halide addition. A preferred hiz-cat is a non-acidic Pt K L-zeolite catalyst prepared by a process that includes the steps of preparing a calcined silica-bound K L-zeolite catalyst base; washing said bound zeolite catalyst base with a liquid comprising water; and incorporating Pt and halogen-containing compound(s) comprising chlorine and fluorine into said washed catalyst base. Ammonium chloride and ammonium fluoride are preferred halide sources.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: February 20, 2001
    Assignee: Chevron Chemical Company LLC
    Inventors: Dennis L. Holtermann, Charles R. Wilson, Wayne S. Masumura, Michio Sugimoto, Hiroshi Ohashi
  • Patent number: 6177002
    Abstract: A hydrocarbon feedstock is catalytically reformed in a sequence comprising a first bifunctional-catalyst reforming zone, a zeolitic-reforming zone containing a catalyst comprising a platinum-group metal and a nonacidic zeolite, and a terminal bifunctional catalyst reforming zone. The first and terminal bifunctional catalysts preferably comprise a lanthanide-series metal component. The process combination permits higher severity, higher aromatics yields and/or increased throughput relative to the known art, and is particularly useful in connection with moving-bed reforming facilities with continuous catalyst regeneration.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: January 23, 2001
    Assignee: UOP LLC
    Inventor: Bryan K. Glover
  • Patent number: 6172273
    Abstract: A composition is prepared by a method which comprises mixing a first solid material comprising a platinum group metal, a rhenium component, a porous carrier material and, optionally, a halogen component and a second solid material comprising silica and bismuth. The thus-obtained composition is employed as a catalyst in the conversion of hydrocarbons to aromatics. In an alternate embodiment, hydrocarbons are converted to aromatics by sequentially contacting the hydrocarbons with the first solid material and then the second solid material.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: January 9, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6153089
    Abstract: A process for converting undesirable olefinic hydrocarbon streams to hydrogen and petrochemical feedstock e.g. light olefins in C.sub.2 -C.sub.4 range and aromatics especially toluene and xylenes, which comprises simultaneous cracking and reforming at olefin rich hydrocarbons using a catalyst consisting of dehydrogenating metal components, shape selective zeolite components and large pore acidic components in different proportions in a circulating fluidized bed reactor-regenerator system having reactor temperature within 450-750.degree. C. and WHSV of 0.1-60 hour.sup.-1.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: November 28, 2000
    Assignee: Indian Oil Corporation Limited
    Inventors: Asit Kumar Das, Sukumar Mandal, Sobhan Ghosh, Debasis Bhattacharyya, Ganga Shanker Mishra, Jagdev Kumar Dixit, Arvind Pratap Singh, Ashok Kumar Tewari, Satish Makhija, Manoranjan Santra, Latoor Lal Saroya, Shankar Sharma, Satyen Kumar Das
  • Patent number: 6153090
    Abstract: A process for catalytic reforming and for producing aromatics is carried out in the presence of a catalyst comprising at least one support, at least one metal from group VIII of the periodic table and at least one additional element M selected from the group formed by germanium, tin, lead, rhenium, gallium, indium, and thallium. The process is characterized in that the catalyst is prepared using a process in which said metal M is introduced in an aqueous solvent in the form of at least one organometallic compound comprising at least one carbon-M bond.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: November 28, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Fabienne Le Peltier, Blaise Didillon, Olivier Clause
  • Patent number: 6149799
    Abstract: The invention concerns a catalyst for hydrorefining and hydroconverting hydrocarbon feeds, comprising a mixed sulphide comprising at least two elements selected from elements with an atomic number selected from the group formed by the following numbers: 3, 11, 12, 19 to 33, 37, to 51, 55 to 83, 87 to 103, characterized in that the mixed sulphide results from a combination of at least one element the sulphide of which has a bond energy between the metal and sulphur of less than 50.+-.3 kcal/mol (209.+-.12 kJ/mol) and at least one element the sulphide of which has a bond energy between the metal and sulphur of more than 50.+-.3 kcal/mol (209.+-.12 kJ/mol), the mixed sulphide thus having a mean bond energy between the metal and sulphur which is in the range 30 to 70 kcal/mol (125 to 293 kJ/mol).
