Amide Patents (Class 210/500.38)
  • Patent number: 10814285
    Abstract: The invention relates to a heparin-functionalized semi-permeable membrane comprising at least one layer of porous biocompatible polymer, and one layer of non-woven biocompatible polymer wherein said heparin is covalently bound to a layer on the surface of said porous biocompatible polymer.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: October 27, 2020
    Assignee: Defymed
    Inventors: Richard Bou Aoun, Charles-Thibault Burcez, Jordan Magisson, Séverine Sigrist
  • Patent number: 10818420
    Abstract: Disclosed are anti-fouling and optionally specific binding surfaces, methods for forming anti-fouling and optionally specific binding surfaces, and molecules that may be useful for forming anti-fouling and optionally specific binding surfaces. The surfaces may be formed by employing a molecule comprising a poly(2-oxazoline) having functional groups. In an embodiment, the poly(2-oxazoline) comprises a carboxyl endgroup, an amine endgroup, an N-hydroxysuccinimide endgroup, an oxirane endgroup, an oxetane endgroup, or an isocyanate endgroup, which may enable attachment of a specific binding moiety to the poly(2-oxazoline). In an embodiment, the poly(2-oxazoline) molecule comprises a (meth)acrylate functionality that may allow for attachment to a surface comprising a moiety capable of nucleophilic conjugate addition.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: October 27, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Mengmeng Zong, Aylvin Jorge Angelo Athanasius Dias, Edith Elisabeth M Van Den Bosch, Jun Qiu
  • Patent number: 10737259
    Abstract: Disclosed is an anion exchange porous medium, e.g., a porous membrane, that includes a porous support and a crosslinked cationic polymer coating disposed thereon, wherein the cationic polymer of the crosslinked cationic polymer coating comprises polymerized monomer (A) and polymerized monomer (B) wherein A and B are as defined herein. Also disclosed are methods of preparing the anion exchange porous medium and of treating a fluid containing a biologic.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 11, 2020
    Assignee: Pall Corporation
    Inventors: Frank Onyemauwa, Hassan Ait-Haddou
  • Patent number: 10688444
    Abstract: Embodiments of the present disclosure describe a method of fabricating a thin-film composite membrane comprising immersing a porous support in an aqueous solution containing a diamine; contacting the immersed porous support with an organic solution containing a multifunctional acyl chloride for at least 5 minutes and at a temperature of at least 50° C. to form via interfacial polymerization a polyamide thin film on the porous support; and drying the thin-film composite membrane at about room temperature. Embodiments of the present disclosure further describe a method of separating fluids comprising contacting a defect-free polyamide-thin-film composite membrane with a fluid composition and capturing one or more chemical species from the fluid composition.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 23, 2020
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Zain Ali, Ingo Pinnau
  • Patent number: 10682615
    Abstract: The objective of the present invention is to provide a composite semi-permeable membrane having high processing efficiency even when processing of wastewater having a suspended matter content high enough to tend to result in clogging, said processing efficiency being unlikely to decline even under elevated-pressure operation accompanying continuous use at high pressure. The present invention pertains to a composite semi-permeable membrane having a polymer porous layer on one surface of a nonwoven cloth layer, and a polyamide separation function layer on the polymer porous layer, wherein the ratio of the thickness of the polymer porous layer to the thickness of the nonwoven cloth layer is 0.22 to 0.45.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: June 16, 2020
    Assignee: NITTO DENKO CORPORATION
    Inventors: Masashi Echizen, Atsuhito Komoto, Yasuyuki Sakakibara, Kazusa Matsui, Taisuke Yamaguchi
  • Patent number: 10583404
    Abstract: The present invention offers a forward osmosis composite hollow fiber membrane module having hollow fiber bundles comprising a plurality of hollow fibers, the hollow fibers having a separation layer composed of a macromolecular polymer thin film provided on the inner surface of a microporous hollow fiber supporting membrane, wherein the membrane area of the hollow fiber bundle is at least 1 m2, and a variation coefficient for the average thickness of the separation layer in the radial direction and the lengthwise direction of the hollow fiber bundles, as calculated by a method of measuring the mass of the separation layer portion in a scanning electron microscope image of a cross section of the separation layer in the thickness direction, is 0% to 60%.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: March 10, 2020
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Akira Kiguchi, Tomoya Anan, Mikihiko Nakamura, Toshihiko Ohashi
