Chemical Conversion Of Hydrocarbons Patents (Class 208/46)
  • Patent number: 7906698
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: March 15, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey Zones, Allen Burton, Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
  • Patent number: 7906013
    Abstract: A process is provided to produce an ultra low sulfur diesel with less than about 10 ppm sulfur using a two-phase or liquid-phase continuous reaction zone to convert a diesel boiling range distillate preferably obtained from a mild hydrocracking unit. In one aspect, the diesel boiling range distillate is introduced once-through to the liquid-phase continuous reaction zone over-saturated with hydrogen in an amount effective so that the liquid phase remains substantially saturated with hydrogen throughout the reaction zone as the reactions proceed.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 15, 2011
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Laura E. Leonard, Michael R. Smith
  • Patent number: 7867378
    Abstract: A method is described for co-processing of ethanol and hydrocarbons from petroleum refining, which are introduced separately in two reaction zones of a reactor of a fluidized catalytic cracking unit. The process combines conversion of ethanol into ethene and conversion of hydrocarbons into other lighter hydrocarbon fractions, to produce ethene in quantities of 15 to 90 wt % in the fuel gas fraction obtained during the process.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 11, 2011
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Andrea de Rezende Pinho, Julio Amilcar Ramos Cabral, Luiz Fernando Leite
  • Publication number: 20100326880
    Abstract: This invention relates to a hydrocarbon conversion process additive and related processes, such as upgrading a heavy hydrocarbon material and making sponge coke. The hydrocarbon conversion process additive works with thermal processes, catalytic processes, or thermal-catalytic processes. The hydrocarbon process conversion additive includes lignin or macromolecular substructures of lignin like para-coumaryl alcohol, coniferyl alcohol, or sinapyl alcohol.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 30, 2010
    Applicant: BP CORPORATION NORTH AMERICA INC.
    Inventors: Sudhakar Chakka, Bang Xu
  • Publication number: 20100320120
    Abstract: Heat from nuclear reactor as a source of thermal energy is applied to the conversion of carbonaceous materials such as heavy petroleum crude oils, coals and biomass to liquid hydrocarbons. The heat is applied to provide at least a portion of the process heat used in the high temperature, short contact time hydropyrolysis of the carbonaceous material which is supplied with hydrogen generated by a high temperature process such as high temperature steam electrolysis, the sulfur-iodine cycle, the hybrid sulfur cycle, the zinc-zinc oxide cycle, a solid oxide fuel cell or by methane steam cracking. The heat from the nuclear reactor may be used to generate electricity to operate high temperature steam electrolysis used in generation of the hydrogen. By the use of nuclear thermal energy, hydrocarbon resource utilization for process heat is eliminated along with carbon dioxide evolution associated with burning of the hydrocarbon resource to generate process heat.
    Type: Application
    Filed: May 4, 2010
    Publication date: December 23, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Ramesh VARADARAJ, Walter WEISSMAN, Mark A. GREANEY
  • Patent number: 7846418
    Abstract: An MCM-22 family molecular sieve having an X-ray diffraction pattern of the as-synthesized MCM-22 family molecular sieve including d-spacing maxima at 12.4±0.25, 3.57±0.07 and 3.42±0.07 Angstroms and at least one peak between 26.6° and 29° (2?). The peak between 26.6° to 29° (2?) has a two theta (2?) of about 26.9°. A method of manufacturing an MCM-22 family molecular sieve, said method comprising the steps of (a) combining at least one silicon source, at least one source of alkali metal hydroxide, at least one directing-agent (R), water, and optionally one aluminum source, to form a mixture having the following mole composition: Si:Al2=10 to infinity H2O:Si=1 to 20 OH?:Si=0.001 to 2 M+:Si=0.001 to 2 R:Si=0.001 to 0.34 wherein M is an alkali metal; (b) treating said mixture at crystallization conditions for less than 72 hr to form a treated mixture having said MCM-22 family molecular sieve, wherein said crystallization conditions comprises a temperature range from about 160° C. to about 250° C.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Patent number: 7846322
    Abstract: A high-flux membrane, especially a sieving membrane, is used to separate a naphtha feedstock into a retentate fraction having a reduced concentration of normal paraffins for an enhanced reforming feed and a permeate fraction having an increased concentration of normal paraffins for an enhanced cracking feed.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: December 7, 2010
    Assignee: UOP LLC
    Inventor: Lynn H. Rice
  • Publication number: 20100288674
    Abstract: A method is described for controlling instability of operation in a de-ethanizer tower (13) in the gas recovery unit in fluid catalytic cracking units and delayed coking units. The method comprises the step of intervening in the de-ethanizer tower (13) when instability occurs in it, and adjusting the material balance of water in such a way that the excess of water in the feed load stream (9) is removed only as an azeotrope. The intervention is performed by introducing into the feed load stream (9) of the de-ethanizer tower (13) a volume fraction (18) of a flow of hydrocarbon, which may be either dry hydrocarbons or hydrocarbons with a low level of water content.
