Hydrocracking In All Stages Patents (Class 208/59)
  • Patent number: 8926826
    Abstract: The present invention provides a process for hydroprocessing hydrocarbons in liquid full reactors with one or more independent liquid recycle streams. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase and one or more of the recycle streams may actually be zero. Hydrocarbons can be converted in the process to provide liquid products such as clean fuels with multiple desired properties.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: January 6, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Hasan Dindi, Luis Eduardo Murillo
  • Patent number: 8911616
    Abstract: One exemplary embodiment can be a hydrotreating process. The hydrotreating process can include providing a first feed stream having a coker naphtha with a bromine number of about 10-about 120, combining the first feed stream with a second feed stream having a straight run naphtha with a bromine number of less than about 10 to create a combined feed, providing the combined feed to a hydrotreating reactor having at least one catalyst bed, and separating a quench stream from the second feed stream and providing the quench stream after the at least one catalyst bed.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Soumendra Banerjee, Richard Hoehn, Srinivasa Gopalan Varadarajan
  • Patent number: 8894838
    Abstract: The present invention provides a process for hydroprocessing hydrocarbons with uneven catalyst volume distribution among two or more catalyst beds. The process operates as a liquid-full process, wherein all of the hydrogen dissolves in the liquid phase. Hydrocarbons can be converted in the process to provide a liquid product including clean fuels with multiple desired properties such as low density and high cetane number.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: November 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Hasan Dindi, Brian Paul Lamb, Luis Eduardo Murillo, Brian Boeger, Jeffrey D. Caton
  • Patent number: 8858784
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal to produce a second hydrocarbon-containing product.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 14, 2014
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Frederik Arnold Buhrman
  • Publication number: 20140291201
    Abstract: One exemplary embodiment can be a process for hydroprocessing. The process can include providing a hydroprocessing zone having at least two beds, and quenching downstream of a first bed of the at least two beds with a first vacuum gas oil that may be lighter than another vacuum gas oil fed to the first bed.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 2, 2014
    Applicant: UOP, LLC
    Inventors: Soumendra Mohan Banerjee, Mani Krishna, Avnish Kumar
  • Publication number: 20140262940
    Abstract: A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140275677
    Abstract: A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
    Type: Application
    Filed: February 20, 2014
    Publication date: September 18, 2014
    Applicant: Lummus Technology Inc.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140262942
    Abstract: Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor seventies and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
    Type: Application
    Filed: February 14, 2014
    Publication date: September 18, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Arun Arora, Ujjal K. Mukherjee, Wai Seung Louie, Marvin I. Greene
  • Publication number: 20140238897
    Abstract: Methods for hydroprocessing heavy oil feedstocks are disclosed. A heavy oil feedstock, a hydrogen-containing gas, and a slurry catalyst are passed through a plurality of upflow reactors operating under hydrocracking conditions to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. At least a portion of the mixture comprising the upgraded products, unconverted heavy oil feedstock, the hydrogen-containing gas, and the slurry catalyst from an upflow reactor other than the first upflow reactor is sent back to at least one upstream upflow reactor as a recycled stream.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Bo Kou, Julie Chabot, Bruce Edward Reynolds
  • Publication number: 20140221713
    Abstract: A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140221709
    Abstract: A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140197069
    Abstract: A process for upgrading residuum hydrocarbons including: feeding pitch, hydrogen, and a partially spent catalyst recovered from a hydrocracking reactor to an ebullated bed pitch hydrocracking reactor; contacting the pitch, hydrogen, and the catalyst in the ebullated bed pitch hydrocracking reactor at reaction conditions of temperature and pressure sufficient to convert at least a portion of the pitch to distillate hydrocarbons; and separating the distillate hydrocarbons from the catalyst. In some embodiments, the process may include selecting the ebullated bed pitch hydrocracking reactor reaction conditions to be at or below the level where sediment formation would otherwise become excessive and prevent continuity of operations.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari, Marvin I. Greene
  • Patent number: 8747652
    Abstract: The present invention concerns a catalyst comprising at least one crystalline material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said crystalline material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having microporous and crystalline walls with a thickness in the range 1.5 to 60 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 10, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Publication number: 20140124409
    Abstract: A process for the hydroprocessing of a low-value light cycle oil (LCO) hydrocarbon feed to provide a high-value diesel-range product. The process comprises a hydrotreatment stage followed by a hydrocracking stage, each of which is conducted under liquid-full reaction conditions wherein substantially all the hydrogen supplied to the hydrotreating and hydrocracking reactions is dissolved in the liquid-phase hydrocarbon feed. Ammonia and optionally other gases formed during hydrotreatment are removed in a separation step prior to hydrocracking. The LCO feed is advantageously converted to diesel in high yield with little loss of hydrocarbon to naphtha.