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: November 21, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Pascal Raybaud, Herve Toulhoat, Slavik Kasztelan
  • Patent number: 6136181
    Abstract: The present invention relates to a novel platinum palladium alloy catalyst useful in hydrofinishing and hydrocracking non low sulfur content feedstock and the process of hydrofinishing and hydrocracking such non low sulfur content feedstock feeds. The catalyst maintains the activity of a palladium catalyst with the sulfur tolerance of a platinum catalyst without the need for the higher reaction temperatures normally associated with platinum based catalysts and thus avoid the higher rates of undesirable cracking reactions in the fabrication of a lubricating base oil stock.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: October 24, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventor: James N. Ziemer
  • Patent number: 6123834
    Abstract: A process for reforming naphtha-containing hydrocarbon feedstreams is disclosed wherein a naphtha stream containing at least about 5 wt % of C9+ aromatics, at least about 25 wt % C.sub.5 to C.sub.9 aliphatic hydrocarbons and greater than 50 wt. ppm sulfur is contacted under reforming conditions with a bifunctional reforming catalyst, e.g. H.sup.+ ZSM-5, containing a dehydrogenation metal, e.g. zinc. The resulting reformate contains a higher ratio of C.sub.6 to C.sub.9 aromatics to C.sub.5 -C.sub.9 aliphatic hydrocarbon which boil near the boiling point of C.sub.6 to C.sub.8 aromatics present in the reformate, thereby facilitating separation of these aromatics form the reformate.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: September 26, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Jar-Lin Kao, Henry M. Pogorzelski
  • Patent number: 6124516
    Abstract: A process for isomerizing hydrocarbons is disclosed. The process includes contacting, under reaction conditions, a hydrocarbon-containing fluid containing a saturated hydrocarbon, preferably a normal paraffin containing in the range of from about 4 carbon atoms to about 10 carbon atoms per molecule, with a composition in a single-stage reaction zone. The process includes isomerizing such saturated hydrocarbon to thereby provide a product containing an isomerized hydrocarbon. The composition used in the process contains a zeolite and a metal carbide. The composition can be produced by combining a metal, preferably such metal is in a metal compound, with the zeolite to thereby provide a metal-promoted zeolite. The metal-promoted zeolite is then calcined or steamed followed by contacting the resulting zeolite with a hydrocarbon, preferably in the presence of hydrogen, to thereby provide a carburized metal-promoted zeolite.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: September 26, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6103773
    Abstract: A gas conversion process comprising synthesis gas production, hydrocarbon synthesis and hydrogen production from the synthesis gas, also includes hydrodesulfurizing sulfur-containing hydrocarbon liquids separated from a mixture of natural gas and the liquids produced from a gas well. Hydrogen produced from the synthesis gas is used for the hydrodesulfurization, to remove at least a portion of the sulfur as H.sub.2 S and form desulfurized hydrocarbon liquid. The hydrogen is produced from the synthesis gas by one or more of (i) physical separation means such as pressure swing adsorption and (ii) chemical means such as a water gas shift reactor. The synthesized hydrocarbons are upgraded by hydroconversion. A portion of the hydrogen produced from the synthesis gas may also be used for at least one of (i) hydrocarbon synthesis catalyst rejuvenation and the hydroconversion.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Co
    Inventors: Robert J. Wittenbrink, Charles W. DeGeorge
  • Patent number: 6096193
    Abstract: A catalytic material is provided which effectuates the aromatization, reformation, and dehydrogenation of aliphatic, cycloaliphatic, and mixtures of aliphatic and cycloaliphatic hydrocarbons. The catalyst comprises an L-zeolite associated with a Group VIII metal such as platinum and having a rare earth metal ion incorporated therein. A method of using the catalytic material is also provided.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: August 1, 2000
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Daniel E. Resasco, Cristina L. Padro, Gary Jacobs, Haiyang Liu
  • Patent number: 6090272
    Abstract: A process for producing catalyst compositions for converting a cracked gasoline feedstock to a product comprising incremental aromatics and lower olefins. The catalyst compositions produced thereby. A process for converting a cracked gasoline feedstock to a product comprising incremental aromatics and lower olefins.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: July 18, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 6080382
    Abstract: The present invention relates to new crystalline zeolite SSZ-48 prepared using a decahydroquinolinium cation templating agent.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: June 27, 2000
    Assignee: Chevron U. S. A. Inc.
