Alkene Other Than Vinyl Patents (Class 210/500.36)
  • Patent number: 11931695
    Abstract: Described are methods of membrane distillation for processing organic liquids, hydrophobic distillation membranes useful for membrane distillation methods, and methods of preparing the hydrophobic distillation membranes.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: March 19, 2024
    Assignee: ENTEGRIS, INC.
    Inventors: Vinay Goel, Jad A. Jaber, Saksatha Ly
  • Patent number: 11931700
    Abstract: A substrate for a liquid filter contains a polyolefin microporous membrane. A mean flow pore size dPP in a pore size distribution of the polyolefin microporous membrane measured by a half dry method according to gas-liquid phase substitution is from 1 nm to 20 nm. A mean flow pore size dLLP in a pore size distribution of the polyolefin microporous membrane measured by a half dry method according to liquid-liquid phase substitution is from 1 nm to 15 nm. A difference (dPP?dLLP) between the mean flow pore size dPP and the mean flow pore size dLLP is 12 nm or less, and a thickness of the polyolefin microporous membrane is from 4 to 25 ?m.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: March 19, 2024
    Assignee: TEIJIN LIMITED
    Inventors: Ayumi Iwai, Koji Furuya, Takao Ohno
  • Patent number: 11884764
    Abstract: The invention concerns the field of polymer chemistry and relates to membranes, such as those that can be used, for example, for the preparation of aqueous solutions using microfiltration or ultrafiltration. The object of the present invention is to specify membranes which have improved anti-fouling properties and sliding friction properties. The object is attained with membranes comprised at least predominantly of multiblock copolymers of the general formula (1) where X=connection point E=C2 to C4 alkyl ether A=other block component not containing silicone R=C1 to C4 alkyl radical and/or phenyl radical m=1<m<500 n=0?n<100 o=1<o<10 p=1<p<10 z=1<z<25, the molar ratio of the silicone-containing block component and the other block component A in the multiblock copolymer is between 5:1 and 1:5, and wherein the silicon-containing block components are predominantly arranged at the surface of the membranes.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: January 30, 2024
    Assignee: LEIBNIZ-INSTITUT FUER POLYMERFORSCHUNG DRESDEN E.V.
    Inventors: Jochen Meier-Haack, Wladimir Butwilowski, Tim Oddoy, Kornelia Schlenstedt
  • Patent number: 11808697
    Abstract: Systems for protein quantitation using a Fabry-Perot interferometer. In one arrangement, a quantitation device includes an infrared source, a sample holder, and a Fabry-Perot interferometer positioned to receive infrared radiation from the source passing through a sample on the sample holder. A band pass optical filter sets the working range of the interferometer, and radiation exiting the interferometer falls on a detector that produces a signal indicating the intensity of the received radiation. A controller causes the interferometer to be tuned to a number of different resonance wavelengths and receives the intensity signals, for determination of an absorbance spectrum.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: November 7, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Evan Thrush, Steven Swihart, William Strong, Trey Marlowe, Li Lu
  • Patent number: 11784343
    Abstract: A separator for electricity storage devices, which comprises a porous layer that contains a polyolefin resin and an ionic compound, and which is configured such that: the content of the ionic compound in the porous layer is from 5% by mass to 99% by mass (inclusive); and the degree of whiteness of this separator is more than 98.0.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: October 10, 2023
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Masato Murakami, Shintaro Inaba, Shinya Hisamitsu, Daisuke Inagaki, Hiroshi Hatayama
  • Patent number: 11773201
    Abstract: Crosslinked polymers made up of polymerized units of cyclic diaminoalkane, aldehyde and bisphenol-S or melamine. A method for removing heavy metals, such as Pb(II) from an aqueous solution or an industrial wastewater sample with these crosslinked polymers is introduced. A process of synthesizing the crosslinked polymers is also described.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: October 3, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Othman Charles Sadeq Al Hamouz, Mohammed Estatie, Tawfik Abdo Saleh Awadh, Mohamed A. Morsy
  • Patent number: 11767615
    Abstract: A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed front a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: September 26, 2023
