Employing Hydrogen Patents (Class 208/251H)
  • Patent number: 5399259
    Abstract: Heavy oils may be hydrotreated in the presence of a porous alumina support bearing metals of Group VIII and VI-B and optionally phosphorus, the catalyst having a Total Surface Area of 165-230 m.sup.2 /g, a Total Pore Volume of 0.5-0.8 cc.g, and a Pore Diameter Distribution whereby less than about 5% of the Total Pore Volume is present as primary micropores of diameter less than 80.ANG., and secondary micropores of diameter of .+-.20.ANG. of a Pore Mode of 100-135.ANG. are present in amount of at least about 65% of the micropore volume having pores with diameter less than 250.ANG., and 22-29% of the Total Pore Volume is present as macropores of diameter >250.ANG.. The process of the instant invention is particularly effective in achieving desired levels of hydrodemetallation, hydrodesulfurization, and hydrocracking of asphaltenes in the fraction of hydrotreated/hydrocracked petroleum resid product having a boiling point greater than 1000.degree. F.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: March 21, 1995
    Assignee: Texaco Inc.
    Inventors: Pei-Shing E. Dai, Gerald V. Nelson, Govanon Nongbri, Roy E. Pratt, David E. Sherwood, Jr.
  • Patent number: 5384040
    Abstract: A process for the elimination of mercury and possibly of arsenic from hydrocarbons wherein compounds containing mercury are transformed into elemental mercury, the charge is fractioned, and then the fractions rich in mercury are purified through contact with a mercury collecting mass.
    Type: Grant
    Filed: January 22, 1993
    Date of Patent: January 24, 1995
    Assignee: Institute Francais Du Petrole
    Inventors: Larry Mank, Yves Barthel, Charles Cameron, Patrick Sarrazin
  • Patent number: 5374350
    Abstract: Heavy oil is hydrotreated by processing with hydrogen in the presence of a catalyst composition comprising an activated carbon component having a specified range of pore volume distribution and average pore diameter, a molybdenum or tungsten component and a cobalt or nickel component to reduce the content of nickel and vanadium therein and to achieve demetallation and conversion of the carbon residue for producing a lighter oil.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: December 20, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Roland H. Heck, Lillian A. Rankel
  • Patent number: 5372705
    Abstract: A method of catalytically hydroconverting a hydrocarbon feed stream containing a substantial quantity of components boiling above about 1000.degree. F. to convert a substantial portion thereof to components boiling below 1000.degree. F. is disclosed. More particularly, aromatic heavy oil additive, such as Heavy Cycle Gas Oil, is added to a heavy hydrocarbon feed stream and the stream is contacted with a solid catalyst and an oil-miscible metal naphthenate. The method disclosed herein advantageously substantially eliminates plugging of the hydroconversion reactor and minimizes the amount of insolubles in the total liquid product.
    Type: Grant
    Filed: November 6, 1992
    Date of Patent: December 13, 1994
    Assignee: Texaco Inc.
    Inventors: Ajit K. Bhattacharya, Jeffrey B. Harrison, Raymond J. Malouf, Mahendra S. Patel
  • Patent number: 5364524
    Abstract: A process for treating heavy oil by contacting the oil with hydrogen in a reactor containing an activated carbon catalyst having a specified range of Alpha value, and average pore diameter, and pore distribution, to reduce the content of nickel and vanadium in the feedstock and to achieve conversion of the carbon residue for producing a lighter oil. Demetallation capacity of the carbon catalyst is enhanced by the addition of a carbon-reactive oxidant, e.g., steam, under conditions sufficient to form additional carbon surface.
    Type: Grant
    Filed: June 24, 1992
    Date of Patent: November 15, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Randall D. Partridge, Lillian A. Rankel
  • Patent number: 5362382
    Abstract: Heavy oils are advantageously preconditioned by heat soaking prior to hydrotreating with a dispersed metal catalyst to reduce coking in a two stage hydrotreating process. The effluent of a hydrotreating process is filtered to recover catalytically active coke which is recovered by backflushing and recycled to the feed stream. A mild solvent deasphalting step isolates metals in a reduced volume asphaltene fraction.