    Type: Application
    Filed: October 11, 2013
    Publication date: May 8, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: HASAN DINDI, ALAN HOWARD PULLEY, THANH GIA TA, VINCENT ADAM KUPERAVAGE, JR.
  • Patent number: 8715485
    Abstract: The present invention concerns a catalyst comprising at least one amorphous material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said amorphous material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said spherical particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having amorphous and microporous walls with a thickness in the range 1.5 to 50 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: May 6, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Patent number: 8709234
    Abstract: A process in which the paraffinic effluent derived from a Fischer-Tropsch synthesis unit is separated to obtain a heavy C5+ fraction, said heavy fraction then being hydrogenated in the presence of a hydrogenation catalyst at a temperature in the range 80° C to 200° C, at a total pressure in the range 0.5 to 6 MPa, at an hourly space velocity in the range 1 to 10 h-1, and at a hydrogen flow rate corresponding to a hydrogen/hydrocarbons volume ratio in the range 5 to 80 NI/I/h, the liquid hydrogenated effluent then being brought into contact with a hydroisomerization/hydrocracking catalyst, with no prior separation step, the hydroisomerized/hydrocracked effluent then being distilled to obtain middle distillates and possibly oil bases.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: April 29, 2014
    Assignees: IFP Energies Nouvelles, ENI S.p.A.
    Inventors: Aurelie Dandeu, Nathalie Marchal-George, Vincent Coupard, Eric Caprani, Jean Cosyns, Damien Douziech, Stephane Fedou
  • Publication number: 20140110306
    Abstract: A process for the hydroconversion of a hydrocarbon feedstock. The process includes contacting the hydrocarbon feedstock with a catalyst in a first hydrocracking section to obtain a first hydrocarbon effluent stream which is separated into a gaseous stream, a light liquid stream and a heavy liquid stream. These liquid streams are fractioned into a number of fractions of hydrocarbons including a fraction of hydrocarbons having a boiling point above 350° C. This fraction of hydrocarbons is contacted with a catalyst in a second hydrocracking section to obtain a second hydrocarbon effluent stream that is separated to obtain a gaseous stream, a light liquid stream and a heavy liquid stream. These liquid streams are fractioned into a number of fractions of hydrocarbons including a heavy fraction of hydrocarbons having a boiling point above 350° C. This fraction of hydrocarbons is split into a major stream and a minor stream with the major stream being recycled and the minor stream is recovered.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 24, 2014
    Inventor: Nicolaas Van Dijk
  • Patent number: 8691077
    Abstract: One exemplary embodiment can be a process for converting a hydrocarbon stream. The process can include passing the hydrocarbon stream having one or more C40+ hydrocarbons to a slurry hydrocracking zone to obtain a distillate hydrocarbon stream having one or more C9-C22 hydrocarbons, and passing the distillate hydrocarbon stream to a hydrocracking zone for selectively hydrocracking aromatic compounds including at least two rings obtaining a processed distillate product.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventors: Clayton C. Sadler, Christopher D. Gosling
  • Patent number: 8632675
    Abstract: Processes are provided for producing a diesel fuel product having a sulfur content of 10 ppm by weight or less from feed sources that include up to 50% by weight of a biocomponent feedstock. The biocomponent feedstock is co-processed with a heavy oil feed in a severe hydrotreating stage. The product from the severe hydrotreatment stage is fractionated to separate out a diesel boiling range fraction, which is then separately hydrotreated.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 21, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kathryn Y. Cole, William E. Lewis
  • Publication number: 20140001089
    Abstract: Process for hydrotreating a heavy hydrocarbon fraction using a system of switchable fixed bed guard zones each containing at least two catalyst beds and in which whenever the catalyst bed that is brought initially into contact with the feed is deactivated and/or clogged during the steps in which the feed passes successively through all the guard zones, the point of introduction of the feed is shifted downstream. The present invention also relates to an installation for implementing this process.