  • Patent number: 10583406
    Abstract: The invention relates to obtaining a nanofiber membrane by coating a hollow braided rope (3) with a nanofiber layer (2), to the usage of said tubular nanofiber membrane as a support layer membrane, and to the fabrication of forward osmosis membrane by coating the surface thereof with thin composite film (1). Particularly, a tubular nanofiber forward osmosis membrane used in water & waste water treatment and desalination processes with high water flux, low reverse salt flux, as well as a low tendency of fouling, and the manufacturing method thereof are disclosed herein.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: March 10, 2020
    Assignee: ISTANBUL TEKNIK UNIVERSITESI REKTORLUGU
    Inventors: Ismail Koyuncu, Serkan Guclu, Murat Eyvaz, Taha Aslan, Serkan Arslan, Ayse Yuksekdag, Ebubekir Yuksel
  • Patent number: 10538839
    Abstract: A method for manufacturing a metal or metal oxide porous thin film having a three-dimensional open-network structure by controlling its pore size through a dry process is provided. The film can be used in a gas sensor, a biosensor, a battery capacitor, a fuel cell, a solar cell, a chemical catalyst, or an antibacterial filter.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: January 21, 2020
    Assignee: Korea Institute of Industrial Technology
    Inventors: Ho Nyun Lee, Hyun Jong Kim
  • Patent number: 10525421
    Abstract: An article having a nanoporous membrane and a nanoporous graphene sheet layered on the nanoporous membrane. A method of: depositing a layer of a diblock copolymer onto a graphene sheet, and etching a minor phase of the diblock copolymer and a portion of the graphene in contact with the minor phase to form a nanoporous article having a nanoporous graphene sheet and a nanoporous layer of a polymer. A method of: depositing a hexaiodo-substituted macrocycle onto a substrate having a Ag(111) surface; coupling the macrocycle to form a nanoporous graphene sheet; layering the graphene sheet and substrate onto a nanoporous membrane with the graphene sheet in contact with the nanoporous membrane; and etching away the substrate.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 7, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Manoj K. Kolel-Veetil, Paul E. Sheehan
  • Patent number: 10155204
    Abstract: The present invention relates to a dry water treatment membrane having moisture content of 1% to 10%, and a method for manufacturing the same.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 18, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Youngju Lee, Byungho Jeon, Chong Kyu Shin
  • Patent number: 10137418
    Abstract: A method for making a composite polyamide membrane comprising a porous support and a thin film polyamide layer, wherein the method includes: i) applying a polar solution comprising a polyfunctional amine monomer, and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the non-polar solution further comprises at least 50 vol % of a C5 to C20 aliphatic hydrocarbon and from 2 to 25 vol % of benzene or benzene substituted with one or more C1 to C6 alkyl groups; and ii) applying an aqueous solution of nitrous acid to the thin film polyamide layer.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: November 27, 2018
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Abhishek Roy, Yasushi Maeda, Mou Paul, Steven Rosenberg, Ian A. Tomlinson
  • Patent number: 10052592
    Abstract: Gaseous molecules, such as H2, CO2 and CH4, can be separated using a hybrid organic-inorganic polyimide network membrane, wherein the polyimide contains bis-imide units of formula 1 (formula 1), wherein A represents an organic moiety having 2-22 carbon atoms; or corresponding tris-imide groups, wherein a nitrogen atom of two or more of said bis-imide units is linked to a group Q of a polyhedral oligomeric silsesquioxane (POSS) group of formula 3 QmR(2n-m)Si2nO3n.xH2O 3 wherein Q is CpHq bound to a silicon atom, R is hydrogen, hydroxy or C1-C4 alkyl, alkoxy, hydroxyalkyl, aminoalkyl or ammonioalkyl, bound to a silicon atom, m is from 2 up to 2n, n is from 2 up to 6, p=1 to 6; q=2(p?r) with r=0, 1, 2<p; and x is from 0 to 2n?1.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: August 21, 2018
    Assignee: UNIVERSITEIT TWENTE
    Inventors: Nieck Edwin Benes, Michiel Jozef Thomas Raaijmakers
  • Patent number: 10040035
    Abstract: Provided are a gas separation membrane which includes a gas separation layer formed to include a polyimide compound and in which the polyimide compound includes a repeating unit represented by the following Formula (I), a gas separation module, a gas separation device, and a gas separation method using the same. In Formula (I), R represents a group having a specific structure. R3 represents a specific substituent group. A1 to A3 represent a hydrogen atom or a specific substituent group, but all of A1 to A3 do not represent a hydrogen atom at the same time. In this case, at least one of R3, A1, A2, and A3 represents a specific polar group.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: August 7, 2018