    Type: Grant
    Filed: June 24, 1991
    Date of Patent: November 8, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Roland H. Heck, Frank T. DiGuiseppi
  • Patent number: 5358629
    Abstract: A waste molybdenum-containing stream recovered from the work-up of a reaction mixture wherein propylene has reacted with t-butyl hydroperoxide to form propylene oxide (in the presence of a complex of ethylene glycol and a molybdenum compound) is passed as an oil-miscible/soluble molybdenum-containing catalyst to a reaction wherein heavy hydrocarbon is hydroconverted to lower boiling products in the presence of heterogeneous catalyst.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: October 25, 1994
    Assignee: Texaco Inc.
    Inventors: George R. Tamalis, David D. Chess, Mahendra S. Patel, Ajit K. Bhattacharya, Robert M. Gipson
  • Patent number: 5358634
    Abstract: A process for treating heavy oil by contacting the oil with hydrogen in a reactor containing an activated carbon catalyst having a specified range of Alpha value, and average pore diameter, and pore distribution, to reduce the content of nickel and vanadium in the feedstock and to achieve conversion of the carbon residue for producing a lighter oil.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: October 25, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Lillian A. Rankel
  • Patent number: 5346612
    Abstract: A process and catalyst are provided for the hydrogenation of a hydrocarbon feedstock consisting essentially of hydrocarbon boiling between about 150.degree. F. and 700.degree. F. at atmospheric pressure. The process comprises reacting the feedstock with hydrogen at hydrogenation conditions in the presence of a catalyst comprising hydrogenation metals and a support comprising beta zeolite. The hydrogenation metals comprise from about 0.1 percent by weight to about 2.0 percent by weight each of palladium and platinum measured as a percentage of the catalyst. The beta zeolite comprises from about 1 ppm by weight to about 3.0 percent by weight sodium calculated as a percentage of said beta zeolite.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: September 13, 1994
    Assignee: Amoco Corporation
    Inventors: Simon G. Kukes, Frederick T. Clark, P. Donald Hopkins
  • Patent number: 5344553
    Abstract: There is provided a process for upgrading hydrocarbon feedstocks, such as resids or shale oil. The process uses a catalyst comprising at least one Group VIA or Group VIII metal, such as nickel and molybdenum, and an ultra-large pore oxide material. The ultra-large pore oxide material is used in decreasing pore size from top to bottom of the reactor.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: September 6, 1994
    Assignee: Mobil Oil Corporation
    Inventor: Stuart S. Shih
  • Patent number: 5334307
    Abstract: A catalyst useful for hydroprocessing a hydrocarbon-containing oil contains at least one hydrogenation component on an amorphous, porous refractory oxide support containing between 2 and 8 weight percent of silica. The catalyst is prepared by impregnating support particles having a narrow pore size distribution and a median pore diameter greater than about 120 angstroms with a solution containing precursors of the hydrogenation components, followed by drying and calcining. The catalyst is useful for promoting a number of hydrocarbon hydroprocessing reactions, particularly simultaneous hydrogenative desulfurization, demetallization and denitrogenation of residuum-containing oils.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: August 2, 1994
    Assignee: Union Oil Company of California
    Inventors: Howard D. Simpson, Marvin J. Schwedock, John W. Ward
  • Patent number: 5322616
    Abstract: A mild hydrocracking process for the hydrodemetallation (HDM), hydrodesulfurization (HDS) and hydroconversion (HC) of hydrocarbon feedstocks such as residuum feedstocks which provides increased conversion and increased yields of middle distillates is disclosed. The process utilizes a catalyst comprising about 1.0 to about 6.0 wt. % of an oxide of a Group VIII metal, about 12.0 to about 25.0 wt. % of an oxide of molybdenum and about 0 to about 5.0 wt. % of an oxide of phosphorus supported on a porous alumina support containing about 0.1 to about 10.0 wt. % of lithium oxide.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: June 21, 1994
    Assignee: Texaco Inc.
    Inventors: Pei-Shing E. Dai, Charles N. Campbell, II, Joseph A. Durkin, David E. Sherwood, Jr.