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Mark M. Mleziva, Ryan J. McEneany, Neil T. Scholl, Antonio J. Carrillo
  • Patent number: 11760827
    Abstract: Crosslinked polymers made up of polymerized units of cyclic diaminoalkane, aldehyde and bisphenol-S or melamine. A method for removing heavy metals, such as Pb(II) from an aqueous solution or an industrial wastewater sample with these crosslinked polymers is introduced. A process of synthesizing the crosslinked polymers is also described.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: September 19, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Othman Charles Sadeq Al Hamouz, Mohammed Estatie, Tawfik Abdo Saleh Awadh, Mohamed A. Morsy
  • Patent number: 11728100
    Abstract: A polyolefin porous film is provided, the film comprising a polyethylene-based resin, wherein a weight average molecular weight of the polyethylene-based resin is 450,000 or less, and a content of a high molecular weight component having a molecular weight of 1,000,000 or more in the polyethylene-based resin is 2 to 11% by mass.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 15, 2023
    Assignee: UBE CORPORATION
    Inventors: Takanobu Mimura, Ryou Sakimoto
  • Patent number: 11596886
    Abstract: Membranes suitable for use in membrane distillation are provided. Such membranes may include nano-fibrous layers with adjustable pore sizes. The membranes may include a hydrophobic nanofibrous scaffold and a thin hydrophilic protecting layer that can significantly reduce fouling and scaling problems.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 7, 2023
    Assignee: The Research Foundation for the State University of New York
    Inventors: Benjamin Chu, Benjamin S. Hsiao
  • Patent number: 11555378
    Abstract: A self-destructible frac ball is described herein. The self-destructible frac ball is configured to seal a hydraulic flow path through a fluid conduit of a frac plug when engaged on a ball seat of the frac plug. The self-destructible frac ball includes an activation mechanism configured to activate a destructive medium in response to the satisfaction of at least one predetermined condition. The self-destructible frac ball also includes the destructive medium, which is configured to destroy the self-destructible frac ball and a corresponding destructible ball retainer when activated by the activation mechanism. The destruction of the self-destructible frac ball and the corresponding destructible ball retainer reestablishes the hydraulic flow path through the fluid conduit of the frac plug.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: January 17, 2023
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael C. Romer, Timothy J. Hall
  • Patent number: 11502372
    Abstract: The present invention relates to a porous film including polyethylene and pore-forming particles, wherein the porous film has a structure including lamella and fibril, and the average size of pores located inside the porous film is larger than the average size of pores located on the surface of the porous film; a separator including the same; and an electrochemical cell.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: November 15, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sunghee Ahn, Hana Ra, Suhak Bae, Minjeong Lee
  • Patent number: 11446611
    Abstract: The present invention addresses the problem of providing a separating membrane mainly comprising a thermoplastic resin having high permeability. The present invention relates to a separating membrane including a thermoplastic resin, wherein the width of voids in the separating membrane is at least equal to 1 nm and at most equal to 1000 nm, and the curvature rate of the voids is at least equal to 1.0 and at most equal to 6.0.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 20, 2022
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Koichi Takada, Gohei Yamamura, Hiroki Eimura
  • Patent number: 11123205
    Abstract: A tandem modular endograft includes a main elongate tubular graft body having at least one circumferential inflatable channel disposed towards a proximal portion of the graft body wall and a plurality of circumferential inflatable channels disposed towards a distal portion of the graft body wall. A proximal expansion anchor is disposed at or secured to a proximal neck portion of the graft body wall. First and second elongate tubular stent-graft extensions may be percutaneously disposed into a distal end of the tubular graft body. In combination, proximal portions of the first and second stent-graft extensions are conformable to a shape of the open lumen of the main graft body.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: September 21, 2021
    Assignee: TriVascular, Inc.