    Assignee: FUJIFILM Corporation
    Inventors: Ryota Usami, Koji Hironaka, Satoshi Sano, Takeshi Narita
  • Patent number: 9981227
    Abstract: A thin film composite polyamide membrane comprising a porous support and a thin film polyamide layer characterized by possessing: i) an azo (—N?N—) content of from 0.40% to 1.00%, as measured by pyrolysis gas chromatography; and ii) a dissociated carboxylate content of at least 0.40 mol/kg as measured by RBS at pH 9.5.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: May 29, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Mou Paul, Robert C. Cieslinski, Bruce B. Gerhart, David D. Hawn, XiaoHua Qiu, Mark A. Rickard, Steven Rosenberg, Abhishek Roy, Ian A. Tomlinson, Chengli Zu
  • Patent number: 9919272
    Abstract: The present invention relates to a separation membrane having both antibiotic and hydrophilic properties for water treatment and a preparation method thereof. In the separation membrane of the present invention, since an organic compound (antimicrobial and/or hydrophilic compound) is chemically conjugated to non-metal inorganic nanoparticles or metal nanoparticles, the nanoparticles are not eluted from the separation membrane even when the separation membrane is used for water treatment for a long period of time, so that the separation membrane may continuously maintain antimicrobial properties and high water permeability, is safe to the human body even when used for the treatment of drinking water, such as water purification, and exhibits characteristics in which stain resistance is also significantly enhanced due to antimicrobial and hydrophilic properties, which have been continuously imparted. Furthermore, high mechanical strength is exhibited by a metal or inorganic nanofiller introduced.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: March 20, 2018
    Assignee: LG Electronics Inc.
    Inventors: Sangyoon Kim, Junseok Lee, Taeyoung Kim, Changkeun Kim
  • Patent number: 9776141
    Abstract: A method for making a composite polyamide membrane comprising a porous support and a polyamide layer, including the steps of: i) applying a polar solution comprising of polyfunctional amine monomer and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a polyamide layer; and ii) exposing the thin film polyamide layer to nitrous acid; wherein the method is characterized by at least one of: conducting the interfacial polymerization of step i) in the presence of a subject amine-reactive compound, or applying a subject amine-reactive compound to the interfacially polymerized polyamide layer prior to step ii), wherein the subject amine-reactive compound is different from the polyfunctional acyl halide and polyfunctional amine monomers and is represented by the following formula:
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: October 3, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Mou Paul, Abhishek Roy, Ian A. Tomlinson, Matthew J. Jansma
  • Patent number: 9662615
    Abstract: A method for making a composite polyamide membrane comprising a porous support and a thin film polyamide layer, wherein the method includes the step of applying a polyfunctional amine monomer and polyfunctional acyl halide monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the step of applying the polyfunctional acyl halide monomer to the porous support includes the step of combining the polyfunctional acyl halide monomer with a non-polar solvent at a concentration of at least 0.18 weight percent to form a coating solution which is applied to the surface of the porous support, and wherein the interfacial polymerization is conducted in the presence of a tri-hydrocarbyl phosphate compound which is provided in a molar ratio of at least 0.5:1 with the polyfunctional acyl halide monomer. Many additional embodiments are described including membranes made from the subject method and applications for such membranes.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: May 30, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Abhishek Roy, Tina L. Arrowood, Robert C. Cieslinski, Derek M. Stevens, David D. Hawn, Steven D. Jons, Mou Paul, Martin H. Peery, Steven Rosenberg, Ian A. Tomlinson
  • Patent number: 9469859
    Abstract: The subject disclosure relates to a method for producing a fermentation product from biomass that has been pre-treated in a pre-treatment system and separated into a liquid component and a first solids component. The method comprises: (a) treating the liquid component in a filtration system comprising at least one nano-filter to produce a treated liquid component, and to remove an acid from the liquid component; (b) supplying the treated liquid component, a fermenting organism, and agents to a fermentation system; (c) recovering the fermentation product from the fermentation system; and (d) supplying the acid for re-use in the pre-treatment system. In many embodiments, the biomass comprises lignocellulosic material and the liquid component comprises pentose (e.g., xylose).