    Type: Application
    Filed: December 10, 2009
    Publication date: November 18, 2010
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Mario de Sousa Almeida, Neyde Alexandra Fraga Marques, Francisco Carlos da Costa Barros, Claudine Toledo Alvares da Silva Costa
  • Patent number: 7815789
    Abstract: A process to prepare a base oil having a viscosity index of above 80 and a saturates content of above 90 wt % from a crude derived feedstock by (a) contacting a crude derived feedstock in the presence of hydrogen with a catalyst having at least one Group VIB metal component and at least one non-noble Group VIII metal component supported on a refractory oxide carrier; (b) adding to the effluent of step (a) or part of the effluent of step (a) a Fischer-Tropsch derived fraction boiling at least partly in the base oil range in an amount effective to achieve the target viscosity index of the final base oil; and (c) dewaxing the mixture as obtained in step (b).
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: October 19, 2010
    Assignee: Shell Oil Company
    Inventors: Peter James Wardle, William Leonard Alexander King
  • Patent number: 7811446
    Abstract: In at least one embodiment of the present invention, a method of recovering energy from a FCC unit having a reactor and a regenerator for overall CO2 reduction is provided. The method comprises cooling syngas to a predetermined low temperature to define cooled syngas. A turbo-expander including a first compressor is provided. The turbo-expander train is configured to combust and expand gas to drive the first compressor. The cooled syngas is compressed with the first compressor to define compressed syngas. A first stream of gas comprising CO2 and a second stream of gas comprising CO are separated from the compressed syngas. O2 and the first and second streams of gas are introduced to the turbo-expander train. The first stream of gas is expanded and the second stream of gas is combusted and expanded with the O2 to recover energy, driving the first compressor and producing the syngas.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 12, 2010
    Assignees: UOP LLC, BP Corporation North America Inc.
    Inventor: Brian W. Hedrick
  • Patent number: 7776208
    Abstract: This disclosure discusses integrating syngas streams with refinery hydrotreators, synthetic hydrocarbon gas to liquid (GTL) processes, and power generation units (such as combined cycle units) to efficiently use hydrogen contained in the syngas produced from heavy hydrocarbons (pet coke, residues, oil, etc.). Membrane separation and pressure swing adsorption is used to separate components of syngas and feed them to refineries, GTL units, and power/steam generation units. Hydrogen-rich refinery purge is used to raise the H2/CO ratio of syngas. A hydrogen-enriched syngas is produced with an H2/CO ratio favorable for the production on synthetic hydrocarbons (greater than about 1.5 to about 2.0 or higher). Pure hydrogen is also produced in a PSA unit, to further raise the H2/CO ratio of the syngas and provide hydrogen feed for refinery hydrotreators and synthetic hydrocarbon units (such as methanol units).