    Inventor: Michael V. Chobotov
  • Patent number: 11001944
    Abstract: A polyolefin fiber that is formed by a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and nanoinclusion additive is provided. The nanoinclusion additive is dispersed within the continuous phase as discrete nano-scale phase domains. When drawn, the nano-scale phase domains are able to interact with the matrix in a unique manner to create a network of nanopores.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 11, 2021
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily A. Topolkaraev, Ryan J. McEneany, Antonio J. Carrillo, Mark M. Mleziva
  • Patent number: 10745555
    Abstract: The present invention pertains to a process for the manufacture of a porous membrane, said process comprising the following steps: (i) providing a composition [composition (F)] comprising: —at least one fluoropolymer [polymer (F)] comprising recurring units derived from at least one (meth)acrylic monomer (MA) having formula (I) wherein: —R1, R2 and R3, equal to or different from each other, are independently selected from a hydrogen atom and a C1-C3 hydrocarbon group, and —RX is a hydrogen atom or a C1-C5 hydrocarbon moiety comprising at least one functional group selected from a hydroxyl, a carboxyl, an epoxide, an ester and an ether group, and —at least one poly(alkylene oxide) (PAO); (ii) processing said composition (F) to provide a film; (iii) treating the film so obtained with an aqueous composition to provide said porous membrane.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: August 18, 2020
    Assignee: SOLVAY SPECIALTY POLYMER ITALY S.P.A.
    Inventors: Julio A. Abusleme, Anna Maria Bertasa, Regis Faig, Marco Miele, Stefano Mortara
  • Patent number: 10640623
    Abstract: According to the present invention, there are provided a porous body comprising a porous silicone substrate having communicating pores and a three-dimensional network silicone skeleton which forms the pores and which is formed by a copolymerization of a bifunctional alkoxysilane and a trifunctional alkoxysilane, and a polymeric cover material covering at least a part of a surface of the silicone skeleton, and an a method for producing the porous body. The porous body of the present invention has high flexibility and is strong to tension.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 5, 2020
    Assignee: NITTO DENKO CORPORATION
    Inventors: Kenjiro Saomoto, Naoyuki Matsuo
  • Patent number: 10637026
    Abstract: Provided is a separator for a lithium ion secondary battery includes a porous resin layer that contains polyolefin as a main component. In a spectrum obtained by X-ray diffraction using a CuK?-ray as a ray source, the separator has a diffraction peak (A) corresponding to a (111) crystal plane of the polyolefin.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 28, 2020
    Assignee: Envision AESC Energy Devices, Ltd.
    Inventor: Akihiro Modeki
  • Patent number: 10625492
    Abstract: A method for producing a medium includes forming a fiber assembly by discharging a raw material liquid of fibers from a nozzle to generate the fibers and depositing the fibers so as to surround a circumferential surface of a rotatable winder, and transferring the fiber assembly to a base member while rotating the rotatable winder. The circumferential surface of the rotatable winder has a plurality of belt-shaped projection portions extending in a direction along a rotation axis of the rotatable winder.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 21, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kouji Ikeda, Taichi Nakamura
  • Patent number: 10617853
    Abstract: The present disclosure is directed toward a semi-compliant to non-compliant, conformable balloon useful in medical applications. Conformable balloons of the present disclosure exhibit a low straightening force when in a curved configuration and at inflation pressures greater than 4 atm. Balloons of the present disclosure are constructed of material that can compress along an inner length when the balloon is in a curved configuration. In further embodiments, balloons of the present disclosure can be constructed of material that sufficiently elongates along an outer arc when the balloon is in a curved configuration. As a result, medical balloons, in accordance with the present disclosure, when inflated in a curved configuration, exhibit kink-free configurations and do not cause a significant degree of vessel straightening.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: April 14, 2020
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Carey V. Campbell, Matthew E. Maulding, Benjamin M. Trapp
  • Patent number: 10590265
    Abstract: A composition includes poly(4-methylpent-1-ene) and hollow glass microspheres. The composition has a density of less than 0.8 grams per cubic centimeter. Articles made from the composition and methods of making an article by injection molding the composition are also disclosed.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: March 17, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Baris Yalcin, Robert W. Hunter, Ibrahim S. Gunes
  • Patent number: 10561992
    Abstract: The invention provides a porous membrane comprising polyvinyl chloride (PVC) and at least one inorganic filler embedded in the porous membrane wherein the inorganic filler comprises sulfuric acid precipitated silica. The invention further provides a process for the production of said porous membrane.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: February 18, 2020
    Assignee: HURRAH SARL
    Inventor: Carole Laine
  • Patent number: 10547925
    Abstract: The sound-permeable membrane of the present invention is adapted, when placed over an opening for directing sound to or from a sound transducer, to prevent entry of foreign matters into the sound transducer through the opening while permitting passage of sound, the sound-permeable membrane including a non-porous film or a multilayer membrane including the non-porous film. The non-porous film is formed of oriented polytetrafluoroethylene. This sound-permeable membrane has an unconventional configuration and exhibits various excellent properties. At least one principal surface of the non-porous film may have a region subjected to a surface modification treatment.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: January 28, 2020
    Assignee: NITTO DENKO CORPORATION
    Inventors: Nobuharu Kuki, Masaaki Mori
  • Patent number: 10391457
    Abstract: A porous filter includes a porous laminate in which a plurality of biaxially stretched porous sheets made of PTFE are stacked. The Gurley number G and the bubble point B (kPa) of the porous laminate satisfy the following expressions (1) and (2): log G>3.7×10?3×B?0.8??(1) log G<4.9×10?3×B+0.45??(2).