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: October 18, 2016
    Assignee: POET RESEARCH, INC.
    Inventors: Steven T. Bly, David Charles Carlson, Jason Richard Kwiatkowski
  • Patent number: 9382381
    Abstract: An aromatic polyamide, which is obtained by reacting a benzene tricarboxylic acid or a derivative thereof with a diamine compound in the presence of a terminally blocked compound having a crosslinkable group and a functional group that is reactive with a benzene tricarboxylic acid such as 1-amino-2-propanol or a derivative thereof as expressed by scheme (1), and which has a weight average molecular weight of 1,000-100,000 in terms of polystyrene as determined by gel permeation chromatography, has good solubility in organic solvents, while maintaining heat resistance and transparency. A thick film can be formed using a film-forming composition that contains this aromatic polyamide.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 5, 2016
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Daisuke Maeda, Kei Yasui, Masaaki Ozawa
  • Patent number: 9296628
    Abstract: Process for the purification of an aqueous stream coming from the Fischer-Tropsch reaction which comprises feeding said aqueous stream to one or more pervaporation units obtaining an aqueous stream enriched in oxygenated organic compounds (retentate side) and an aqueous stream enriched in water (permeate side), feeding said aqueous stream enriched in oxygenated organic compounds to a saturator obtaining a gaseous stream leaving the saturator, feeding said gaseous stream to a synthesis gas production plant. Said process allows at least a part of the aqueous stream coming from the Fischer-Tropsch reaction to be used as process water in a synthesis gas production plant, subsequently sent to a Fischer-Tropsch plant for the production of hydrocarbons.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: March 29, 2016
    Assignee: ENI S.p.A.
    Inventors: Roberta Miglio, Palma Pizzocchi, Oliviero Perotti, Ines Perotti, Serafino Tonani
  • Patent number: 9254465
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: February 9, 2016
    Assignee: LG NANOH2O, INC.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 9248410
    Abstract: A forward osmosis membrane for seawater desalination and a method for preparing the same. The forward osmosis membrane has a composite membrane structure including a nonwoven fabric layer, a hydrophilic polymer layer, and a polyamide layer. The hydrophilic polymer layer formed on the nonwoven fabric layer facilitates an inflow of water from the feed water to the draw solution to enhance flux and realize high water permeability in the direction of osmosis. The polyamide layer not only secures contamination resistance and chemical resistance but also minimizes the back diffusion of salts of the draw solution in the direction of reverse osmosis. Hence, the forward osmosis membrane of the present invention is greatly useful for desalination of high-concentration seawater.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 2, 2016
    Assignee: Woongjin Chemical Co., Ltd.