    Inventors: Gregory S. Lee, Stacey I. Zones
  • Patent number: 6063975
    Abstract: A catalyst composition, a process for producing the composition, and a hydrotreating process for converting a hydrocarbon stream such as, for example, gasoline, to olefins and C.sub.6 to C.sub.8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition comprises a zeolite, a clay, and a promoter. The process for producing the composition comprises the steps: (1) combining a zeolite with a clay and a promoter under a condition sufficient to bind the clay to the zeolite to produce a clay-bound zeolite; and (2) heating the clay-bound zeolite to produce a modified zeolite. The hydrotreating process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to an olefin and a C.sub.6 to C.sub.8 aromatic hydrocarbon.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: May 16, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 6063264
    Abstract: A process for catalytic reforming of feed hydrocarbons to form aromatics, comprising contacting the feed, under catalytic reforming conditions, with catalyst disposed in the tubes of a furnace, wherein the catalyst is a monofunctional, non-acidic catalyst and comprises a Group VIII metal and zeolite L, and wherein the furnace tubes are from 2 to 8 inches in inside diameter, and wherein the furnace tubes are heated, at least in part, by gas or oil burners located outside the furnace tubes.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: May 16, 2000
    Assignee: Chevron Chemical Company LLC
    Inventor: Nicholas J. Haritatos
  • Patent number: 6051519
    Abstract: A catalyst composition and an ethylbenzene isomerization process are disclosed. The composition comprises a silylated zeolite and a promoter comprising a Group VIII metal. The process comprises contacting a fluid which comprises ethylbenzene and at least one xylene with the catalyst composition under a condition sufficient to effect the conversion of ethylbenzene to a xylene. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: April 18, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6051129
    Abstract: A dewaxing process for lowering the haze point of a bright stock which includes contacting a bright stock in the presence of added hydrogen gas with a Zeolite EU-1 catalyst in combination with a ZSM-48 and/or SSZ-32 catalyst.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: April 18, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventors: Thomas V. Harris, R. Norm Reynolds, Jr., Roger F. Vogel, Donald S. Santilli
  • Patent number: 6048450
    Abstract: A process for treating a feed comprising C.sub.5.sup.+ hydrocarbons and comprising at least one unsaturated C.sub.6.sup.+ compound including benzene, is such that the feed is treated in a distillation zone, associated with a hydrogenation zone, comprising at least one catalytic bed, in which the hydrogenation is carried out of unsaturated C.sub.6.sup.+ compounds contained in the feed, and whereof a charge for the hydrogenation step is removed at the height of a removal level and represents at least part of the liquid flowing in the distillation zone, and the effluent from the hydrogenation reaction zone is at least in part reintroduced into the distillation zone to ensure continuity of the distillation operation, the effluents at the top and bottom on the distillation zone being very depleted of unsaturated C.sub.6.sup.+ compounds. The effluent drawn off from the top of the distillation zone is treated in a zone for the isomerisation of C.sub.5 and/or C.sub.6 paraffins.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: April 11, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Paul Mikitenko, Christine Travers, Jean Cosyns, Charles Cameron, Jean-Luc Nocca, Fran.cedilla.oise Montecot
  • Patent number: 6045689
    Abstract: A process for converting hydrocarbons into aromatic compounds, which entails contacting a composition containing hydrocarbons with a catalyst under temperature and pressure conditions to produce the aromatic compounds, the catalyst containing a matrix of .eta. transition alumina and/or .gamma. transition alumina. The catalyst contains 0.001 to 2 wt % of silicon, 0.1 to 15 wt % of at least one platinum group metal, and 0.005 to 10 wt % of at least one promoter metal. The promoter metals may be tin, germanium, indium, gallium, thallium, antimony, lead, rhenium, manganese, chromium, molybdenium or tungsten. The catalyst may also contain a doping metal.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: April 4, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Fabio Alario, Jean-Marie Deves, Patrick Euzen
  • Patent number: 6036845