    Type: Application
    Filed: December 20, 2011
    Publication date: January 2, 2014
    Applicant: IFP Energies nouvelles
    Inventors: Frederic Bazer-Bachi, Christophe Boyer, Isabelle Guibard, Nicolas Marchal, Cecile Plain
  • Publication number: 20130341243
    Abstract: This invention relates to a process involving hydrocracking of a feedstream in which a converted fraction can exhibit relatively high distillate product yields and maintained or improved distillate fuel properties, while an unconverted fraction can exhibit improved properties particularly useful in the lubricant area. In this hydrocracking process, it can be advantageous for the yield of converted/unconverted product for gasoline fuel application to be reduced or minimized, relative to converted distillate fuel and unconverted lubricant. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: ExxonMobil Research and Engineering
    Inventors: William J. Novak, Robert Allen Bradway, Stuart S. Shih, Timothy Lee Hilbert, Michel Daage
  • Publication number: 20130324760
    Abstract: A method of crystallizing a crystalline molecular sieve having a pore size in the range of from about 2 to about 19 ?, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element (Y), at least one hydroxide source (OH?), and water, said mixture having a solid-content in the range of from about 15 wt. % to about 50 wt. %; and (b) treating said mixture to form the desired crystalline molecular sieve with stirring at crystallization conditions sufficient to obtain a weight hourly throughput from about 0.005 to about 1 hr?1, wherein said crystallization conditions comprise a temperature in the range of from about 200° C. to about 500° C. and a crystallization time less than 100 hr.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Inventors: Ivy D. Johnson, Wenyih Frank Lai
  • Publication number: 20130319908
    Abstract: Method and plant for converting hydrocarbon feedstock comprising a shale oil, comprising a step of hydroconverting in an ebullating bed, a fractionation into a light fraction, a naphtha fraction, a gas-oil fraction and a fraction heavier than gas-oil, the naphtha and gas oil fraction being hydrotreated, the fraction heavier than gas oil being hydrocracked, the products of the hydrocracking being sent to the step for hydrotreating. The method aims to maximize the yield of fuel bases.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 5, 2013
    Applicants: AXENS, TOTAL RAFFINAGE MARKETING
    Inventors: Christophe Halais, Héléne Leroy, Frederic Morel, Cecille Plain
  • Patent number: 8557105
    Abstract: Methods for hydrocracking a heavy hydrocarbon feedstock (e.g., heavy oil and/or coal resid) employ a catalyst composed of well dispersed metal sulfide catalyst particles (e.g., colloidally or molecularly dispersed catalyst particles, such as molybdenum sulfide), which provide an increased concentration of metal sulfide catalyst particles within lower quality materials requiring additional hydrocracking. In addition to increased metal sulfide catalyst concentration, the systems and methods provide increased reactor throughput, increased reaction rate, and higher conversion of asphaltenes and lower quality materials. Increased conversion of asphaltenes and lower quality materials also reduces equipment fouling, enables processing of a wider range of lower quality feedstocks, and leads to more efficient use of a supported catalyst if used in combination with the well dispersed metal sulfide catalyst particles.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 15, 2013
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Roger K. Lott, Yu-Hwa Chang
  • Publication number: 20130264246
    Abstract: Provided are high viscosity high quality Group II lube base stocks with improved properties produced by an integrated hydrocracking and dewaxing process. In one form, the Group II lube base stock includes greater than or equal to 90 wt. % saturates, and less than 10 wt. % aromatics, and has an aromatic performance ratio between 1.0 and 5.0. Also provided are lubricant formulations including the high viscosity high quality Group II lube base stock.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 10, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Gretchen L. Holtzer, Ajit B. Dandekar, Charles L. Baker, Bradley R. Fingland, Bryan E. Hagee, Cathleen Yung, Frank C. Wang, Eugenio Sanchez, Rugved Prakash Pathare
  • Patent number: 8551323
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock are disclosed. The system employs a plurality of contacting zones and at least one separation zone, wherein a solvating hydrocarbon having a normal boiling point less than 538° C. (1000° F.) is employed. In the system, a mixture of heavy oil feedstock and solvating hydrocarbon is provided to a contact zone along with a slurry catalyst feed in a hydrocarbon diluent. The contacting zone operates at a temperature and pressure near the critical temperature and pressure of the heavy oil and solvating hydrocarbon mixture to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: October 8, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Tayseer A Abdel-Halim, Axel Brait