    Inventors: Sung Dae Chi, Bong Jun Cha, Jong Hwa Lee, Doo Ri Kim, Su Jeong Lim
  • Patent number: 9089820
    Abstract: A selective membrane having a high fouling resistance. In one embodiment, the selective membrane is a composite polyamide reverse osmosis membrane having a hydrophilic coating made by covalently bonding a hydrophilic compound to the polyamide membrane, the hydrophilic compound including (i) a reactive group that is adapted to covalently bond directly to the polyamide membrane, the reactive group being at least one of a primary amine and a secondary amine; (ii) a non-terminal hydroxyl group; and (iii) an amide group. In another embodiment, the hydrophilic compound includes (i) a reactive group adapted to covalently bond directly to the polyamide membrane, the reactive group being at least one of a primary amine and a secondary amine; (ii) a hydroxyl group; and (iii) an amide group, the amide group being linked directly to the hydroxyl group by one of an alkyl group and an alkenyl group.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: July 28, 2015
    Assignee: WOONGJIN CHEMICAL CO., LTD.
    Inventors: Ja-Young Koo, Yong-Doo Jung, Sung-Pyo Hong, Yeo-Jin Kim
  • Patent number: 9022227
    Abstract: A polymeric membrane includes an active layer over a support, wherein the active layer includes at least two chemically distinct polyamide films. A first one of the films is in contact with the support, and a second one of the films is not in contact with the support. The second polyamide film is crosslinked with the first polyamide film at an interface therewith, and the second polyamide film includes a structure having a side chain group including an ammonium salt.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Young-Hye Na, Ratnam Sooriyakumaran, Ankit Vora
  • Patent number: 9004293
    Abstract: A semi-permeable film includes a nanoporous material and a polymer matrix. The nanoporous material includes a nanoporous core and a coating layer that is disposed on a surface of the nanoporous core. The coating layer may include a particle selected from a metal hydroxide particle, a metal oxide particle, and a combination thereof. A separation membrane may include the semi-permeable film. Example embodiments also relate to a method of manufacturing the semi-permeable film and the separation membrane.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 14, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: You Hwan Son, Hye Young Kong, Sung Soo Han
  • Publication number: 20150096935
    Abstract: Membranes including functionalized carbon nanotubes, nanodiamonds and/or graphene oxide immobilized in or on the membranes are disclosed. The membranes including the immobilized nanocarbons increase interactions with water vapor to improve desalination efficiency in membrane distillation. The membranes may be deployed in all modes of membrane distillation such as air gap membrane distillation, direct contact membrane distillation, vacuum membrane distillation and other separations.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Inventors: Somenath Mitra, Sagar Roy, Madhulina Bhadra
  • Patent number: 8993053
    Abstract: There are provided a method of manufacturing a reverse osmosis membrane and a reverse osmosis membrane manufactured thereby. The method includes forming a polysulfone layer by applying a solution including a mixed solvent containing two or more solvents having different solubility parameter values to a surface of a porous support; and forming an active layer on the polysulfone layer.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: March 31, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Seung-Pyo Jeong, Seung-Yup Lee, Phill Lee, Hye-Jin Kwon, Chong-Kyu Shin
  • Publication number: 20150068978
    Abstract: The disclosure is directed to an intermediate filtering membrane comprising: a filtering membrane having a charged or polar surface; and a transiently coupled charged compound, wherein the charged compound has an opposite charge to the membrane charge. Likewise, provided herein are methods and kits utilizing the intermediate membrane for various filtering membranes operations.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 12, 2015
    Inventors: Gilad Lando, Dikla Zadaka-Amir, Andrew Norman Shipway, Steve Daren
  • Publication number: 20150060364
    Abstract: Provided are thin film composite membrane structures comprising: a selective membrane layer for ion rejection attached to a support layer, the support layer comprising a multi-zone microfiltration membrane comprising: a porous support material; and at least two microfiltration zones, where a first zone comprises a first membrane and a second zone that is attached to the first zone and that coats at least a portion of the porous support material. Thin film composite membrane structures may be provided in reverse osmosis systems or nanofiltration systems. Also, thin film composite membrane structures may be provided in direct osmotic concentration systems, forward osmosis systems, or pressure retarded osmosis systems.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Inventors: Jeffrey R. McCutcheon, Thomas J. Hamlin, Mark T. Meyering, Liwei Huang
