Liquid/liquid Solvent Or Colloidal Extraction Or Diffusing Or Passing Through Septum Selective As To Material Of A Component Of Liquid; Such Diffusing Or Passing Being Effected By Other Than Only An Ion Exchange Or Sorption Process Patents (Class 210/634)
  • Patent number: 8568587
    Abstract: A supported nanofiber medium useful for segregating chemical species is provided by selecting a polymer, selecting a substrate; and electrospinning the polymer to form a nanofiber medium on the supporting substrate. When the substrate is a planar surface, the nanofiber medium will be a mat suitable for conducting chromatographic separation. When the substrate is a filament, the nanofiber medium is an annular mat suitable for solid phase microextraction. The nanofiber media formed may be selectively cross-linked and at least partially carbonized to carbon nanofibers. The nanofiber medium is supported on the substrate without the use of binder material.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: October 29, 2013
    Assignee: The Ohio State University Research Foundation
    Inventors: Susan V. Olesik, Jonathan E. Clark, Jeremy K. Steach, Joseph W. Zewe
  • Patent number: 8562910
    Abstract: An object of the present invention is to provide a method and an apparatus by which PCBs in insulating oil can be analyzed with high accuracy in a convenient, inexpensive, and rapid manner. The method for analyzing polychlorobiphenyls by measuring the concentration of polychlorobiphenyls in insulating oil comprises a step of, as pretreatment, bringing particles of a copolymer that contains divinylbenzene and a methacrylate organic monomer as monomer components into contact with insulating oil containing polychlorobiphenyls, so as to separate polychlorobiphenyls in insulating oil from oil content that is an impurity. The methacrylate organic monomer preferably has a diol type hydroxyl group.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: October 22, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masako Kawarai, Junkichi Miura, Tami Hiruta, Yoshinori Inoue
  • Patent number: 8563759
    Abstract: A process for extracting lipids from microalgae; the process involves pretreating a quantity of non-homogenized microalgae with an aliphatic alcohol for a predetermined period of time. The pretreatment liberates a substantial portion of lipids from the microalgae without requiring energy intensive cell membrane disruptive technologies. The liberated lipids are then treated with a transesterification reagent to form fatty acid methyl esters. The fatty acid methyl esters are separated from the resulting mixture and may be further purified to remove remaining solvents or other impurities. The fatty acid methyl esters produced by the process are suitable as a green energy biodiesel product.
    Type: Grant
    Filed: October 2, 2010
    Date of Patent: October 22, 2013
    Assignee: Cal Poly Corporation
    Inventors: Matthew W Hutton, Corinne R Lehr
  • Publication number: 20130270183
    Abstract: A system, components of the system and methods for processing, combinations of hydrocarbons, water, solids and contaminants, to separate extract, recover, filter and treat the constituent elements to enable the recovery of valuable hydrocarbons, the treatment of solids for environmentally sustainable discharge, the filtration and treatment of water for reuse, or environmentally sustainable discharge, and the extraction of contaminants. The integrated method and system incorporates alternative processing modes, each of which is optimized for the intake and processing of a materials stream which is predominately solids, or predominately water or predominately hydrocarbons, respectively. The system can dynamically adjust to accommodate variations in the composition of the intake materials stream in any particular mode. The system can be implemented in a portable, modular configuration which is cost effective, energy efficient and scalable to enable processing of any volume of materials.