  • Patent number: 8551327
    Abstract: Processes are provided for producing a diesel fuel product having a sulfur content of 10 ppm by weight or less from feed sources that include up to 20% by weight of a biocomponent feedstock. The mineral hydrocarbon portions of the feed sources can be distillate or heavier feed sources.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 8, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ernie Lewis, Tahmid Mizan, Zhiguo Hou
  • Publication number: 20130256191
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. The second hydrocarbon stream may be a diesel stream from the hydrotreating unit. The diesel stream may be a diesel and heavier stream from a bottom of a hydrotreating fractionation column.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Publication number: 20130256190
    Abstract: One exemplary embodiment can be a process for hydrocarbon conversion. The process can include providing a feed to a slurry hydrocracking zone, obtaining a hydrocarbon stream including one or more C16-C45 hydrocarbons from the at least one separator, providing another feed to a hydrocracking zone, and providing hydrogen from a three-stage compressor to the slurry hydrocracking zone and the hydrocracking zone. Moreover, the slurry hydrocracking zone may include a slurry hydrocracking reactor and at least one separator.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: UOP, LLC
    Inventors: Mark Van Wees, Robert Haizmann
  • Publication number: 20130256192
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A hydrocracking separator separates recycle gas and hydrocarbons from the hydrocracking unit to be processed with effluent from the hydrotreating unit.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Patent number: 8540949
    Abstract: An apparatus and process is disclosed for hydroprocessing hydrocarbon feed in a hydroprocessing unit and hydrotreating a second hydrocarbon. A warm separator sends vaporous hydrotreating effluent to be flashed with liquid hydroprocessing effluent to produce a vapor flash overhead that can be recycled to the hydrotreating unit to provide hydrogen requirements.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 24, 2013
    Assignee: UOP LLC
    Inventors: Andrew P. Wieber, Joao J. da Silva Ferreira Alves
  • Publication number: 20130240406
    Abstract: One exemplary embodiment can be a process for converting a hydrocarbon stream. The process can include passing the hydrocarbon stream having one or more C40+ hydrocarbons to a slurry hydrocracking zone to obtain a distillate hydrocarbon stream having one or more C9-C22 hydrocarbons, and passing the distillate hydrocarbon stream to a hydrocracking zone for selectively hydrocracking aromatic compounds including at least two rings obtaining a processed distillate product.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: UOP, LLC
    Inventors: Clayton C. Sadler, Christopher D. Gosling
  • Publication number: 20130233765
    Abstract: A hydrocracking system is upgraded by modifying an existing ebullated bed initially utilizing a supported ebullated bed catalyst to thereafter utilize a dual catalyst system that includes metal sulfide catalyst particles and supported ebullated bed catalyst. The upgraded hydrocracking system achieves at least one of: (1) hydroprocess lower quality heavy oil; (2) increase conversion of higher boiling hydrocarbons that boil at 524° C. (975° F.) or higher; (3) reduce the concentration of supported ebullated bed catalyst required to operate an ebullated bed reactor at a given conversion level; and/or (4) proportionally convert the asphaltene fraction in heavy oil at the same conversion level as the heavy oil as a whole. The metal sulfide catalyst may include colloidal or molecular catalyst particles less than 1 micron in size and formed in situ within the heavy oil using a catalyst precursor well-mixed within the heavy oil and decomposed to form catalyst particles.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 12, 2013
    Inventors: Roger K. Lott, Lap Keung Lee
  • Publication number: 20130228494