  • Patent number: 8968963
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 20 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and an anionic group; (iii) 15 to 45 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; wherein the molar ratio of (i):(ii) is 0.1 to 1.5. The compositions are useful for preparing ion exchange membranes.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 3, 2015
    Assignee: Fujifilm Manufacturing Europe BV
    Inventors: Bastiaan Van Berchum, Jacko Hessing, Harro Antheunis
  • Patent number: 8968828
    Abstract: A method for making a composite polyamide membrane comprising the steps of applying a polyfunctional amine monomer and polyfunctional acyl halide monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the method is includes at least one of the following steps: i) conducting the interfacial polymerization in the presence of a C2-C20 aliphatic monomer comprising at least one carboxylic acid functional group or salt thereof, and a single amine-reactive functional group; and ii) applying a C2-C20 aliphatic monomer comprising at least one carboxylic acid functional group or salt thereof, and a single amine-reactive functional group to the thin film polyamide layer. Many additional embodiments are described including applications for such membranes.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: March 3, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Abhishek Roy, Steven D. Jons, Joseph D. Koob, Mou Paul, XiaoHua Sam Qiu, Steven Rosenberg
  • Patent number: 8960449
    Abstract: In manufacturing a composite semipermeable membrane useful for separating a liquid mixture selectively, it is rendered possible to provide a composite semipermeable membrane that exhibits reduced deterioration of water permeability and solute removing property as a result of drying and that demonstrates reduced economic burden and load for waste liquid treatment without impairing the water permeability or solute removal ratio of the composite semipermeable membrane through change of the membrane manufacturing method, by making a saccharide exist in an aqueous polyfunctional amine solution in performing interfacial polycondensation by bringing the aqueous solution of the polyfunctional amine into contact with an organic solvent solution containing a polyfunctional acid halide on a microporous support membrane.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: February 24, 2015
    Assignee: Toray Industries, Inc.
    Inventors: Hiroki Tomioka, Aki Katsuno, Masahiro Henmi
  • Patent number: 8956782
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 20 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and an anionic group; (iii) 15 to 45 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; wherein the composition has a pH of 0.8 to 12. The compositions are useful for preparing ion exchange membranes.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: February 17, 2015
    Assignee: Fujifilm Manufacturing Europe BV
    Inventors: Bastiaan Van Berchum, Jacko Hessing, Harro Antheunis
  • Patent number: 8956783
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 15 to 70 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; and (v) 2 to 50 wt % of non-curable salt; wherein the composition has a pH of 1 to 12. The compositions are useful for preparing ion exchange membranes.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: February 17, 2015
    Assignee: Fujifilm Manufacturing Europe BV
    Inventors: Harro Antheunis, Jacko Hessing, Bastiaan Van Berchum
  • Patent number: 8925738
    Abstract: The present disclosure relates to a method of manufacturing a water treatment membrane having high chlorine resistance and high permeability, the method including: forming an aqueous amine solution layer on a porous support, using an aqueous amine solution including a fluorine compound having an epoxy group in a terminal thereof and an amine compound; and forming a polyamide layer containing the fluorine compound by bringing an organic solution containing acyl halide into contact with the aqueous amine solution layer, and a water treatment membrane manufactured using the same.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: January 6, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Jae-Hong Kim, Young-Hoon Ko, Chong-Kyu Shin
  • Publication number: 20150005530
    Abstract: The present invention provides a L-enantiomers selective composite membrane useful for separation of optical isomers and the process for the preparation thereof. The invention further provides a membrane based pressure driven separation process for separation of enantiomers from their mixture to obtain optical pure isomers. The present invention also provides a membrane based method for optical resolution of racemic mixtures of amino acids to obtain optically pure amino acids.