    Type: Grant
    Filed: May 25, 2015
    Date of Patent: August 27, 2019
    Assignee: SUMITOMO ELECTRIC FINE POLYMER, INC.
    Inventors: Hiroyuki Tsujiwaki, Atsushi Uno, Fumihiro Hayashi
  • Patent number: 10340492
    Abstract: To provide an ultrahigh molecular weight polyethylene stretched microporous film having high strength and heat resistance. An ultrahigh molecular weight polyethylene stretched microporous film, which comprises at least an ultrahigh molecular weight polyethylene having an intrinsic viscosity ([?]) of at least 7 dl/g and at most 60 dl/g, and which has a porosity of at least 10% and at most 70% and a breaking stress of at least 1 MPa when melt-stretched at 150° C., which uses, as the ultrahigh molecular weight polyethylene, preferably ultrahigh molecular weight polyethylene particles which satisfy (1) an intrinsic viscosity ([?]) of at least 7 dl/g and at most 60 dl/g, (2) a bulk density of at least 130 kg/m3 and at most 700 kg/m3, and (3) ?Tm (?Tm=Tm1?Tm2) of at least 9° C. and at most 30° C., which is a difference between the melting point (Tm1) at the 1st scanning and the melting point (Tm2) at the 2nd scanning measured by DSC.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: July 2, 2019
    Assignee: TOSOH CORPORATION
    Inventors: Kei Inatomi, Yasutake Wakabayashi, Shigehiko Abe
  • Patent number: 10249863
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: April 2, 2019
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
  • Patent number: 10239024
    Abstract: The invention relates to a process for preparing a filtration membrane having an average molecular out-off of <1000 g/mol.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: March 26, 2019
    Assignee: LANXESS Deutschland GmbH
    Inventors: Martin Mechelhoff, Patrizia Marchetti, Andrew Livingston, Zedda Karina
  • Patent number: 10173038
    Abstract: The invention is directed to delivery medical devices that enable consistent “on-demand” delivery of therapeutic agents to a vessel. The medical device of the current invention comprises retractable sheath comprising neckable elements. The medical device of the current invention comprises an expandable member, a hydrophilic coating comprising at least one therapeutic agent about the expandable member or structural layer and a retractable outer sheath with a selectively permeable microstructure. The design and methods disclosed herein ensures that therapeutic agent delivery occurs essentially only during retraction of the outer sheath, minimizing coating and/or therapeutic agent loss to the bloodstream and providing controlled delivery to the treatment site.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: January 8, 2019
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Carey V. Campbell, Robert L. Cleek, Edward H. Cully, Peter Heicksen, Theresa A. Holland, Thane L. Kranzler, Mei Li, Bruce M. Steinhaus, Benjamin M. Trapp, Thomas G. Triebes, Michael J. Vonesh
  • Patent number: 9991492
    Abstract: The disclosure provides electrochemical cells including a separator enclosure which encloses at least a portion of a positive or negative electrode. In an embodiment, the separator generates a contact force or pressure on at least a portion of the electrode which can improve the performance of the cell. The disclosure also provides methods for charging an electrochemical cell.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: June 5, 2018
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Farshid Roumi
  • Patent number: 9968722
    Abstract: The present disclosure relates to a dialysis apparatus comprising a membrane having at least one protein from the lipocalin family bound thereon. The disclosure further relates to methods of removing non-polar, hydrophobic and/or protein bound uremic toxins from a target subject utilizing the dialysis apparatus described herein as well as methods of extracorporeal detoxification.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: May 15, 2018
    Assignee: NephroGenesis LLC
    Inventor: James A. Tumlin
  • Patent number: 9909103
    Abstract: The present disclosure relates to a tissue collection apparatus including a housing defining an inlet and an outlet and a tissue scaffold suitable for disposal within the housing, the tissue scaffold configured to be loaded with the tissue under the application of an aspiration force applied through the tissue collection apparatus.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: March 6, 2018
    Assignee: Smith & Nephew, Inc.