    Abstract: A hydroprocessing method and system involves introducing heavy oil and well-dispersed metal sulfide catalyst particles, or a catalyst precursor capable of forming the well-dispersed metal sulfide catalyst particles in situ within the heavy oil, into a hydroprocessing reactor. The well-dispersed or in situ metal sulfide catalyst particles are formed by 1) premixing a catalyst precursor with a hydrocarbon diluent to form a precursor mixture, 2) mixing the precursor mixture with heavy oil to form a conditioned feedstock, and 3) heating the conditioned feedstock to decompose the catalyst precursor and cause or allow metal from the precursor to react with sulfur in the heavy oil to form the well-dispersed or in situ metal sulfide catalyst particles. The well-dispersed or in situ metal sulfide catalyst particles catalyze beneficial upgrading reactions between the heavy oil and hydrogen and eliminates or reduces formation of coke precursors and sediment.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 5, 2013
    Inventors: Roger K. Lott, Lap Keung Lee
  • Patent number: 8524073
    Abstract: Disclosed herein is a sorbent composition including an adsorbent support; and a metal component comprising a transition metal, wherein the metal component is impregnated on a surface of the adsorbent support; and wherein the metal component effects the removal of sulfur and vanadium from a hydrocarbon fuel. Also disclosed herein is a sorbent composition comprising an adsorbent support, wherein a surface of the adsorbent support has been chemically modified to comprise functional groups; and wherein the adsorbent support effects the removal of sulfur and vanadium from a hydrocarbon fuel.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: September 3, 2013
    Assignee: General Electric Company
    Inventors: John Aibangbee Osaheni, Thomas Joseph Fyvie, Gregory Allen O'Neil, Deborah Ann Haitko, Grigorii Lev Soloveichik, Paul Burchell Glaser
  • Patent number: 8518239
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 27, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Patent number: 8518241
    Abstract: Methods for processing a hydrocarbonaceous feedstock flows are provided. In one aspect, the method includes providing two or more hydroprocessing stages disposed in sequence, each hydroprocessing stage having a hydroprocessing reaction zone with a hydrogen requirement and each stage in fluid communication with the preceding stage. A hydrogen source is provided substantially free of hydrogen from a hydrogen recycle compressor. The hydrocarbonaceous feedstock flow is separated into an portions of fresh feed for each hydroprocessing stage, and the first portion of fresh feed to the first hydroprocessing stage is heated. The heated first portion of fresh feed is supplied with hydrogen from the hydrogen source in an amount satisfying substantially all of the hydrogen requirements of the hydroprocessing stages to a first hydroprocessing zone. The unheated second portion of fresh feed is admixed with effluent from previous stage to quench the hot reactor effluent before entering a second stage.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: John A. Petri, Vedula K. Murty, Peter Kokayeff
  • Publication number: 20130112594
    Abstract: Systems and methods are provided for producing at least one low sulfur distillate fuel product with improved low temperature properties. A potential distillate fuel feed is initially hydrotreated to reduce sulfur and nitrogen levels in the feed to desired amounts. The hydrotreated effluent is then fractionated to form several fractions, including a light diesel/distillate fraction and a heavy diesel fraction. The heavy diesel fraction is then dewaxed to improve the cold flow properties of the heavy diesel fraction. The dewaxed heavy diesel fraction can be combined with the light diesel fraction, or the dewaxed heavy diesel fraction can be fractionated as well. Optionally, the heavy diesel fraction is dewaxed under conditions effective for producing a dewaxed fraction with a cloud point that is less than or equal to the cloud point of the light diesel/distillate fraction.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 9, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: ExxonMobil Research and Engineering Company
  • Patent number: 8435400
    Abstract: Systems and methods for hydroprocessing heavy oil feedstock is disclosed. The process employs a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. In one embodiment, water and/or steam being injected into at least a contacting zone. The contacting zones operate under hydrocracking conditions, employing at least a slurry catalyst. In one embodiment, at least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to at least a contacting zone (“recycled mode”). In one embodiment, the number of separation zones is less than the number of contacting zones in the system. In the separation zones, upgraded products are removed overhead and optionally treated in an in-line hydrotreater; and the bottom stream is optionally further treated in a fractionator.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 7, 2013
    Assignee: Chevron U.S.A.