    Abstract: A catalytic reforming process comprises a prereactor which provides an intermediate stream to a riser reactor with multiple catalyst injection points to obtain high aromatics yields from a naphtha feedstock. Product from the riser reactor typically is discharged into a fluidized-bed reforming reactor, in which the reforming reaction is completed and catalyst is separated from hydrogen and hydrocarbons. Hydrocarbons from the reactor are separated to recover an aromatized product. Catalyst is regenerated to remove coke and reduced for reuse in the reforming process.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: March 14, 2000
    Assignee: UOP LLC
    Inventors: Gregory A. Funk, Christopher D. Gosling, Paula L. Bogdan
  • Patent number: 6030921
    Abstract: The present invention relates to a novel platinum palladium alloy catalyst useful in hydrofinishing and hydrocracking non low sulfur content feedstock and the process of hydrofinishing and hydrocracking such non low sulfur content feedstock feeds. The catalyst maintains the activity of a palladium catalyst with the sulfur tolerance of a platinum catalyst without the need for the higher reaction temperatures normally associated with platinum based catalysts and thus avoid the higher rates of undesirable cracking reactions in the fabrication of a lubricating base oil stock.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: February 29, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventor: James N. Ziemer
  • Patent number: 6025293
    Abstract: A catalyst composition, a process for producing the composition and a hydrocarbon conversion process for converting a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an acid-treated zeolite having impregnated thereon a metal or metal oxide. The composition can be produced by incorporating the metal or metal oxide into the zeolite. The hydrocarbon conversion process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: February 15, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Ralph J. Melton, Charles A. Drake
  • Patent number: 6017442
    Abstract: A catalyst composition contains a zeolite, cerium or cerium oxide, and a Group VIII metal or metal oxide. The composition is produced by contacting the zeolite with compounds of the metals and then heat-treating the metals-containing zeolite. Hydrocarbons are converted to C.sub.6 -C.sub.8 aromatic hydrocarbons by contacting the hydrocarbons with the catalyst composition at conversion conditions.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: January 25, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6007699
    Abstract: A process for oxidizing fuel and transferring the heat produced to a particular use in a combustion system such as fuels conversion. A bed of a mixture of materials forming an unmixed combustion catalyst, which in an oxidized state is readily reducible and in a reduced state is readily oxidizable, is placed in efficient thermal contact with a heat receiver for use in the combustion system. Fuel and air are alternately contacted with the bed, whereby the fuel is oxidized, the air is depleted of oxygen, and heat is liberated. The heat is efficiently transferred to the heat receiver by careful selection of the materials of the bed such that the temperatures produced when the fuel is oxidized and when the air is depleted of oxygen are advantageous to the particular use in the combustion system.
    Type: Grant
    Filed: August 21, 1996
    Date of Patent: December 28, 1999
    Assignee: Energy and Environmental Research Corporation
    Inventor: Jerald A. Cole
  • Patent number: 6007700
    Abstract: Gasolines are reformed and parafin and naphthene hydrocarbons are converted to aromatic compounds by contacting the hydrocarbons with a catalyst comprising a matrix of .eta. transition alumina and .gamma. transition alumina. The catalyst contains at least one doping metal, at least one halogen, at least one noble metal and at least one promoter metal. The doping metals are selected from titanium, zirconium, hafnium, cobalt, nickel, zinc, and the lanthanides and the promoter metals are selected from tin, germanium, indium, gallium, thallium, antimony, lead, rhenium, manganese, chromium, molybdenum and tungsten.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: December 28, 1999
    Assignee: Institut Francais Du Petrole
    Inventors: Fabio Alario, Jean-Marie Deves, Patrick Euzen
  • Patent number: 6005154
    Abstract: A crystalline zeolite SSZ-25 is prepared using an adamantane quaternary ammonium ion as a template.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: December 21, 1999
    Assignee: Chevron USA Inc.