    Type: Application
    Filed: July 20, 2011
    Publication date: October 17, 2013
    Inventors: Jason Craig Snydmiller, Stuart Allan Snydmiller
  • Patent number: 8557120
    Abstract: The invention relates to a process for collectively separating all the actinides (III), (IV), (V) and (VI) present in a strongly acidic aqueous phase, from the fission products, and in particular from the lanthanides, which are also present in this phase, using two extractants that operate in unconnected chemical fields. Applications: reprocessing of irradiated nuclear fuels, especially to recover plutonium, neptunium, americium, curium and, possibly, uranium present in trace amounts, in a grouped manner but selectively with respect to the lanthanides, from a solution for dissolution of an irradiated nuclear fuel, downstream of a uranium extraction cycle.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: October 15, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Xavier Heres, Manuel Miguirditchian, Pascal Baron, Laurence Chareyre
  • Patent number: 8557119
    Abstract: A novel method for improving water recovery from desalination systems by the removal of cations and/or anions using ion exchange (IX) technology. The system described herein is particularly useful for water recovery in brackish ecosystems and is unique in that important features include recycling, regeneration, and recovery of key components, thereby reducing costs and waste products.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: October 15, 2013
    Assignee: STC.UNM
    Inventors: Kerry Howe, Joshua Goldman, Bruce Thomson
  • Patent number: 8551336
    Abstract: A method for separating proteins from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting proteins from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal proteins from a wet algal biomass. These proteins are high value products which can be used as renewable sources of food and food additives. Neutral lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 8, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8545707
    Abstract: A coalescer includes fibrous media capturing droplets of the dispersed phase, coalescingly growing the droplets into larger drops which further coalesce and grow to form pools that drain, and adapted to reduce pressure drop thereacross by increasing dispersed phase drainage therefrom.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 1, 2013
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Eric J. Rego, Brian W. Schwandt, Eric A. Janikowski, Barry M. Verdegan, Kwok-Lam Ng
  • Patent number: 8540878
    Abstract: A cross-corrugated structure packing module is provided for use in mass transfer or heat exchange columns and has particular applicability in severe service applications in which fouling, coking, and erosion are of concern. The structured packing module has a plurality of upright, parallel-extending, corrugated plates. Spacer elements are used to maintain the corrugations of adjacent plates in spaced apart relationship to reduce the opportunity for solids to accumulate on the surfaces of the plates. The plates are also free of apertures or surface treatments that would increase the opportunity for solids to accumulate on the plates.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: September 24, 2013
    Assignee: Koch-Glitsch, LP
    Inventors: Izak Nieuwoudt, Michael James Lockett
  • Patent number: 8535535
    Abstract: Hydrophobins for stabilizing phases in biphasic liquid systems.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: September 17, 2013
    Assignee: BASF SE
    Inventors: Marcus Guzmann, Peter Eck, Ulf Baus
  • Patent number: 8535536
    Abstract: A split thin-flow separations device can include a fluid channel having an inlet zone, an outlet zone, and a transport region between the inlet zone and outlet zone. The inlet zone includes a sample inlet and a carrier fluid inlet which are fluidly separated by an inlet splitter to minimize mixing of fluids from respective inlets in the inlet zone. The transport region can be a substantially open channel. Similar to the inlet zone, the outlet zone can include a sample outlet and a carrier outlet which are fluidly separated by an outlet splitter to segregate portions of a fluid into each of the two outlets as the fluid enters the outlet zone. A plurality of cross-flow inducers can also be oriented along a wall of the fluid channel in the transport region. The cross-flow inducers are oriented to form a cross-flow field across the transport region.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: September 17, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Bruce K. Gale, Himanshu Sant, Venu Madhav, Srinivas Merugu
  • Patent number: 8530679
    Abstract: The present invention provides a process for handling ?9-THC, which comprises preparing a solution of ?9-THC in a solvent which exists as a gas at room temperature and atmospheric pressure. The invention also provides solutions of ?9-THC in the solvent and solid preparations of ?9-THC.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: September 10, 2013
    Assignee: Resolution Chemicals Limited
    Inventors: Parveen Bhatarah, Alan Kenneth Greenwood, Derek McHattie, Jerome Thomas Garfield Carr-Brion
  • Patent number: 8524929
    Abstract: Systems and methods for extracting lipids of varying polarities from oleaginous material.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: September 3, 2013
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Aniket Kale, Qiang Hu, Milton Sommerfeld
  • Patent number: 8518636
    Abstract: The present invention provides tangential flow filtration devices and methods for enriching a heterogenous mixture of blood constituents for leukocytes by removal of non-leukocyte blood constituents. In one particular embodiment the device can provide a composition enriched in monocytes.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: August 27, 2013
    Assignee: Northwest Biotherapeutics, Inc.
    Inventors: Marnix L. Bosch, Paul C. Harris, Steven J. Monahan, Allen Turner, Alton L. Boynton, Patricia A. Lodge
  • Patent number: 8518310
    Abstract: The present invention aims at providing a process for producing a dried composite semipermeable membrane having extremely small content of unreacted components, outstanding water permeability and salt-blocking rate even after drying treatment, and outstanding contamination resistance and durability.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: August 27, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Atsuhito Koumoto, Takashi Kamada, Tomomi Ohara
  • Patent number: 8518219
    Abstract: Organic waste disposal technologies are disclosed herein. A multistage processing of sewage sludge into synthetic fuel and chemical products is carried out by means of a direct thermo-chemical liquefaction process. The process enables the minimization of coke formation by utilizing steam stripping in the processing of sewage sludge.