    Type: Application
    Filed: February 6, 2013
    Publication date: January 1, 2015
    Inventors: Kripal Singh, Hari Chand Bajaj, Pravin Ganeshrao Ingole
  • Patent number: 8920654
    Abstract: Forward osmosis membranes having a hydrophilic support layer and a polyamide rejection layer in a thin film composite membrane are considered. Preferred support layer materials include aramid polymers and PVDF. A woven or non-woven mesh can be incorporated into the support layer to improve handling properties of the membrane. Flat sheet and hollow fiber configurations are possible. Antifouling techniques are provided. The polyamide layer can be formed on the hydrophilic support layer by interfacial polymerization. Applications include forward osmosis and pressure retarded osmosis applications, such as industrial product and/or waste concentration, hydration bags, energy/pressure generation, and controlled delivery of chemicals (e.g., for pharmaceutical applications).
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 30, 2014
    Assignee: Porifera, Inc.
    Inventors: Ravindra Revanur, Iljuhn Roh, Jennifer E. Klare, Aleksandr Noy, Olgica Bakajin
  • Publication number: 20140353242
    Abstract: A method of manufacturing a water-treatment separating membrane includes forming an aqueous amine solution layer on a porous support, and forming a polyamide active layer by dropping droplets of an organic solution including an acyl halide compound on the aqueous amine solution layer. A water-treatment separating membrane manufactured by the same also is provided.
    Type: Application
    Filed: April 24, 2014
    Publication date: December 4, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Jae-Hong KIM, Young-Hoon KO, Chong-Kyu SHIN, Phill LEE
  • Publication number: 20140332459
    Abstract: The invention provides a novel type of filter media that offers efficient disinfection effects, while achieving a low water pressure drop and a high water flow rate when in use. Specifically, the filter media of the invention comprises a microorganism-killing membrane containing electro spun nanofiber fabrics loaded with biocidal nano-particles. The filter media of the invention is adhesive-layer free and contains at least one thermal binding layer that are made of spunbonded nonwoven polymeric fabrics. The invention also provides a water-purification cartridge and a portable water system thereof.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Applicant: Goodrich Corporation
    Inventor: Jin Hu
  • Patent number: 8883010
    Abstract: A biocompatible polymer composition which includes a matrix material and at least one of an isoflavone and a flavone at least partially dispersed in the matrix material is suited to use in a membrane for hemodialysis and other in vivo and in vitro applications.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 11, 2014
    Assignee: The University of Akron
    Inventors: Neelakandan Chandrasekaran, Thein Kyu
  • Publication number: 20140326669
    Abstract: Synthetic membranes for the removal, isolation or purification of substances from a liquid. The membranes include at least one hydrophobic polymer and at least one hydrophilic polymer. 5-40 wt.-% of particles having an average particles size of between 0.1 and 15 ?m are entrapped. The membrane has a wall thickness of below 150 ?m. Methods for preparing the membranes in various geometries, and use of the membranes for the adsorption, isolation and/or purification of substances from a liquid are explored.
    Type: Application
    Filed: December 10, 2012
    Publication date: November 6, 2014
    Inventors: Ralf Flieg, Markus Storr, Bernd Krause, Markus Hornung, Karl Heinz Klotz
  • Patent number: 8875906
    Abstract: There are provided a reverse osmosis membrane comprising a porous support; a silver nanowire layer formed on the porous support; and a polyamide film formed on the silver nanowire layer, and a fabrication method of a reverse osmosis membrane, the method comprising coating a porous support with an aqueous amine solution including silver nanowires to form a silver nanowire layer; and bringing the silver nanowire layer into contact with an aliphatic hydrocarbide-based organic solution including acyl halide to form a polyamide film.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: November 4, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jae-Hong Kim, Phill Lee, Young-Ju Lee, Chong-Kyu Shin
  • Publication number: 20140319051
    Abstract: A water-treatment separating membrane includes a polyamide active layer formed on a porous support. When the polyamide active layer is dyed using a 5% aqueous solution of Rhodamine B, at least a curve pattern formed by connecting two or more arcs is formed in at least a partial area of the polyamide active layer.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Young-Hoon KO, Jae-Hong KIM, Chong-Kyu SHIN, Phill LEE
  • Publication number: 20140311969
    Abstract: A water-treatment separating membrane includes a polyamide active layer formed on999 a porous support. The ratio of a maximum value with respect to a minimum value of a ratio of a peak height of a C=O double bond of a carboxyl group (—COOH) with respect to a peak height of a C=O double bond combined with an amide group (—CONH—) is from 1.2 to 4, when measured after acid treating the polyamide active layer and by using a Fourier transform infrared spectrometer (FTIR).