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: August 17, 2010
    Assignee: L'Air Liquide - Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: C.J. Guo
  • Patent number: 7767075
    Abstract: Systems and methods of reducing refinery carbon dioxide emissions by increasing synthesis gas production in a fluid catalytic cracking unit having a reactor and a regenerator are disclosed. In one example, a method comprises separating spent catalyst from a hydrocarbon product in the reactor, the spent catalyst having trapped hydrocarbon thereon. The method further comprises reacting an additional feed with the spent catalyst in the reactor to deposit additional coke on the spent catalyst, defining a gas product. The method further separating the gas product and the trapped hydrocarbon from the spent catalyst with a stripping gas. The method further comprises removing coke from the spent catalyst in the regenerator, thereby increasing the amount of synthesis gas production.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 3, 2010
    Assignees: UOP LLC, BP Corporation North America Inc.
    Inventor: Brian W. Hedrick
  • Patent number: 7727379
    Abstract: Process to prepare simultaneously two or more base oil grades and middle distillates from a mineral crude derived feed, in particular a de-asphalted oil or a vacuum distillate feed or their mixtures, by performing the following steps: (a) hydrocracking the mineral crude derived feed, thereby obtaining an effluent; (b) distillation of the effluent as obtained in step (a) into one or more middle distillates and a full range residue boiling substantially above 340° C., (c) catalytically dewaxing the full range residue by contacting the residue with a dewaxing catalyst comprising a zeolite of the MTW type and a Group VIII metal, thereby obtaining a dewaxed oil; (d) isolating by means of distillation two or more base oil grades from the dewaxed oil obtained in step (c); and (e) isolating a dewaxed gas oil from the dewaxed-oil obtained in step (c); wherein the dewaxed oil as obtained in step (c) comprises between 10 and 40 wt % of a dewaxed heavy gas oil boiling for more than 70 wt % between 370 and 400° C.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: June 1, 2010
    Assignee: Shell Oil Company
    Inventors: Nicholas James Adams, Harmannus Julius Hegge, Laurent Georges Huve, Kevin John Anthony Polder, Wiecher Derk Evert Steenge
  • Patent number: 7709412
    Abstract: The invention relates to a bulk metal hydrotreating catalyst, suitable for the production of low sulfur diesel fuels, said bulk metal hydrotreating catalyst being in the oxide state and having a composition of MoxCoyNbz, excluding the oxygen, wherein x, y, and z represent about 0.1 to about 2 moles of Mo, about 0.5 to about 2 moles of Co, and about 0.1 to about 2 moles Nb and wherein Nb is present in amounts from about 2 to about 45 wt. %, Mo is present in amounts from about 1 to about 50 wt. %, and Co is present in amounts from about 10 to about 45 wt. %.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: May 4, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Stuart S. Shih, Stuart L. Soled, Sabato Miseo
  • Publication number: 20100101978
    Abstract: A device and method are provided for manipulating petroleum, non-conventional oil and other viscous complex fluids made of hydrocarbons that comprise enforcement of fluid in a multi-stage flow-through hydrodynamic cavitational reactor, subjecting said fluids to a controlled cavitation and continuing the application of such cavitation for a period of time sufficient for obtaining desired changes in physical properties and/or chemical composition and generating the upgraded products. The method includes alteration of chemical bonds, induction of interactions of components, changes in composition, heterogeneity and rheological characteristics in order to facilitate handling, improve yields of distillate fuels and optimize other properties.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 29, 2010
    Applicant: CAVITATION TECHNOLOGIES, INC.