    Inventors: Mark Howard, Mark Smith, Stephen Curran, Graham Smith, Elizabeth Finnie
  • Patent number: 9896353
    Abstract: The present invention is directed to methods of treating a hydrocarbon-containing waste stream to form a hydrocarbon-containing retentate and an aqueous permeate which is substantially free of hydrocarbon. The method includes passing the hydrocarbon-containing waste stream through a microporous membrane to yield the hydrocarbon-containing retentate and the aqueous permeate. The membrane comprises a substantially hydrophobic, polymeric matrix and substantially hydrophilic, finely divided, particulate filler distributed throughout the matrix. The polymeric matrix has pores with a volume average diameter less than 1.0 micron, and at least 50 percent of the pores have a mean diameter of less than 0.35 micron.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 20, 2018
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, James C. Peters
  • Patent number: 9882205
    Abstract: The invention relates to a method for preparing a coating material for coating an electrode carrier. For known coating materials, the problem exists that these either cannot be stored without the input of energy or cannot be produced without quality fluctuations. To solve these problems, the method according to the invention comprises the steps of a) providing a dry mixture containing at least i) an active material, ii) a conductivity additive, as well as iii) a fluorine-containing polymer binder, b) bringing the dry mixture into contact with a solvent mixture containing ethylene carbonate and/or propylene carbonate, c) thoroughly mixing the solvent mixture and the dry mixture at a temperature of more than 80° C. until the fluorine-containing polymer binder has dissolved completely in the solvent mixture, wherein d), after the fluorine-containing polymer binder has dissolved completely, the mixture obtained is cooled to a temperature of less than 40° C.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: January 30, 2018
    Assignee: TARANIS GmbH
    Inventor: Stefan Matthias Winfried Theuerkauf
  • Patent number: 9793564
    Abstract: A preparation method of composite materials having ion exchange function is provided. The method comprises the following steps: adding a trace of strong protonic acid and/or Lewis acid as a catalyst into the material during compounding, to allow nitrile groups of at least one nitrile group-containing ion exchange resin and nitrile groups of functional monomers grafted on the porous fluoropolymer membrane to form a triazine ring crosslinked structure.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: October 17, 2017
    Assignee: Shandong Huaxia Shenzhou New Material Co., Ltd.
    Inventors: Yongming Zhang, Junke Tang, Ping Liu, Heng Zhang, Jun Wang
  • Patent number: 9713795
    Abstract: Provided is a porous polytetrafluoroethylene (PTFE) membrane that satisfies the following expressions: 0.2?F?4.0; 0.2?R?1.0; and R??0.1F+0.5, for the Frazier number F [cm3/sec/cm2] and the water entry pressure R [MPa]. This porous PTFE membrane may be a single-layer membrane. This porous PTFE membrane has the properties suitable for use as a waterproof air-permeable membrane, and achieves a good balance between high water resistance and high air permeability.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: July 25, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Kyoko Ishii, Seiji Aizawa
  • Patent number: 9680142
    Abstract: A polyolefin microporous membrane, the membrane having, when measured by DSC, a degree of crystallinity of from 65 to 85%, a lamellar crystal/crystal ratio of from 30 to 85%, a crystal length of from 5 nm to 50 nm and an amorphous length of from 3 nm to 30 nm, and a polyolefin microporous membrane, the membrane having, when measured by X-ray diffractometry, crystal size of from 12.5 nm to 13.5 nm and a degree of crystallinity of from 64 to 68%.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: June 13, 2017
    Assignee: TEIJIN LIMITED
    Inventors: Hiroki Sano, Satoshi Nishikawa, Takashi Yoshitomi
  • Patent number: 9545603
    Abstract: Composite membranes, methods or processes for producing composite membranes, and systems utilizing composite membranes are generally described. In some examples, a composite membrane includes a porous halogenated polymer and a conductive polymer coupled to the porous halogenated polymer. In some examples, a process for producing a composite membrane includes coupling a conductive polymer and a porous halogenated polymer.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: January 17, 2017