    Type: Grant
    Filed: January 1, 2009
    Date of Patent: August 27, 2013
    Assignee: Metal Tech Ltd.
    Inventors: Yefim Plopski, Alexander Rogov
  • Patent number: 8513383
    Abstract: Methods for selective extraction and fractionation of algal proteins from an algal biomass or algal culture are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which allow for efficient separation of algal proteins. These proteins can be used as renewable sources of proteins for animal feedstocks and human food. Further, lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: August 20, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8513384
    Abstract: Methods for selective extraction and fractionation of algal proteins from an algal biomass or algal culture are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which allow for efficient separation of algal proteins. These proteins can be used as renewable sources of proteins for animal feedstocks and human food. Further, lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: August 20, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8506820
    Abstract: A continuous online process for rejuvenating whole stream of contaminated lean sulfolane in an extraction system is provided. A rejuvenator is installed in the solvent circulation loop to remove the contaminants continuously to keep the solvent clean, effective and less corrosive. The rejuvenator includes a high pressure vessel with a removable cover and a round rack with vertical stainless steel tubes fitted in the high pressure vessel. A magnetic bar is placed in each stainless steel tube. A screen cylinder is installed outside the ring of stainless steel tubes. As the contaminated sulfolane is passed through the rejuvenator, the rejuvenator picks up contaminants. The rejuvenator can be dissembled to remove the contaminants periodically. The rejuvenator is simple in construction, reliable in operation, and low in operation and maintenance costs. With this rejuvenator, the extraction system operates at high efficiency and high capacity without the dreaded corrosion.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: August 13, 2013
    Assignee: CPC Corporation, Taiwan
    Inventors: Ping-Wen Yen, Yuh-Sheve Ho, Hung-Tzu Chiu, Chung-Jong Hwu, June-Cheng Chang, Tzong-Bin Lin, Tsoung Y. Yan, Cheng-Tsung Hong, Hung-Chung Shen
  • Patent number: 8506839
    Abstract: This invention relates to a composition comprising water and at least one ionic liquid, and also to devices capable of executing an absorption cycle using such compositions as a refrigerant pair. This invention also provides a method of cooling using an absorption cycle comprising water as the refrigerant and at least one ionic liquid as the absorbent. The present invention also provides a method of heating using an absorption cycle comprising water as the refrigerant and at least one ionic liquid.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: August 13, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Brandon Shiflett, Akimichi Yokozeki
  • Patent number: 8507292
    Abstract: A method for pretreating and extracting a liquid sample by sorbing an aqueous liquid sample, including an organic analyte and an acid or a base, in a solid sorbent material, and at least partially neutralizing the acid or base by reaction with neutralizing ions retained on a support surface, and contacting the liquid sample-sorbed sorbent material at elevated temperature and pressure with an organic solvent to extract the analyte into said solvent, preferably in a vessel having an extraction chamber with a zirconium metal interior surface.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Dionex Corporation
    Inventors: Kannan Srinivasan, Bruce Richter, Christopher A. Pohl, Brett Murphy, Brian Dorich, S. M. Rahmat Ullah
  • Patent number: 8501007
    Abstract: Substantially pure water is produced via desalination using a directional solvent that directionally dissolves water but does not dissolve salt. The directional solvent is heated to dissolve water from the salt solution into the directional solvent. The remaining highly concentrated salt water is removed, and the solution of directional solvent and water is cooled to precipitate substantially pure water out of the solution.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Anurag Bajpayee, Daniel Kraemer, Andrew Jerome Muto, Gang Chen, John H. Lienhard, Borivoje B. Mikic
  • Patent number: 8504305