    Inventors: Roman Gordon, Igor Gorodnitsky, Maxim Promtov, Varvara Grichko
  • Publication number: 20100065477
    Abstract: This invention relates to the composition and synthesis of an Extra Mesoporous Y (or “EMY”) zeolite and its use in the catalytic conversion of organic compounds. In particular, this invention relates to a Y-type framework zeolite possessing a high large mesopore pore volume to small mesopore pore volume ratio. The novel zeolite obtained provides beneficial structural features for use in petroleum refining and petrochemical processes.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 18, 2010
    Inventor: Jason Wu
  • Publication number: 20100068572
    Abstract: A desulfurization agent for kerosene is provided that can remove efficiently the sulfurs contained in kerosene under low pressure conditions and thus is excellent in an effect to inhibit carbon deposition. The desulfurization agent contains 45 to 75 percent by mass of nickel oxide, 3 to 40 percent by mass of zinc oxide, 10 to 25 percent by mass of silica, 5 percent by mass or less of alumina and 0.1 percent by mass or less of sodium and has a BET specific surface area of 200 m2/g or greater.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 18, 2010
    Applicant: Nippon Oil Corporation
    Inventors: Atsushi Segawa, Michiaki Adachi, Tatsusaburou Komami, Kazunori Miyazawa
  • Patent number: 7666296
    Abstract: The invention relates to a process for converting heavy hydrocarbonaceous feedstocks carried out in a slurry reactor in the presence of hydrogen and in the presence of a catalytic composition obtained by: injecting a catalytic precursor of at least one metal of Group VIB and/or Group VIII in at least part of the feedstock to be treated in the absence of an oxide substrate, thermal treatment at a temperature of 400° C.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 23, 2010
    Assignee: Institut Francais du Petrole
    Inventor: Magalie Roy-Auberger
  • Patent number: 7651603
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium) dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: January 26, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr., Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
  • Publication number: 20100010282
    Abstract: The purpose of the invention described in this document is to disclose a novel method using mixtures to change the viscosity of both light and heavy petroleums, by decreasing or increasing said viscosity. The methods derived from this invention are useful at ambient temperature and atmospheric pressure. The active component of the invention is dopamine, a compound that combined with other substances enables a change in the fluidity properties of petroleum, an increase in the electric charge properties of the mixtures and solutions and the dissolution of insoluble compounds in water or aqueous solutions. Some of the mixtures of this invention have been applied to modifying proton mobility, whereby significant increases in particular caused by the presence of metals chosen to bring about this purpose, can be detected within these mixtures, by measuring the electric charge.
    Type: Application
    Filed: February 6, 2007
    Publication date: January 14, 2010
    Inventor: Marcelo Acosta Estrada
  • Patent number: 7642388
    Abstract: The present invention relates to a composite for catalytic distillation, comprising a substrate material, and a modifying material and an active material, wherein said substrate material is made of porous materials, said modified material comprises at least one metal oxide, and said active material comprises an active component for a catalytic reaction. The catalytic distillation composite according to the present invention serves as both distillation packings and catalysts, and can allow catalysts to make the best of its efficiency, provide sufficient contact areas between gas and liquid phases, which facilitates mass transfer between gas and liquid phases, boosts effects in both reaction and separation and is liable for filling, removing and utilizing in industries.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: January 5, 2010
    Assignees: China Petroleum & Chemical Corporation, Sinopec Beijing Research Institute of Chemical Industry
    Inventors: Yuanyi Yang, Dongfeng Li, Wei Dai, Shuo Chen, Guoqing Wang, Lihua Liao, Jianmin Cheng, Yanlai Guo, Hui Peng
  • Patent number: 7635462
    Abstract: The present invention relates to new methods of making crystalline materials isostructural to ITQ-21, as well as to new crystalline materials obtainable by such methods, and their use in hydrocarbon conversion processes.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: December 22, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 7622034
    Abstract: A process is provided to produce high cetane quality and low or preferably ultra low sulfur diesel and a fluid catalytic cracker (FCC) quality feedstock from a processing unit including at least a hydrotreating zone and a hydrocracking zone. In one aspect, the processing unit includes reactor severity requirements in both the hydrotreating zone and the hydrocracking zone effective to produce the FCC feed quality and the diesel sulfur quality to permit a high quality hydrocracked product to be formed at lower pressures and conversion rates without overtreating the FCC quality feedstock stream. In another aspect, a portion of the hydrotreated effluent is selected for conversion in the hydrocracking and the remaining portion of the hydrotreated effluent is directed to subsequent processing, such as fluid catalytic cracking.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 24, 2009
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Douglas W. Kocher-Cowan
  • Patent number: 7618544
    Abstract: A fiber reaction process whereby reactive components contained in immiscible streams are brought into contact to effect chemical reactions and separations. The conduit reactor utilized contains wettable fibers onto which one stream is substantially constrained and a second stream is flowed over to continuously create a new interface there between to efficiently bring about contact of the reactive species and thus promote reactions thereof or extractions thereby. Co-solvents and phase transfer catalysts may be employed to facilitate the process.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 17, 2009
    Inventor: John Lee Massingill, Jr.