  • Patent number: 5308472
    Abstract: A mild hydrocracking process for the hydrodemetallation (HDM), hydrodesulfurization (HDS) and hydroconversion (HC) of hydrocarbon feedstocks such as residuum feedstocks which provides increased conversion of heavy hydrocarbons boiling above 1000.degree. F. into products boiling below 1000.degree. F. as well as increased yields of middle distillates is disclosed. The process utilizes a catalyst comprising about 1.0 to about 6.0 wt. % of an oxide of a Group VIII metal, about 12.0 to about 25.0 wt. % of an oxide of molybdenum and 0.1 to about 5.0 wt. % of an oxide of phosphorus supported on a porous support comprising precipitated alumina or silica-containing alumina and hydrogen form, acidified, dealuminated Y-zeolite.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: May 3, 1994
    Assignee: Texaco Inc.
    Inventors: Pei-Shing E. Dai, Charles N. Campbell, II, Bobby R. Martin, David E. Sherwood, Jr.
  • Patent number: 5300214
    Abstract: Hydroprocessing catalysts which comprise alumina and Group VIB and VIII metal components having a desired pore size/volume distribution and high surface area, i.e. above 330 m.sup.2 /g.
    Type: Grant
    Filed: October 26, 1992
    Date of Patent: April 5, 1994
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: John E. Creighton, Leo Rheaume
  • Patent number: 5300217
    Abstract: A catalyst useful for hydroprocessing a hydrocarbon-containing oil contains at least one hydrogenation component on an amorphous, porous refractory oxide containing delta alumina. The catalyst is prepared by impregnating support particles having a narrow pore size distribution and a median pore diameter greater than about 185 angstroms with a solution containing a precursor of the hydrogenation components, followed by drying and calcining. The catalyst is useful for promoting a number of hydrocarbon hydroprocessing reactions, particularly hydrogenative desulfurization, demetallation and denitrogenation, and most particularly, hydrodemetallation of residuum-containing oils.
    Type: Grant
    Filed: March 2, 1993
    Date of Patent: April 5, 1994
    Assignee: Union Oil Company of California
    Inventors: Howard D. Simpson, Milan Skripek
  • Patent number: 5294333
    Abstract: Catalyst for hydrorefining hydrocarbon feedstocks including niobium trisulphide, said catalyst is particularly suited for the scission of carbon-nitrogen and carbon-sulphur bonds.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: March 15, 1994
    Assignee: Elf France
    Inventors: Michele Breysse, Thierry Des Courieres, Michel Danot, Christophe Geantet, Jean-Louis Portefaix
  • Patent number: 5288681
    Abstract: A catalyst prepared by the steps which comprise: (a) adding to an asphaltene-containing hydrocarbonaceous oil charge stock a metal compound, a heteropoly acid and water; (b) converting the metal compound and heteropoly acid within the charge stock by heating the oil to a temperature from about 120.degree. F. (43.degree. C.) to about 500.degree. F. (260.degree. C.) to produce at least one organometallic compound within the charge stock; and (c) converting the organometallic compound within the charge stock under hydroconversion conditions to produce the catalyst.
    Type: Grant
    Filed: October 16, 1992
    Date of Patent: February 22, 1994
    Assignee: UOP
    Inventor: John G. Gatsis
  • Patent number: 5284577
    Abstract: There is provided a catalyst comprising at least one hydrogenation metal, such as Ni and Mo, supported on a delaminated layered silicate, such as kenyaite, which has been swollen and calcined. There is also provided a method for making this catalyst. There is further provided a process for using this catalyst to demetalize a petroleum feedstock, such as a gas oil.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: February 8, 1994
    Assignee: Mobil Oil Corp.