    Inventors: Stacey I. Zones, Dennis L. Holtermann, Robert A. Innes, Theresa A. Pecoraro, Donald S. Santilli, James N. Ziemer
  • Patent number: 5994606
    Abstract: A method for dehydrogenation of a hydrocarbon, which comprises selectively oxidizing hydrogen in a gas mixture which is obtained by subjecting a feed hydrocarbon to a dehydrogenation reaction in the presence of a dehydrogenation catalyst and which comprises a dehydrogenated hydrocarbon, an unreacted feed hydrocarbon and hydrogen, by contacting the gas mixture with an oxygen-containing gas in the presence of an oxidation catalyst, and further subjecting a hydrocarbon-containing gas obtained by the oxidation reaction to a dehydrogenation reaction, wherein a catalyst comprising a component having platinum and/or palladium supported on a carrier obtained by calcining at least one member selected from the group consisting of tin oxide, titanium oxide, tantalum oxide and niobium oxide, at a temperature of from 800.degree. C. to 1,500.degree. C., is used as the oxidation catalyst.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: November 30, 1999
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Tomoatsu Iwakura, Makoto Takiguchi
  • Patent number: 5989410
    Abstract: The invention relates to a process for improving the pour point of a feedstock that comprises paraffins of more than 10 carbon atoms, in which the feedstock that is to be treated is brought into contact with a catalyst that comprises the IM-5 zeolite and at least one hydro-dehydrogenating element, at a temperature of between 170 and 500.degree. C., a pressure of between 1 and 250 bar, and an hourly volume velocity of between 0.05 and 100 h.sup.-1, in the presence of hydrogen at a ratio of 50 to 2000 l/l of feedstock. The oils that are obtained have good pour points and high viscosity indices (VI). The process can also be applied to gas-oils and other feedstocks whose pour points need to be lowered.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: November 23, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nathalie George-Marchal, Christophe Gueret, Patrick Briot, Alain Billon, Pierre Marion
  • Patent number: 5980731
    Abstract: The invention provides a crystalline type L zeolite reforming catalyst comprising cylindrically shaped crystals having a length of 0.6 microns or less and an average length: diameter ratio of less than about 0.5, the catalyst containing at least one Group VIII metal and from about 0.1 to 2 wt % halogen e.g., chlorine. Also provided is a method for activating or regenerating the catalyst wherein a fresh or de-coked catalyst is oxychlorinated, purged to remove excess chlorine and reduced. The catalysts are particularly useful for the reforming of C.sub.6 to C.sub.11 naphthas to produce reformates having a high content of C.sub.6 to C.sub.8 light aromatics and a reduced content of heavier C.sub.9 and C.sub.10 aromatics.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: November 9, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Jar-Lin Kao, Scott A. Ramsey
  • Patent number: 5972207
    Abstract: A large pore volume catalyst was used for reforming heavy cracked naphtha. The average pore diameter is preferably between about 110 to 150 Angstroms. Improved catalytic stability and improved liquid yield was achieved. As a result of the improvement a 101 RON debutanized naphtha reformate is produced at a reduced catalyst aging rate.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: October 26, 1999
    Assignee: Texaco Inc.
    Inventor: William Floyd Johns
  • Patent number: 5968344
    Abstract: Disclosed is an active catalyst in the hydroisomerization of waxes (paraffins), which catalyst is constituted by a carrier of acidic nature, of silica-alumina gel, and one or more metals belonging to Group VIIIA. Also a process for preparing said catalyst is disclosed.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: October 19, 1999
    Assignee: Eniricerche S.p.A.