  • Publication number: 20090255851
    Abstract: A catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 315 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ?. The catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta. Methods of preparation of such catalyst are described herein. Methods of contacting a hydrocarbon feed with hydrogen in the presence of such catalyst to produce a crude product. Uses of crude products obtained. The crude product composition is also described herein.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 15, 2009
    Inventors: Opinder Kishan BHAN, Scott Lee WELLINGTON
  • Patent number: 7578926
    Abstract: A process for producing a lubricating base oil having high oxidation stability, wherein the feed used to prepare the lubricating base oil contains at least 5 wt. % olefins, said process comprising (a) determining the weight percent of olefins present in the feed by means of 1H NMR; (b) hydroprocessing the feed under hydroprocessing conditions selected to reduce the amount of olefins present to a target value which has been pre-determined by means of 1H NMR to produce a lubricating base oil having the desired oxidation stability; and (c) collecting a lubricating base oil having the selected oxidation stability from the hydroprocessing zone.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: August 25, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Susan M. Abernathy, David R. Johnson, John M. Rosenbaum, Don Young
  • Publication number: 20090159492
    Abstract: Lube base stocks and lube stock compositions, as well as a process for preparing lube base stocks and lube stock compositions, are disclosed. The lube oils preferably have a viscosity index above about 115. The process involves obtaining feed-stocks that have a 95% point below 1150° F. and feedstocks that have 95% point above 1150° F. The feedstocks that have a 95% point below 1150% are catalytically dewaxed, and the feedstocks that have 95% point above 1150% are solvent dewaxed. The resulting products can optionally be blended, and the base stocks can be combined with various additives to form lube oil compositions. Hydrotreatment can optionally be performed on the lube base stocks to remove olefins, oxygenates and other impurities. In one embodiment, one or more of the fractions are obtained from Fisher-Tropsch synthesis. One or more of the fractions can also be obtained from other sources, for example, via distillation of crude oil, provided that the fractions do not include appreciable amounts (i.e.
    Type: Application
    Filed: June 23, 2005
    Publication date: June 25, 2009
    Inventors: Etienne Duhoux, Gilbert Robert Bernard Germaine, Yunus Sajad Hussein, Janet Marian Smithers, Wiecher Derk Evert Steenge, David John Wedlock
  • Patent number: 7547387
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: June 16, 2009
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Publication number: 20090139898
    Abstract: The present invention provides a hydrogenation catalyst, containing a carrier, metal components of nickel, molybdenum and tungsten supported thereon, and an adjuvant component selected from the group consisting of fluorine and phosphor and combination thereof. In another embodiment, the present invention provides a hydrogenation catalyst, containing a carrier and metal components of nickel, molybdenum and tungsten supported thereon, wherein said carrier contains a molecular sieve. The present invention provides further use of said catalyst in the process for hydrogenating hydrocarbon oil. In comparison with a hydrogenation catalyst according to the prior art, the catalyst according to the present invention has a much higher activity.