    Inventors: Stuart S. Shih, James C. Vartuli
  • Patent number: 5275990
    Abstract: A method is provided for regenerating a molecular sieve-free resid hydroprocessing catalyst for use with an ebullated bed reaction process comprising at least one hydrogenation metal and at least one Group IIA metal deposited on an inorganic oxide support wherein the catalyst contains a pore volume of pores having a diameter greater than 1200 Angstroms of at least 0.05 cc/gm. The method comprises the steps of contacting the molecular sieve-free resid hydroprocessing catalyst with a contaminant metal-containing hydrocarbon feedstream in a first contacting step at conditions sufficient to deposit contaminant metals and coke onto the catalyst; and contacting the coke-deactivated, contaminant metal-containing, molecular sieve-free catalyst with an oxygen-containing gas in a second contacting step at oxidation conditions sufficient to remove a substantial amount of the coke from the coke-deactivated, contaminant metal-containing, molecular sieve-free catalyst.
    Type: Grant
    Filed: October 2, 1992
    Date of Patent: January 4, 1994
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Albert L. Hensley, Jr.
  • Patent number: 5232885
    Abstract: A method of regenerating a contaminant metal-containing, coke deactivated, molecular sieve-free catalyst having at least one hydrogenation metal and at least one Group IV metal deposited on an inorganic oxide support comprising contacting the catalyst with an oxygen-containing gas under conditions sufficient to remove a substantial amount of the coke from the catalyst.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: August 3, 1993
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Mary C. Springman
  • Patent number: 5228978
    Abstract: The inventive solvent extraction process uses hydrotreated (HTR) and low sulfur (LSR) resids feedstreams in a single deasphalter unit and in a way that optimizes the disposition of the oils, resins, and asphaltene fractions of each resid for downstream processing. After the refractory asphaltenes are separated from the HTR feedstream, the LSR resid is introduced into the deasphalter so that its resin and asphaltene fractions are combined with the HTR resins. The oils fractions from the two resids are combined and then used as a feedstock for catalytic cracking.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: July 20, 1993
    Assignee: Amoco Corporation
    Inventors: James L. Taylor, William I. Beaton, Jeffrey J. Kolstad
  • Patent number: 5217603
    Abstract: A process for hydrotreating a hydrocarbon oil contaminated with suspended solid particles and dissolved metallic compounds, comprising the contacting of the oil at an elevated temperature in the presence of hydrogen with porous inorganic oxide particles having a surface area of 1 m.sup.2 /g or less and a pore volume of at least 0.1 ml/g in pores having a diameter of at least 10 microns.
    Type: Grant
    Filed: May 14, 1990
    Date of Patent: June 8, 1993
    Assignee: Akzo N.V.
    Inventors: Yoshimasa Inoue, Naoyuki Torihara, Syuhei Manabe, Kenichi Kawamoto, Yoshimitsu Miyauchi, Katsuhisa Fujita
  • Patent number: 5200060
    Abstract: In a hydrotreating process, a hydrocarbon feedstock having a boiling of at least about 460.degree. F. is contacted with a catalyst having at least one member selected from the group consisting of a carbide of a Group VIB metal and a nitride of a Group VIB metal under hydrotreating conditions.
    Type: Grant
    Filed: April 26, 1991
    Date of Patent: April 6, 1993
    Assignee: Amoco Corporation
    Inventors: Daniel J. Sajkowski, Shigeo T. Oyama
  • Patent number: 5183561
    Abstract: There is provided a process for demetallizing hydrocarbon feedstocks, such as resids or shale oil. The process uses a catalyst comprising at least one hydrogenation metal, such as nickel and molybdenum, and an ultra-large pore oxide material. This ultra-large pore oxide material may have uniformly large pores, e.g., having a size of about 40 Angstroms in diameter.
    Type: Grant
    Filed: July 24, 1991
    Date of Patent: February 2, 1993
    Assignee: Mobil Oil Corp.