    Inventors: Carlo Perego, Laura Zanibelli, Cristina Flego, Alberto Del Bianco, Giuseppe Bellussi
  • Patent number: 5968345
    Abstract: A process for the conversion of a hydrocarbon load containing paraffin, naphthene and aromatic hydrocarbons having 5 to 12 carbon atoms into aromatic compounds, which entails contacting the load with a catalyst under temperature and pressure conditions to produce the aromatic compounds, the catalyst containing:a matrix consisting of 0 to 100% by weight of .eta. transition alumina, the remaining weight percentage of the matrix, up to 100%, consisting of .gamma. transition alumina, andat least one doping metal selected from the group consisting of alkali metals and alkaline-earth metals,at least one halogen selected from the group consisting of fluorine, chlorine, bromine and iodine,at least one noble metal selected from the platinum group, andat least one promoter metal selected from the group consisting of tin, germanium, indium, gallium, thallium, antimony, lead, rhenium, manganese chromium, molybdenum and tungsten,the catalyst having previously been hydrothermally treated at a temperature of 300 to 1,000.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: October 19, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Fabio Alario, Jean-Marie Deves, Patrick Euzen
  • Patent number: 5965104
    Abstract: The present invention relates to new crystalline zeolite SSZ-43 prepared using a substituted piperidinium or decahydroquinolinium cation templating agent.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: October 12, 1999
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gregory S. Lee, Yumi Nakagawa, Richard Norman Reynolds
  • Patent number: 5958216
    Abstract: A hydrocarbon feedstock is catalytically reformed in a sequence comprising a first bifunctional-catalyst reforming zone, a zeolitic-reforming zone containing a catalyst comprising a platinum-group metal and a nonacidic zeolite, and a terminal bifunctional catalyst reforming zone. The first and terminal bifunctional catalysts preferably comprise a lanthanide-series metal component. The process combination permits higher severity, higher aromatics yields and/or increased throughput relative to the known art, and is particularly useful in connection with moving-bed reforming facilities with continuous catalyst regeneration.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: September 28, 1999
    Assignee: UOP LLC
    Inventor: Bryan K. Glover
  • Patent number: 5954948
    Abstract: Hydrocarbon conversion processes are described which use a sulfur tolerant catalyst system. The catalyst is tolerant to large amounts (about 30,000 ppm sulfur) in the feedstream and comprises a first component which comprises at least one Group VIII metal dispersed on an inorganic oxide support and a second component comprising a metal phthalocyanine dispersed on an inorganic oxide support. Preferred Group VIII metals are platinum and palladium, while preferred metal phthalocyanines are cobalt or nickel phthalocyanine. Preferred inorganic oxide supports are molecular sieves, aluminas and mixtures thereof. Processes which can be carried out using this catalyst system include reforming, hydrocracking, dehydrogenation and isomerization.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: September 21, 1999
    Assignee: UOP LLC
    Inventor: Leonid B. Galperin
  • Patent number: 5955641
    Abstract: The method of the invention includes making dimethyinaphthalenes by first contacting, in an alkylation zone, at alkylation conditions, a toluene-containing stream with a pentene-containing stream in the presence of an acid alkylation catalyst. At least a portion of the toluene and pentenes react to form pentyltoluenes. At least a portion of the pentyltoluenes is then contacting in a reforming zone with reforming catalyst, at reforming conditions. At least a portion of the pentyltoluenes is converted to dimethylnaphthalenes.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: September 21, 1999
    Assignee: Chevron Chemical Company LLC
    Inventors: Cong-Yan Chen, William L. Schinski, Dennis J. O'Rear, Thomas V. Harris
  • Patent number: 5916433
    Abstract: A catalyst system for treating sulfur and nitrogen contaminated hydrocarbon feedstock includes a matrix, at least one support medium substantially uniformly distributed through said matrix and comprising a silica alumina molecular sieve material having a composition xSiO.sub.2 :Al.sub.2 O.sub.3 :yP.sub.2 O.sub.5, wherein x is at least about 0.1, a first catalytically active metal phase supported on said support medium, said first catalytically active metal phase comprising a first metal and a second metal each selected from group VIII of the Periodic Table of Elements, said first metal being different from said second metal, a second catalytically active metal phase supported on said matrix, said second catalytically active metal phase comprising a third metal and a fourth metal each selected from group VIII of the Periodic Table of Elements and a fifth metal selected from group VIb of the Periodic Table of Elements, said third metal being different from said fourth metal.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: June 29, 1999
    Assignee: Intevep, S.A.