    Assignee: NANJING UNIVERSITY
    Inventors: Yun Lu, Zhiquan Shi, Hui Zhou, Tingyang Dai
  • Patent number: 9546326
    Abstract: The present invention is directed to methods of separating a fluid emulsion stream into a hydrocarbon stream and an aqueous stream, by contacting the stream with a microporous membrane to yield a hydrocarbon product stream and an aqueous product stream. The membrane comprises a substantially hydrophobic, polymeric matrix, and substantially hydrophilic, finely divided, particulate, substantially water-insoluble filler distributed throughout the matrix. The polymeric matrix has a mean pore size less than 1.0 micron, and the purities of the product streams are independent of the flux rate of the aqueous product stream and the pore size of the membrane.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: January 17, 2017
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, Carol L. Knox, Truman Wilt, Peter Votruba-Drzal, Charles F. Kahle, Gregory J. McCollum
  • Patent number: 9486748
    Abstract: The problem to be solved by the present invention is to provide a filter medium for a water treatment filter having contradictory characteristics, that is, hydrophilicity and chemical resistance, and a long life, and to provide the production method thereof. A filter medium for a water treatment filter according to the present invention is characterized in comprising a porous base material having a hydrophilic coating layer; wherein the hydrophilic coating layer has a cross-linked hydrophilic polymer and a high electron density part; a hydrophilic polymer in the cross-linked hydrophilic polymer is cross-linked with an aliphatic saturated hydrocarbon group which may contain one or more functional groups selected from a group consisting of an ether group, a hydroxy group and an amino group; the high electron density part has ? electrons; and the high electron density part is covalently bonded to the cross-linked hydrophilic polymer.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: November 8, 2016
    Assignee: W. L. Gore & Associates, Co., Ltd.
    Inventors: Tomoka Ogura, Keiichi Yamakawa
  • Patent number: 9457322
    Abstract: Embodiments of the invention include a liquid filter member that includes a layer of polymeric nano fibers overlying a microporous membrane. A pressure drop of the filter member is substantially the same, or is less than, a pressure drop of the microporous membrane and the filter member has a particle retention in the presence of surfactant that is greater than the particle retention of the microporous membrane alone under the same test conditions.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: October 4, 2016
    Assignee: Entegris, Inc.
    Inventors: Wai-Ming Choi, Kiminori Kataoka
  • Patent number: 9339771
    Abstract: The present invention relates to novel pervaporation membranes comprising a porous support layer upon which a thin coating is applied. More specifically, the present invention provides pervaporation membranes with an improved performance by applying an aggregate filled PTMSP coating with a maximal thickness of 25 ?m onto the porous support. The present invention further relates to methods of the manufacturing of such pervaporation membranes.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: May 17, 2016
    Assignee: VITO N.V.
    Inventors: Pieter Vandezande, Stan Vic Valerie Claes, Steven Hans Rik Wouter Mullens
  • Patent number: 9308501
    Abstract: Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: April 12, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Michael Z. Hu, John T. Simpson, Tolga Aytug, Mariappan Parans Paranthaman, Matthew R. Sturgeon
  • Patent number: 9289728
    Abstract: The invention relates to microporous membranes comprising polymer and having well-balanced permeability, shutdown temperature, and pin puncture strength. The invention also relates to methods for making such membranes, and the use of such membranes as battery separator film in, e.g., lithium ion secondary batteries. The membrane has a shutdown temperature <130.5° C.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: March 22, 2016
    Assignee: Toray Battery Separator Film Co., Ltd.