    Inventors: Charles T. Kresge, Michael E. Leonowicz, Wieslaw J. Roth, James C. Vartuli, Kathleen M. Keville, Stuart S. Shih, Thomas F. Degnan, Francis G. Dwyer, Michael E. Landis
  • Patent number: 5178749
    Abstract: The hydroprocessing of heavy oils is improved by the use of a high activity slurry catalyst prepared by sulfiding an aqueous Group VIB metal compound with a gas containing hydrogen sulfide to a dosage greater than 8 SCF of hydrogen sulfide per pound of Group VIB metal. After introducing the slurry catalyst into the heavy oil, and subjecting the mixture to elevated temperatures and partial pressures of hydrogen, the mixture is treated in a fixed or ebullated bed of hydrodesulfurization/hydrodemetalation catalyst under hydroprocessing conditions.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: January 12, 1993
    Assignee: Chevron Research and Technology Company
    Inventors: Jaime Lopez, Thomas P. Snyder, Byron G. Spars
  • Patent number: 5176817
    Abstract: This invention relates to molecular sieve compositions and processes for using the molecular sieves. The molecular sieves have a three-dimensional microporous crystalline framework structure of tetrahedral oxide units of AlO.sub.2, SiO.sub.2, TiO.sub.2 and/or FeO.sub.2. These molecular sieves can be prepared by contacting a starting zeolite with a solution or slurry of a fluoro salt of titanium and/or iron under effective process conditions to extract aluminum from the zeolite framework and substitute titanium and/or iron. The molecular sieves can be used as catalysts in hydrocarbon conversion processes and other processes.
    Type: Grant
    Filed: December 16, 1991
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventors: Gary W. Skeels, Richard Ramos
  • Patent number: 5176820
    Abstract: Method and apparatus are provided whereby the heat released from exothermic hydrodemetallization reactions is recovered in order to provide either a lower operating cost of a two-stage hydrotreating process or protection of process equipment against excessive operating temperatures.
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: January 5, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Lawrence E. Lew
  • Patent number: 5171727
    Abstract: A catalyst prepared by the steps which comprise: (a) adding to an asphaltene-containing hydrocarbonaceous oil charge stock a metal compound, a heteropoly acid and water; (b) converting the metal compound and heteropoly acid within the charge stock by heating the oil to a temperature from about 120.degree. F. (43.degree. C.) to about 500.degree. F. (260.degree. C.) to produce at least one organometallic compound within the charge stock; and (c) converting the organometallic compound within the charge stock under hydroconversion conditions to produce the catalyst.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: December 15, 1992
    Assignee: UOP
    Inventor: John G. Gatsis
  • Patent number: 5169517
    Abstract: Process for the treatment of a hydrocarbon fraction containing metals and comprising the following stages: (a) the said hydrocarbon fraction is treated in the presence of mean density particles (d.sub.o) under conditions for eliminating at least partly the metals contained therein and deposits of said metals on at least one fraction of said solid particles; (b) at least part of the solid particles from stage (a), whose mean density is (d.sub.i) is drawn off; (c) said solid particles from stage (b) are magnetohydrostatically separated by introducing said solid particles into a ferrofluid placed in a non-uniform magnetic field and creating a vertical magnetic field, whose intensity is adjusted in such a way that the apparent mean density (d.sub.af) of the ferrofluid permits the separation of said solid particles into at least one mean density fraction (d.sub.i) below said apparent mean density (d.sub.af) of the ferrofluid and into at least one mean density fraction (d.sub.s) above said mean apparent density (d.
    Type: Grant
    Filed: August 2, 1990
    Date of Patent: December 8, 1992
    Assignee: Institut Francais du Petrole
    Inventors: Andre Buisson, Jean-Paul Euzen, Frederic Morel
  • Patent number: 5167796
    Abstract: A premium coke is produced from a decant oil resulting from the catalytic cracking of petroleum oil by selectively hydrodesulfurizing the decant oil and then subjecting the hydrodesulfurized decant oil to delayed coking.
    Type: Grant
    Filed: May 22, 1989
    Date of Patent: December 1, 1992
    Assignee: Ucar Carbon Technology Corporation
    Inventors: Rostislav Didchenko, Irwin C. Lewis
  • Patent number: 5164078
    Abstract: We disclose a process for removing calcium from a hydrocarbon feed having at least 1 ppm oil-soluble calcium. It comprises employing a catalyst layer characterized as a fixed bed of catalyst particles, a high volume percent of their pore volume in the form of macropores above 1000 Angstrom in diameter, or an average mesopore diameter of 100-800 .ANG., low surface area, and low hydrogenation activity, and the inclusion of Group I metals, in particular potassium, on the catalyst base.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: November 17, 1992
    Assignee: Chevron Research and Technology Company
    Inventors: Chi W. Hung, Bruce E. Reynolds
  • Patent number: 5164077
    Abstract: A process for removing calcium from a hydrocarbon feed having at least 1 ppm oil-soluble calcium. The process employs a catalyst system, comprising catalyst particles, wherein a high volume percent of the catalyst particles are in the form of mesopores (less than 1000 Angstrom in diameter), low surface area, low hydrogenation activity, and th inclusion of Group VIII metals, in particular nickel, on a silica catalyst base.