    Inventors: Jorge Alejandro Tejada, Yilda Margot Romero, Edito Jose Reyes
  • Patent number: 5908967
    Abstract: The invention concerns a process for the isomerization of an aromatic C8 cut using a catalyst containing mordenite, cerium and at least one metal from group VIII. It also concerns a catalyst containing 2-98% by weight of mordenite, 7-40% by weight of cerium, and 0.01-3% by weight of at least one metal from group VIII, the cerium being deposited on the mordenite, and the percentages being with respect to the weight of catalyst.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: June 1, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Fabio Alario, Christian Marcilly
  • Patent number: 5895828
    Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, gasoline to olefins and C.sub.6 to C.sub.8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition comprises a zeolite, and optionally an activity promoter in the range of from about 0.01 to about 10 weight %. The process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to an olefin and a C.sub.6 to C.sub.8 aromatic hydrocarbon. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: April 20, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Jianhua Yao, Charles A. Drake
  • Patent number: 5879538
    Abstract: A process for catalytic reforming of feed hydrocarbons to form aromatics, comprising contacting the feed, under catalytic reforming conditions, with catalyst particles disposed in the tubes of a furnace, wherein the catalyst is a monofunctional, non-acidic catalyst and comprises a Group VIII metal and zeolite L, and wherein the furnace tubes are from 2 to 8 inches in inside diameter, and wherein the furnace tubes are heated, at least in part, by gas or oil burners located outside the furnace tubes.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: March 9, 1999
    Assignee: Chevron Chemical Company
    Inventor: Nicholas J. Haritatos
  • Patent number: 5877367
    Abstract: In the present invention, dimethylbutanes are removed from the raffinate component of the feed to a dehydrocyclization process. Thus, according to a preferred embodiment, a process is provided for producing aromatics by the following steps:(a) contacting fresh paraffins rich feed hydrocarbons, containing 0.1 to 20.0 wt. % dimethylbutanes with a highly selective dehydrocyclization catalyst in a reaction zone, under dehydrocyclization reaction conditions, to convert paraffins to aromatics and obtain an aromatics rich effluent;(b) separating aromatics from the effluent to obtain an aromatics lean raffinate;(c) removing dimethyl butanes from the raffinate to obtain a raffinate of reduced dimethylbutane content; and(d) recycling the raffinate of reduced dimethylbutane content to the reaction zone.Preferably, the dehydrocyclization catalyst used is a nonacidic, monofunctional catalyst. Platinum on L zeolite is a particularly preferred highly selective dehydrocyclization catalyst for use in the process.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: March 2, 1999
    Assignee: Chevron Chemical Company
    Inventor: David H. Witte
  • Patent number: 5866744
    Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, a C.sub.9 + aromatic compound to C.sub.6 to C.sub.8 aromatic hydrocarbons such as xylenes are disclosed. The catalyst composition comprises an aluminosilicate, and a metal wherein the weight ratio of aluminum to silicon is in the range of from about 0.002:1 to about 0.6:1. The process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to a C.sub.6 to C.sub.8 aromatic hydrocarbon.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: February 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5863418
    Abstract: Disclosed is a method for reforming hydrocarbons comprising contacting the hydrocarbons with a catalyst in a reactor system of improved resistance to carburization and metal dusting under conditions of low sulfur.
    Type: Grant
    Filed: February 9, 1996
    Date of Patent: January 26, 1999
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, Gale L. Hubred, Steven C. Moore, Paul F. Bryan, Robert L. Hise, Steven E. Trumbull, Randall J. Harris, Alan G. Kunze
  • Patent number: 5858205
    Abstract: A hydrocarbon feedstock is catalytically reformed in a process which comprises at least three catalyst zones. The feedstock contacts a catalyst comprising platinum, a halogen, and a metal promoter on a solid catalyst support in a first catalyst zone. Effluent from the first catalyst zone contacts a catalyst comprising platinum, germanium and halogen on a solid catalyst support in an intermediate catalyst zone to obtain an intermediate effluent, which contacts a catalyst having the essential absence of germanium and comprising platinum, halogen and a metal promoter on a solid catalyst support in a terminal catalyst zone to obtain a reformate.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: January 12, 1999
    Assignee: UOP LLC
    Inventor: Aronson L. Huebner
  • Patent number: 5853566
    Abstract: The present invention provides a catalyst composition, and a hydrocarbon conversion process in which it is used, comprising as first cracking component a zeolite beta having a silica to alumina molar ratio of at least 20 which is in the form of crystals less than 100 nm in size; a second cracking component selected from (i) crystalline molecular sieves having pores with diameters greater than 0.6 nm, (ii) crystalline, mesoporous aluminosilicates having pores with diameters of at least 1.3 nm, and (iii) clays; and at least one hydrogenation component.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: December 29, 1998
    Assignee: Shell Oil Company
    Inventors: Bettina Kraushaar-Czarnetzki, Johannes Wijnbelt