    Type: Application
    Filed: April 20, 2006
    Publication date: June 4, 2009
    Inventors: Xiangyun Long, Xuefen Liu, Hong Nie, Kui Wang, Jing Xin, Qinghe Liu, Xiaodong Gao, Zhihai Hu, Yahua Shi, Dadong Li
  • Patent number: 7510645
    Abstract: Increased yields of naphtha and increased catalyst activity are obtained in a hydrocracking process by the use of a catalyst containing a beta zeolite and a Y zeolite having a unit cell size from 24.38 to 24.50 angstrom. The catalyst has a relatively high amount of Y zeolite relative to beta zeolite.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: March 31, 2009
    Assignee: UOP LLC
    Inventor: Li Wang
  • Publication number: 20090050526
    Abstract: The instant invention is directed to a process employing slurry catalyst compositions in the upgrading of heavy oils. The slurry catalyst composition is not permitted to settle, which would result in possible deactivation. The slurry is recycled to an upgrading reactor for repeated use and products require no further separation procedures for catalyst removal.
    Type: Application
    Filed: September 18, 2008
    Publication date: February 26, 2009
    Inventors: Kaidong Chen, Julie Chabot
  • Publication number: 20090032436
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Application
    Filed: September 30, 2008
    Publication date: February 5, 2009
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20080296203
    Abstract: Hydrocarbon conversion process comprising the steps of (a) suspending catalyst particles comprising a layered material in a first, polar hydrocarbon, employing conditions such as will cause delamination of the layered material to form a suspension comprising particles with a size of less than 1 micron, (b) optionally adding the suspension to a second hydrocarbon, (c) converting the first and/or the optional second hydrocarbon in the presence of said delaminated layered material, and (d) separating the delaminated material from the first and the optional second hydrocarbon. This process provides an economically desired way of converting hydrocarbons using small catalyst particles.
    Type: Application
    Filed: August 25, 2005
    Publication date: December 4, 2008
    Inventors: Dennis Stamires, Paul O'Connor, Elbert Jan De Graaf
  • Patent number: 7459073
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-47B prepared using a N-cyclopentyl-1,4-diazabicyclo[2.2.2] octane cation as a structure-directing agent and an amine too large to fit in the pores of the molecular sieve nonasil, methods for synthesizing SSZ-47B and processing employing SSZ-47B in a catalyst.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: December 2, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Allen W. Burton, Jr., Stacey I. Zones
  • Patent number: 7442290
    Abstract: Mesoporous aluminum oxides with high surface areas have been synthesized using inexpensive, small organic templating agents instead of surfactants. Optionally, some of the aluminum can be framework-substituted by one or more other elements. The material has high thermal stability and possesses a three-dimensionally randomly connected mesopore network with continuously tunable pore sizes. This material can be used as catalysts for dehydration, hydrotreating, hydrogenation, catalytic reforming, steam reforming, amination, Fischer-Tropsch synthesis and Diels-Alder synthesis, etc.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: October 28, 2008
    Assignee: Lummus Technology Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Publication number: 20080257781
    Abstract: A method of manufacturing a composition of alcohol esters of linear monocarboxylic acids with 6 to 26 carbon atoms from a vegetable or animal oil, neutral or acid, virgin or recycled, with monoalcohols having 1 to 18 carbon atoms, in the presence of a phosphate type catalyst or of an organophosphorous compound of a metal selected from the group made up of zirconium, hafnium and titanium, allows to directly produce, in one or more stages, an ester that can be used as fuel and a pure glycerin.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 23, 2008
    Inventors: Vincent Lecocq, Sylvie Maury, Delphine Bazer-Bachi
  • Patent number: 7387712
    Abstract: A process for the catalytic reaction of organic compounds, in which the organic compounds are contacted with a catalyst comprising an interstitial metal hydride, having a reaction surface, to produce a catalyst-organic compound mixture, energy is applied, monatomic hydrogen is produced at the reaction surface of the interstitial metal hydride, and the organic compounds are reacted with the monatomic hydrogen. Reactions accomplished by this process include petroleum hydrocracking and hydrotreating processes. The method's performance can be further enhanced using radio frequency (RF) or microwave energy.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: June 17, 2008
    Assignee: Carnegie Mellon University
    Inventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
  • Patent number: 7381384
    Abstract: Insulating members are provided for use in nozzles of elevated temperature process vessels employing a structural metal shell (24), an insulating refractory lining (14) and a corrosion-resistant membrane (18) lining between the structural shell and refractory lining. The insulating members comprise pre-formed insulating sleeves and inserts and are made of a thermally insulating material having sufficient thickness and sufficiently low thermal conductivity such that, when the sleeve or insert is heated by the process temperature during operation of the vessel, the thermal energy transmitted through the sleeve or insert to the membrane is insufficient to raise the temperature of the membrane above a target temperature. The most preferred thermally insulating materials are fluoropolymers such as poly(tetrafluoroethylene) flouropolymer resins.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: June 3, 2008
    Assignee: Hatch Ltd.