    Type: Grant
    Filed: October 15, 1991
    Date of Patent: November 17, 1992
    Assignee: Chevron Research and Technology Company
    Inventors: Chi-Wen Hung, Bruce E. Reynolds
  • Patent number: 5154819
    Abstract: The present invention relates to a hydroprocessing process that employs a catalyst that has been regenerated by subjecting the catalyst to an initial partial decoking step, followed by impregnation with a Group IIA metal-containing component and then subjected to a final decoking step.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: October 13, 1992
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Albert L. Hensley, Jr.
  • Patent number: 5124024
    Abstract: A method for prolonging a hydroconversion catalyst life-time is provided. An additive functional to partially redirect the deposition of catalytic poisoning agents on the catalyst is utilized. The additive may comprise a chemically inert, porous carbonaceous material or ferruginous clay.
    Type: Grant
    Filed: November 9, 1990
    Date of Patent: June 23, 1992
    Assignees: Nova Husky Research Corporation, Alberta Research Council
    Inventors: Andrzej Krzywicki, Leszek Lewkowicz, Michael C. Oballa
  • Patent number: 5124025
    Abstract: The invention reduces cracking catalyst fines in decanted oil by mixing the decanted oil (DCO) containing cracking catalyst fines with asphaltene and then treating the DCO-asphaltene mixture with a non-aromatic hydrocarbon solvent in an extraction unit or in a multi-stage deasphalting unit.
    Type: Grant
    Filed: November 20, 1990
    Date of Patent: June 23, 1992
    Assignee: Amoco Corporation
    Inventors: Jeffrey J. Kolstad, William I. Beaton, James L. Taylor
  • Patent number: 5124026
    Abstract: The invention reduces cracking catalyst fines in decanted oil by mixing the decanted oil (DCO) containing cracking catalyst fines with asphaltene and then treating the DCO-asphaltene mixture with a non-aromatic hydrocarbon solvent in an extraction unit or in a multi-stage deasphalting unit.
    Type: Grant
    Filed: November 20, 1990
    Date of Patent: June 23, 1992
    Assignee: Amoco Corporation
    Inventors: James L. Taylor, William I. Beaton, Jeffrey J. Kolstad
  • Patent number: 5124027
    Abstract: The invention reduces cracking catalyst fines in decanted oil by mixing the decanted oil (DCO) containing cracking catalyst fines with a resid oil and then treating the DCO-resid mixture with a non-aromatic hydrocarbon solvent in an extraction unit or in a multi-stage deasphalting unit.
    Type: Grant
    Filed: November 20, 1990
    Date of Patent: June 23, 1992
    Assignee: Amoco Corporation
    Inventors: William I. Beaton, James L. Taylor, Jeffrey J. Kolstad, Brian S. Kennedy, Robert D. Hughes
  • Patent number: 5112473
    Abstract: A hydrocarbon conversion process to yield product of improved properties is effected in the presence of a zeolite characterized by increased Secondary Pore Volume, decreased Lattice Constant, Secondary Pore Mode, Secondary Pore Diameter, increased Secondary Pore Volume, Surface Silicon to Aluminum Atom Ratio, and Acid Site Density.
    Type: Grant
    Filed: June 4, 1990
    Date of Patent: May 12, 1992
    Assignee: Texaco Inc.
    Inventors: Pei-Shing E. Dai, David E. Sherwood, Jr.
  • Patent number: 5087348
    Abstract: A novel treated charge zeolite is prepared by treating charge zeolite (which is essentially free of Secondary Pores) with steam for 5-60 hours at 1000.degree. F.-1500.degree. F. Product is particularly characterized by increased Secondary Pore Volume (pores of diameter of 100A-600A) in amount of as high as 0.20 cc/g.