    Abstract: An Anti-Terrorism water quality monitoring system for continuously monitoring a potable water treatment system and related potable water distribution network that provides potable water to a municipality, city, housing development or other potable water consumer. The system includes the collection of data from the water distribution system and from the water treatment facility and from advanced separation processes which are integrated into analytical instruments. The data collected are stored in a remote database on a remote server computer or bank of computers and accessible by Homeland Security or its designated agency. Preferred parameters of monitoring include the turbidity and disinfectant such as chlorine, hypochlorous acid, sodium hypochlorite, calcium hypochlorite, ozone, chlorine dioxide, chloramines, hydrogen peroxide, peracetic acid.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Hach Company
    Inventor: Thomas D. Wolfe
  • Patent number: 8496831
    Abstract: Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 30, 2013
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Yu Huang, Richard W. Baker, Tiem Aldajani, Jennifer Ly
  • Patent number: 8497091
    Abstract: A method of producing a compound originating from a polysaccharide-based biomass includes at least one of a saccharification step that produces a sugar solution containing a monosaccharide and/or an oligosaccharide from a product obtainable by hydrolyzing the polysaccharide-based biomass; a fermentation step that ferments the sugar solution containing the monosaccharide and/or oligosaccharide originating from the polysaccharide-based biomass; and a treatment that removes a fermentation inhibitor with the use of a separation membrane having a glucose removal rate and an isopropyl alcohol removal rate which simultaneously satisfy the following relationships (I) and (II) when a 500 ppm aqueous glucose solution at pH 6.5 at 25° C. and a 500 ppm aqueous isopropyl alcohol solution at pH 6.5 at 25° C. are respectively permeated through the membrane at an operation pressure of 0.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: July 30, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Masayuki Hanakawa, Shinichi Minegishi, Hiroyuki Kurihara
  • Patent number: 8496123
    Abstract: The invention relates to a process for making porous cross-linked cellulose membranes and processes for coupling a chromatography ligand to cross-linked cellulose membranes. The invention provides methods for separating a first component from a second component in a solution based upon a difference in the size of the first and second components, and methods for separating target molecules from other components in a solution comprising use of membranes obtainable by the process of the invention. The method has particular utility in separating proteins from cell lysates and cultures.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 30, 2013
    Assignee: GE Healtcare Bio-Sciences AB
    Inventors: Andreas Axen, Anders Hagvall, Anders Larsson, Nicolas Thevenin
  • Patent number: 8491792
    Abstract: The development and application of a novel non-polar oil recovery process utilizing a non-dispersive solvent extraction method to coalesce and recover oil from a lysed or non-lysed Yeast slurry using a microporous hollow fiber (MHF) membrane contactor.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 23, 2013
    Assignees: Board of Regents, The University of Texas System, Organic Fuels Algae Technologies, LLC
    Inventors: Peter B. Kipp, Frank Seibert, Rhykka Connelly
  • Publication number: 20130180917
    Abstract: Microfiltration membranes achieve high retention of bacteria and viruses by pore-size exclusion by the diameters of the fibers in the scaffold layer. The membranes have a high permeation flux as compared with conventional commercial micro filtration membranes under the same applied pressure. Ultra-fine nanofibers (fiber diameters from 3 nanometers to 50 nanometers and lengths from about 100 nanometers to about 5000 nanometers) are infused into, or deposited onto the surface of fibrous filtration media. Negatively charged ultra-fine nanofibers can include polysaccharide nanofibers prepared by a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)INaBrINaCIO oxidation system in aqueous solution. Ultra-fine polysaccharide nanofibers having a large number of carboxylate groups are produced. (0.7-1.0 mmol/g cellulose) The carboxylate groups are negatively charged, and can interact with positively charged polymers/molecules by forming a complex.