    Inventors: Kevin S. Fraser, Patrick Henry Lauzon, Arthur W Cooper, Albert J. Koning
  • Patent number: 7344694
    Abstract: A series of crystalline alumino-silicate zeolites identified as UZM-12 have been synthesized. These UZM-12 compositions have the ERI topology, a Si/Al>5.5 and can be prepared as nanocrystallites having an average particle size of about 15 to about 50 nanometers and a spheroidal morphology. The UZM-12 composition can be treated to remove at least a fraction of the framework aluminum atoms thereby providing zeolites with a Si/Al>5.75 and identified as UZM-12HS. Both the UZM-12 and UZM-12HS can catalyze various hydrocarbon conversion processes.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: March 18, 2008
    Assignee: UOP LLC
    Inventors: Mark A. Miller, Gregory J. Lewis, Jana L. Gisselquist, Jaime G. Moscoso, R. Lyle Patton
  • Patent number: 7326819
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element or yttrium component, which is preferably ytterbium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: February 5, 2008
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Michelle J. Cohn
  • Patent number: 7318845
    Abstract: A distillate fuel steam reformer system in which a fuel feed stream is first separated into two process streams: an aliphatics-rich, sulfur-depleted gas stream, and an aromatics- and sulfur-rich liquid residue stream. The aliphatics-rich gas stream is desulfurized, mixed with steam, and converted in a reforming reactor to a hydrogen-rich product stream. The aromatics-rich residue stream is mixed with air and combusted to provide heat necessary for endothermic process operations. Reducing the amounts of sulfur and aromatic hydrocarbons directed to desulfurzation and reforming operations minimizes the size and weight of the overall apparatus. The process of the invention is well suited to the use of microchannel apparatuses for heat exchangers, reactors, and other system components, which may be assembled in slab configuration, further reducing system size and weight.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: January 15, 2008
    Assignee: Applied Research Associates, Inc.
    Inventors: Aly H. Shaaban, Timothy J. Campbell
  • Patent number: 7316807
    Abstract: A porous crystalline composition having a molar composition as follows: YO2:m X2O3:n ZO, wherein Y is a tetravalent element selected from the group consisting of silicon, germanium, tin, titanium and combinations thereof, X is a trivalent element selected from the group consisting of aluminum, gallium, boron, iron and combinations thereof, Z is a divalent element selected from the group consisting of magnesium, zinc, cobalt, manganese, nickel and combinations thereof, m is between about 0 and about 0.5, n is between about 0 and about 0.5; and the composition has an x-ray diffraction pattern which distinguishes it from the materials. A process for making the composition, and a process using the composition to treat an organic compound are also provided.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: January 8, 2008
    Assignee: Intevep, S.A.
    Inventors: Andrés Quesada Perez, Gerardo Vitale Rojas
  • Patent number: 7300566
    Abstract: Petroleum residua are combined with water or an aqueous solution to form an emulsion which is then treated with ultrasound at a sufficient intensity and for a sufficient period of time to cause a conversion of the heavy hydrocarbon components of the residua to lighter components, thereby shifting the entire boiling point curve to lower boiling points. This allows one to draw a greater proportion of usable oil from the residua.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: November 27, 2007
    Assignee: Sulphco, Inc.