    Type: Grant
    Filed: June 19, 1991
    Date of Patent: February 11, 1992
    Assignee: Texaco Inc.
    Inventors: Pei-Shing E. Dai, David E. Sherwood, Jr., Bobby R. Martin
  • Patent number: 5087596
    Abstract: The present invention relates to a spent hydroprocessing catalyst regeneration process wherein the catalyst is subjected to an initial partial decoking step, followed by impregnation with a Group VIB metal-containing component, and then subjected to a final decoking step.
    Type: Grant
    Filed: June 21, 1990
    Date of Patent: February 11, 1992
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Albert L. Hensley, Jr.
  • Patent number: 5082552
    Abstract: A mixture of shaped catalysts, catalyst supports or sorbents comprising generally cylindrical, free flowing particles of regular geometric shape having substantially the same diameter and of varying length are length graded into a first group of particles having a length below a predetermined length, L.sub.1, in the range of fromn 0.8 to about 24 millimeters and an L/D greater than one, and a second group of particles having a length greater than L.sub.1, by feeding the mixture into a rotating cylindrical drum having inwardly opening indentations in its cylindrical wall having a transverse diameter of substantially L.sub.1. The drum is rotated about its longitudinal axis at speeds sufficient to entrap in the indentations and convey particles having a length below L.sub.1 comprising the first group upwardly to a height permitting the particles to fall into a fixed, upwardly opening trough, while retaining the second group of particles having a length above L.sub.
    Type: Grant
    Filed: March 12, 1990
    Date of Patent: January 21, 1992
    Assignee: CRI International, Inc.
    Inventors: J. Gary Welch, Robert E. Ellingham
  • Patent number: 5071538
    Abstract: The present invention relates to a spent hydroprocessing catalyst regeneration process wherein the catalyst is subjected to an initial partial decoking step, followed by the addition of at least one rare earth metal, and then subjected to a final decoking step.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: December 10, 1991
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Albert L. Hensley, Jr.
  • Patent number: 5062947
    Abstract: The present invention relates to a process for increasing the desulfurization activity of a catalyst prepared by incorporating an element selected from the group consisting of nickel, cobalt and mixtures thereof, and a heavy metal selected from the group consisting of molybdenum, tungsten and mixtures thereof, into an alumina hydrogel, wherein said catalyst is sulfided with the gaseous sulfur compound at a temperature of at least about 900.degree. F. at least one hour.
    Type: Grant
    Filed: August 28, 1990
    Date of Patent: November 5, 1991
    Assignee: Shell Oil Company
    Inventor: Richard A. Kemp
  • Patent number: 5055179
    Abstract: Heavy crude oils are upgraded thermally in the presence of water and a polyhydroxy metal bentonite in an autoclave, particularly at a temperature of about 200.degree. to about 300.degree. C.
    Type: Grant
    Filed: June 13, 1989
    Date of Patent: October 8, 1991
    Assignee: Ortech Corporation
    Inventor: J. David Tyrer
  • Patent number: 5047142
    Abstract: A catalyst composition useful in the hydroprocessing of a sulfur- and metal-containing hydrocarbon feedstock comprises 1.0-5.0 weight percent of an oxide of nickel or cobalt and 10.0-25.0 weight percent of an oxide of molybdenum, all supported on a porous alumina support in such a manner that the molybdenum gradient of the catalyst has a value of less than 6.0 and 15-30% of the nickel or cobalt contained in the catalyst is in an acid extractable form. The catalyst is further characterized by having a total surface area of 150-210 m.sup.2 /g, a total more volume of 0.50-0.75 cc/g, and a pore size distribution such that pores having diameters of less than 100A constitute less than 25.0%, pores having diameters of 100-160A constitute 70.0-85.0% and pores having diameters of greater than 250A constitutes 1.0-15.0% of the total pore volume of the catalyst.
    Type: Grant
    Filed: May 13, 1988
    Date of Patent: September 10, 1991
    Assignee: Texaco Inc.