    Inventors: Bo Kou, Shuwu Yang, Bruce Reynolds, Julie Chabot
  • Publication number: 20130092598
    Abstract: Methods are provided for producing multiple lubricating oil basestocks from a feedstock. Prior to dewaxing, various fractions of the feedstock are exposed to hydrocracking conditions of different severity to produce a higher overall yield of basestocks. The hydrocracking conditions of different severity can represent exposing fractions of a feedstock to different processing conditions, exposing fractions of a feedstock to different amounts of hydrocracking catalyst, or a combination thereof.
    Type: Application
    Filed: July 12, 2012
    Publication date: April 18, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Eric D. Joseck, Michael Brian Carroll, David Mentzer, Teck-Mui Hoo, Michel Daage, Ajit Bhaskar Dandekar
  • Publication number: 20130087481
    Abstract: A process for the hydroconversion of heavy oil feedstocks comprises a step for hydroconversion of the feedstock in at least one reactor containing a catalyst in slurry mode used to recover metals from the residual unconverted fraction, especially those used as catalysts. The process comprises a hydroconversion step, a gas/liquid separation step, a liquid/liquid extraction step, a grinding step, a leaching step, a combustion step, a metals extraction step and a step for the preparation of catalytic solutions which are recycled to the hydroconversion step.
    Type: Application
    Filed: March 22, 2011
    Publication date: April 11, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Jean-Philippe Heraud, Frédéric Morel, Alain Quignard
  • Publication number: 20130068658
    Abstract: Methods for hydrocracking a heavy hydrocarbon feedstock (e.g., heavy oil and/or coal resid) employ a catalyst composed of well dispersed metal sulfide catalyst particles (e.g., colloidally or molecularly dispersed catalyst particles, such as molybdenum sulfide), which provide an increased concentration of metal sulfide catalyst particles within lower quality materials requiring additional hydrocracking. In addition to increased metal sulfide catalyst concentration, the systems and methods provide increased reactor throughput, increased reaction rate, and higher conversion of asphaltenes and lower quality materials. Increased conversion of asphaltenes and lower quality materials also reduces equipment fouling, enables processing of a wider range of lower quality feedstocks, and leads to more efficient use of a supported catalyst if used in combination with the well dispersed metal sulfide catalyst particles.
    Type: Application
    Filed: November 13, 2012
    Publication date: March 21, 2013
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventor: Headwaters Technology Innovation, LLC
  • Publication number: 20130068657
    Abstract: The present invention provides a process for hydroprocessing comprising treating a hydrocarbon feed in a first two-phase hydroprocessing zone having a liquid recycle, producing product effluent, which is contacted with a catalyst and hydrogen in a downstream three-phase hydroprocessing zone, wherein at least a portion of the hydrogen supplied to the three-phase zone is a hydrogen-rich recycle gas stream. Optionally, the product effluent from the first two-phase hydroprocessing zone is fed to a second two-phase hydroprocessing zone containing a single-liquid-pass reactor. The two-phase hydroprocessing zones comprise two or more catalyst beds disposed in liquid-full reactors. The three-phase hydroprocessing zone comprises one or more single-liquid-pass catalyst beds disposed in a trickle bed reactor.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Hasan Dindi, Luis Eduardo Murillo, Thanh Gia Ta
  • Publication number: 20130062252
    Abstract: Aromatic extraction and hydrocracking processes are integrated to optimize the hydrocracking units design and/or performance. By processing aromatic-rich and aromatic-lean fractions separately, the hydrocracking operating severity and/or catalyst reactor volume requirement decreases.