    Type: Application
    Filed: April 24, 2014
    Publication date: October 23, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Young-Hoon KO, Jae-Hong KIM, Chong-Kyu SHIN, Phill LEE
  • Patent number: 8857629
    Abstract: A polymeric membrane includes an active layer on a support. The active layer includes at least two chemically distinct crosslinked, polyamide films, and the films are crosslinked with each other at an interface.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert David Allen, Young-Hye Na, Ratnam Sooriyakumaran
  • Patent number: 8851297
    Abstract: The present invention aims at providing a composite semipermeable membrane in which water permeability and salt-blocking rate cannot deteriorate by long-term storage, and at providing a process for producing the same. The present invention relates to a composite semipermeable membrane having a skin layer formed on the surface of a porous support, the skin layer including a polyamide resin obtained by interfacial polymerization of a polyfunctional amine component and a polyfunctional acid halide component, wherein the porous support contains at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers, in an amount of 95% by weight or more with respect to the whole composite semipermeable membrane.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: October 7, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Tomomi Ohara, Atsuhito Koumoto
  • Publication number: 20140263036
    Abstract: A flexible porous free-standing protein membrane includes cross-linked protein. At least part of pores of the porous membrane is formed by removing nanostrands whose diameters are 2-3 nm, the cross-linked protein is cross-linked by a bifunctional cross-linker, and a thickness of the protein membrane is 10 ?m or less.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: XinShen PENG, Izumi ICHINOSE
  • Patent number: 8820540
    Abstract: Method for preparing a filtration membrane and a filtration membrane prepared by the method. According to one embodiment, the method involves casting a polymer solution onto a porous support to form a coated support. The coated support is then quenched to form a membrane/support composite, and the membrane/support composite is then dried. Next, a first end of a first piece of adhesive tape is applied to the membrane side of the composite, and the second end of the first piece of adhesive tape is applied to a first rotatable winder. In addition, a first end of a second piece of adhesive tape is applied to the support side of the composite, and the second end of the second piece of adhesive tape is applied to a second rotatable winder. The two winders are then rotated so as to pull apart the membrane from the support.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 2, 2014
    Assignee: Woongjin Chemical Co., Ltd.
    Inventors: Ja-Young Koo, Doowon Lee, Sungpyo Hong
  • Patent number: 8800783
    Abstract: A hollow fiber membrane is produced through a thermally induced phase separation process by dissolving a highly hydrophilic polyamide resin in a high-boiling-point solvent such as an aprotic polar solvent at a temperature of not lower than 100° C. The hollow fiber membrane has a membrane surface having a water contact angle of not greater than 80 degrees, and has a water permeability of not less than 100 L/m2·atm·h and a 0.1-?m particle rejection percentage of not less than 90%.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 12, 2014
    Assignee: Unitika Ltd.
    Inventors: Hideto Matsuyama, Takahiro Ono, Satoshi Kawanaka, Kazuo Hirota
  • Patent number: 8801935
    Abstract: A process for preparing a reverse osmosis membrane that includes: (A) providing a polyamine, a polyfunctional acid halide, and a flux increasing additive having the formula Z+B? where Z+ is an easily dissociable cation and B? is a beta-diketonate; (B) combining the polyamine, polyfunctional acid halide, and flux increasing additive on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acid halide, and flux increasing additive on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the flux increasing additive.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: August 12, 2014
    Assignee: NanoH2O, Inc.
    Inventors: Jeffrey Alan Koehler, Christopher James Kurth