    Inventors: David E. Sherwood, Jr., Burton H. Bartley, Laurence D. Neff, Pei-Shing E. Dai
  • Patent number: 5039396
    Abstract: A heat integrated hydrotreating process has been invented. The feedstock is a cracked hydrocarbon stock which is mixed with hydrogen to suppress coking before heating in a multiple tube furnace to reactor inlet temperature. A minor portion of the feedstock is mixed with hydrogen and heated to reactor inlet temperature by quenching the hot reactor effluent. The minor portion is fed directly to the hydrogenation reactor, bypassing the furnace. By the process, high level heat is recovered.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: August 13, 1991
    Assignee: Texaco Inc.
    Inventors: Robert M. Steinberg, Vijay A. Deshpande
  • Patent number: 5039392
    Abstract: A process for converting a heavy hydrocarbonaceous chargestock to lower boiling products which process comprises reacting the chargestock with a catalyst concentrate in the presence of hydrogen, at hydroconversion conditions, said catalyst concentrate having been prepared by the steps comprising: (a) forming a precursor catalyst concentrate by mixing together: (i) a hydrocarbonaceous oil comprising constituents boiling above about 1050.degree. F.; (ii) a metal compound, said metal being selected from the group consisting of Groups II, III, IV, V, VIB, VIIB, and VIII of the Periodic Table of the Elements, in an amount to provide from about 0.2 to 2 wt. % metal, based on said hydrocarbonaceous oil; (b) heating the precursor concentrate to an effective temperature to produce a catalyst concentrate, wherein elemental sulfur is used an a sulfiding agent in an amount such that the atomic ratio of sulfur to metal is from about 1/1 to 8/1.
    Type: Grant
    Filed: June 4, 1990
    Date of Patent: August 13, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Roby Bearden, Jr., Clyde L. Aldridge
  • Patent number: 5037791
    Abstract: Supported carbon-coated catalyst material and a method for producing and using same in catalytic reaction processes, preferably in ebullated or fluidized catalyst beds. The catalyst materials are prepared by depositing a porous carbon layer on a support material of a selected metal oxide or compound to produce 5-40 wt. % carbon thereon, then preferentially treating the carbon based layer by partial oxidation, pyrolysis or reduction to enhance and activate the carbon layer on the catalyst. Promoter materials can also be advantageously added either to the support material or to the carbon layer in 0.5-10 wt. % to provide an improved composite carbon-coated catalyst having total pore volume of 0.3-1.0 cc/gm, substantially increased surface area of 80-600 M.sup.2 /gm, low surface acidity, particle strength of 1.8-5 lb/mm with reduced particle attrition losses and improved catalyst performance characteristics.
    Type: Grant
    Filed: June 21, 1990
    Date of Patent: August 6, 1991
    Assignee: HRI, Inc.
    Inventors: Alfred G. Comolli, Partha S. Ganguli
  • Patent number: 5026473
    Abstract: The present invention is based on the discovery that certain transition metal containing complexes thermally decompose to form solids containing the transition metal, sulfur and carbon and that these transition metal, sulfur and carbon containing solids are particularly suitable as catalysts for hydrodesulfurization, hydrodenitrogenation and aromatics hydrogenation. The transition metal complexes that are thermally decomposed to novel catalysts are complexes of the type represented by the general formula ML.sup.n 3, wherein M is selected from Mo, W, Re and mixtures thereof, L is a dithiolene or aminobenzenethiolate ligand, and n represents the total charge of the metal complexes, and is 0, -1, or -2.
    Type: Grant
    Filed: May 11, 1990
    Date of Patent: June 25, 1991
    Assignee: Exxon Research & Engineering Company
    Inventors: Thomas R. Halbert, Russell R. Chianelli, Edward I. Stiefel, Allan J. Jacobson
  • Patent number: 5013427
    Abstract: A hydrotreating process if provided in which resid and resins are hydrotreated with hydrogen-rich gases in the presence of a hydrotreating catalyst in an ebullated bed reactor.
    Type: Grant
    Filed: July 18, 1989
    Date of Patent: May 7, 1991
    Assignee: Amoco Corportion
    Inventors: James F. Mosby, Lawrence B. Peck, James L. Taylor, William I. Beaton