    Type: Application
    Filed: July 27, 2012
    Publication date: March 14, 2013
    Inventor: Omer Refa KOSEOGLU
  • Publication number: 20130062251
    Abstract: Aromatic extraction and hydrocracking processes are integrated to optimize the hydrocracking units design and/or performance. By processing aromatic-rich and aromatic-lean fractions separately, the hydrocracking operating severity and or catalyst reactor volume requirement decreases.
    Type: Application
    Filed: July 27, 2012
    Publication date: March 14, 2013
    Inventor: Omer Refa KOSEOGLU
  • Publication number: 20130056392
    Abstract: Aromatic extraction and hydrocracking processes are integrated to optimize the hydrocracking units design and/or performance. By processing aromatics-rich and aromatic-lean fractions separately, the hydrocracking operating severity and or catalyst reactor volume requirement decreases.
    Type: Application
    Filed: July 27, 2012
    Publication date: March 7, 2013
    Inventor: Omer Refa KOSEOGLU
  • Patent number: 8372266
    Abstract: Systems and methods for hydroprocessing a heavy oil feedstock, the system employs a plurality of contacting zones and separation zones and an interstage solvent deasphalting unit. The contacting zones operate under hydrocracking conditions, employing a slurry catalyst for upgrading the heavy oil feedstock, forming upgraded products of lower boiling hydrocarbons. In the separation zones which operates at a temperature within 20° F. and a pressure within 10 psi of the pressure in the contacting zones, upgraded products are removed overhead and optionally, further treated in an in-line hydrotreater. At least a portion of the non-volatile fractions recovered from at least one of the separation zones is sent to the interstage solvent deasphalting unit, for separating unconverted heavy oil feedstock into deasphalted oil and asphaltenes. The deasphalted oil stream is sent to one of the contacting zones for further upgrade.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Goutam Biswas, Darush Farshid
  • Patent number: 8366910
    Abstract: A process is described for hydroconversion of a mixture of organic oils of different origins in a conventional hydrotreatment unit, constituted by at least two catalyst beds, under moderately severe process conditions to obtain diesel fuel oil. The process includes injection of a stream of oil of animal or plant origin, with independently adjusted flow rates, from the second catalyst bed of the hydrotreatment unit onwards, in accordance with the variations in temperature observed in each of the catalyst beds after the first bed. The process is applicable to conventional hydrotreatment units, and makes it possible to overcome the effects of the highly exothermic nature of hydroconversion reactions in oils of animal and/or plant origin in hydrotreatment process for obtaining specified diesel fuel oil.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: February 5, 2013
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Jefferson Roberto Gomes, Raissa Maria Cotta Ferreira da Silva, Rogerio Oddone, Adriana de Souza Ferreira, Nelmo Furtado Fernandes
  • Patent number: 8343334
    Abstract: A method and apparatus for hydrocracking an oil feedstock to produce a light oil stream without build-up of heavy polynuclear aromatic (HPNA) hydrocarbons in the recycle stream is provided. The method includes the steps of (1) hydrocracking the oil feedstock with a hydrotreating catalyst in a first reactor to produce an effluent stream; (2) fractionating the effluent stream into first, second and third product streams, wherein the first product stream includes C1-C4, naphtha and diesel boiling in the range of 36-370° C., the second product stream includes hydrocarbon components with an initial nominal boiling point of 370° C. and a final boiling point ranging from 420-480° C., and the third product stream that includes HPNA hydrocarbons and other hydrocarbons boiling above about 420° C. to about 480° C.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: January 1, 2013
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Publication number: 20120318712
    Abstract: Fuels hydrocracking can be used to generate a variety of product slates. Varying the temperature can allow an amount of naphtha product and an amount of unconverted product to be varied. The method can be enabled by a hydrocracking catalyst that includes a combination of metals with activity for hydrodesulfurization.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 20, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David L. Vannauker, Richard A. Demmin