    Inventors: Takeshi Ishihara, Satoshi Miyaoka, Koichi Kono, Donna J. Crowther, Patrick Brant
  • Patent number: 9211506
    Abstract: Disclosed is a membrane surface modification method. The method is applicable to a variety of hydrophobic membranes by doping selected inorganic particles. One act of the method involves the in-situ embedment of the inorganic particles onto the membrane surface by dispersing the particles in a non-solvent bath for polymer precipitation. Further membrane surface modification can be achieved by hydrothermally growing new inorganic phase on the embedded particles. The embedment of particles is for the subsequent phase growth.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: December 15, 2015
    Assignee: The University of Hong Kong
    Inventors: Kaimin Shih, Xiao-Yan Li, Xiao-Mao Wang, Tong Zhang
  • Patent number: 9150756
    Abstract: A sampling device for a substance detection instrument includes a membrane comprising a porous support having a coating thereon, the coating comprising a carborane polysiloxane or an arylene polysiloxane, the membrane having a front side configured to be placed in contact with a test sample and a back side; a sample line having an inlet proximate to the back side of the membrane and an outlet in fluid communication with a substance detector; and a source of carrier gas in fluid communication with the back side of the membrane and the sample line inlet.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: October 6, 2015
    Assignee: HAMILTON SPACE SYSTEMS INTERNATIONAL, INC.
    Inventor: Kenneth Carney
  • Patent number: 9109846
    Abstract: Sheets that are made up of oriented polymer chains are provided. Chains of polymer may be oriented or substantially aligned in one or more directions exhibiting enhanced thermal conductivity along the direction of orientation. Orientation of polymers within sheets may lead to a wide range of thermally relevant applications.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: August 18, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Erik Skow, Xiaoyuan Chen
  • Publication number: 20150129496
    Abstract: The invention relates to a composite comprising a porous substrate at least partially coated with a coating layer prepared from curing a coating composition (C), the coating composition (C) comprising at least one curable perfluoropolyether (PFPE) polymer. The invention further relates to a process for manufacturing a composite as afore-described, comprising the steps of: (a) providing a coating composition (C) comprising at least one curable perfluoropolyether (PFPE) polymer; (b) depositing said coating composition (C) on a porous substrate; and (c) crosslinking said coating composition (C) to form a porous substrate at least partially coated.
    Type: Application
    Filed: April 29, 2013
    Publication date: May 14, 2015
    Applicant: SOLVAY SPECIALTY POLYMERS ITALY S.p.A. a corporation
    Inventors: Aldo Sanguineti, Emanuele DI Nicolo, Pasquale Campanelli
  • Patent number: 9027764
    Abstract: A moisture-permeable separating membrane material includes a porous fluororesin membrane, a continuous moisture-permeable resin layer formed on the surface of the porous fluororesin membrane, and a textile layer for reinforcing the porous fluororesin membrane and the continuous moisture-permeable resin layer. The textile layer contains a flame retardant in the inside of each fiber and the surface of each fiber has been treated with a flame retardant. The moisture-permeable separating membrane material makes it possible to improve flame retardancy without deteriorating heat exchange characteristics.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: May 12, 2015
    Assignee: W. L. Gore & Associates, Co., Ltd.
    Inventors: Kazuhiro Marutani, Satoshi Yamamoto, Takashi Imai
  • Patent number: 9005496
    Abstract: Asymmetric membranes comprising a first asymmetric porous zone including a first porous asymmetry that increases from the first exterior surface through the first porous zone of the bulk, and a second asymmetric porous zone including a second porous asymmetry that increases from the second exterior surface through the second porous zone of the bulk, wherein the first average pore size is larger than the second average pore size, as well as methods of making and using the membranes, are disclosed.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: April 14, 2015
    Assignee: Pall Corporation
    Inventors: Xuemei Liang, Mark Murla, Binbing Han, Donald Simonton, Richard Morris
  • Publication number: 20150079392
    Abstract: Provided are a fluororesin microporous membrane having a narrow pore-size distribution and a smaller difference between a mean flow pore size and a maximum pore size, a method for producing the fluororesin microporous membrane, and a filter element that uses the fluororesin microporous membrane. The fluororesin microporous membrane is a porous membrane obtained by forming fluororesin particles into a membrane having a particular shape and particular dimensions, baking the fluororesin particles together by heating the membrane to a melting point of the membrane or higher, and then stretching the membrane. The fluororesin particles each have a structure in which a heat of fusion of a fluororesin constituting an outer surface portion of the particle is lower than a heat of fusion of polytetrafluoroethylene constituting an inside portion of the particle.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 19, 2015
    Applicant: SUMITOMO ELECTRIC FINE POLYMER, INC.
    Inventors: Fumihiro Hayashi, Aya Murata, Atsushi Uno