    Inventor: Rudolf W. Gunnerman
  • Patent number: 7297249
    Abstract: A fixed-bed reactor is described for carrying out reactions of fluid reaction mixtures in the presence of a particulate heterogeneous catalyst having a structured packing which forms interstices in the reactor interior, in which the quotient of the hydraulic diameter for the fluid flow through the structured packing and the equivalent diameter of the catalyst particles is in the range from 2 to 20, preferably in the range from 5 to 10, to such an extent that the catalyst particles are introduced into the interstices, loosely distributed and discharged under the action of gravity.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: November 20, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Kaibel, Christian Miller, Helmut Jansen, Björn Kaibel
  • Patent number: 7288182
    Abstract: A process for hydroprocessing petroleum and chemical feedstocks by use of a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least one, preferably two Group VIB metal wherein the ratio of Group VIB metal to Group VIII metal is from about 10:1 to 1:10.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: October 30, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart Leon Soled, Sabato Miseo, Roman Krycak, Hilda B. Vroman, Teh Chung Ho, Kenneth Lloyd Riley
  • Patent number: 7276148
    Abstract: The invention provides a multi-stage process for the treatment of organic waste comprising drying said waste to reduce the water content to below 15%; subjecting said dried waste to a thermochemical liquefaction process in the presence of a recirculating solvent medium at a temperature of about 275° C. to 375° C. and a pressure of up to 10 atmospheres, thereby obtaining gaseous, liquid and solid products; separating the formed slurry product from condensable gas, water and other liquid fractions boiling out at up to 250° C.; transferring said slurry product obtained from thermal extraction from step c to a pyrolysis apparatus and treating the same at a temperature of about 350° C. to 500° C.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: October 2, 2007
    Assignee: Bio-Petrol, Ltd.
    Inventor: Yafim Plopski
  • Patent number: 7264789
    Abstract: A colloidal suspension of LEV structure type crystalline molecular sieve, making the suspension by washing smaller crystallites from a previously found solid LEV product, and using the suspension as seeds in further crystalline molecular sieve syntheses.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: September 4, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje Van Den Berge, legal representative, Machteld Maria Wilfried Mertens, Marcel Johannes Janssen, Cornelius Wilhelmus Maria Van Oorschot, David E. W. Vaughan, Johannes Petrus Verduijn, deceased
  • Patent number: 7255849
    Abstract: EMM-3 (ExxonMobil Material number 3) is a new crystalline microporous material with a framework of tetrahedral atoms connected by atoms capable of bridging the tetrahedral atoms, the tetrahedral atom framework being defined by the interconnections between the tetrahedrally coordinated atoms in its framework. EMM-3 can be prepared in aluminophosphate (AlPO) and metalloaluminophosphate (MeAPO) compositions with the hexamethonium template. It has a unique X-ray diffraction pattern, which identifies it as a new material. EMM-3 is stable to calcination in air, absorbs hydrocarbons, and is catalytically active for hydrocarbon conversion.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: August 14, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Karl G. Strohmaier, Arthur W. Chester, William R. Harrison, James C. Vartuli
  • Patent number: 7241376
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: July 10, 2007
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Patent number: 7182923
    Abstract: A device has a reaction chamber with at least one feed inlet (5) and at least one evacuation outlet (10). An outside jacket (2a) that is resistant to internal pressure is positioned around the device and contains at least one module (44) through which a reagent and formed products circulate. The module (44) has walls (11) and (12) made of refractory material that are included in a sealed jacket (40). The sealed jacket (40) is connected by a flexible connection to the jacket (2a) and to a heat exchanger that is also linked to the module (44) and to the jacket (2a) by a flexible connection.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: February 27, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Lenglet Eric, Luc Nougier, Stéphane Bertholin, Jacques Alagy, Michel Cohen, Jean Luc Le Peutrec