    Type: Application
    Filed: August 22, 2011
    Publication date: July 18, 2013
    Applicant: The Research Foundation of State University of New York
    Inventors: Benjamin Chu, Benjamin S. Hsiao, Hongyang Ma, Ran Wang
  • Patent number: 8486267
    Abstract: The development and application of a novel non-polar oil recovery process utilizing a non-dispersive solvent extraction method to coalesce and recover oil from a bio-cellular aqueous slurry is described herein. The process could apply to recovery of algal oil from a lysed algae slurry, recovery of Omega fatty acids from a bio-cellular aqueous feed, recovery of Beta-carotene from a bio-cellular aqueous feed and for the removal from produced water in oil production and similar type applications. The technique of the present invention utilizes a microporous hollow fiber (MHF) membrane contactor. The novel non-polar oil recovery process described herein can be coupled to a collecting fluid (a non-polar solvent such as heptane, a biodiesel mixture or the previously extracted oil) that is circulated through the hollow fiber membrane. In cases where the biodiesel mixture or the previously extracted oil is used the solvent recovery step (e.g. distillation) can be eliminated.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: July 16, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventors: Frank Seibert, Martin Poenie
  • Patent number: 8480904
    Abstract: A process for purifying a lipid composition having predominantly neutral lipid components having at least one long chain polyunsaturated fatty acid is disclosed. The process employs contacting the lipid composition with a polar solvent, such as acetone, wherein the solvent is selected such that contaminants are less soluble in the solvent than is the long chain polyunsaturated fatty acid. The process is typically conducted at cooler temperatures, including about 0° C. Upon precipitation of the contaminants from the lipid composition, a separation is conducted to remove the precipitated material from the lipid composition. The long chain polyunsaturated fatty acids can include ARA, DPA, EPA, and/or DHA. The process of the present invention effectively winterizes lipid compositions, thereby reducing the tendency of such compositions to become hazy.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: July 9, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Daniel G. Dueppen, Samuel G. Zeller, Sandra I. Diltz, Robert H. Driver
  • Publication number: 20130167433
    Abstract: Sulfur solvent compositions are provided that have relatively low toxicity, low and not unpleasant odor, and a substantial capacity for rapidly dissolving elemental sulfur from deposits even at low temperatures and in the presence of water. The compositions comprise a reaction menstruum prepared using an amine component and a ketone component in the presence of alkanol.
    Type: Application
    Filed: December 20, 2012
    Publication date: July 4, 2013
    Inventor: BRENNTAG CANADA INC.
  • Patent number: 8475660
    Abstract: A method for separating polar lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting polar lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal polar lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. These polar lipids are high value products which can be used as surfactants, detergents, and food additives. Neutral lipids remaining in the algal biomass after extraction of polar lipids can be used to generate renewable fuels.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: July 2, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8470180
    Abstract: A device, system and method for exchanging components between first and second fluids by direct contact in a microfluidic channel. The fluids flow as thin layers in the channel. One of the fluids is passed through a filter upon exiting the channel and is recycled through a secondary processor which changes the fluid's properties. The recycled fluid is reused for further exchange. The filter excludes blood cells from the recycled fluid and prevents or limits clogging of the filter. The secondary processor removes metabolic waste and water by diafiltration.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: June 25, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Edward F. Leonard, Alan C. West, Christian Paul Aucoin, Edgar E. Nanne
  • Patent number: 8470178
    Abstract: An organic oil boom is a method for containing pollution floating on water or the sea. The invention describes a method that makes it possible to isolate pollution as, for example, oil, from the surrounding environment. Spraying a viscous liquid such as an alginate or chitosan solution over and around the oil results in isolation of the oil from the seawater as the mixture has a density that is lighter than seawater and heavier than oil. To isolate the oil also from the air, a gas is added so that the density of the mixture is lower than the density of the oil. The addition of a multivalent cation solution such as calcium ions will, under the right pH conditions, polymerise the viscous liquid, thus forming a solid polymer film which surrounds the oil and isolates it from the surrounding environment.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: June 25, 2013
    Inventor: Ingmar Hogoy
  • Publication number: 20130157920
    Abstract: A process for purifying extracted oil, byproducts, and wastewater, including the steps of: providing a composition having at least one solvent, an alkaline agent, a deflocculant, at least one surfactant selected from the group comprising an alkoxylated alcohol surfactant, an alkylamino-polyethoxy-sulfate surfactant, a polyether-phosphate ester surfactant, a surfactant that is a phosphate ester of an ethoxylated alcohol, and a surfactant that is a polyethyleneglycol monoaklyl ether, and a bonding agent; and associating the composition with at least one of extracted oil, byproducts, and wastewater—including, but not limited to, froth, middlings, tailings, mature fine tailings, solids, and combinations thereof.
    Type: Application
    Filed: February 11, 2013
    Publication date: June 20, 2013
    Applicant: MWJ, LLC
    Inventor: MWJ, LLC
  • Patent number: 8465647
    Abstract: A method and system are disclosed for separating single-walled carbon nanotubes from double and multi-walled carbon nanotubes by using the difference in the buoyant density of Single-Walled versus Multi-Walled carbon nanotubes. In one embodiment, the method comprises providing a vessel with first and second solutions. The first solution comprises a quantity of carbon nanotubes, including single-walled carbon nanotubes and double and multi-walled carbon nanotubes. The single walled nanotubes have a first density, the double and multi-walled nanotubes having a second density. The second solution in the vessel has a third density between said first and second densities. The vessel is centrifuged to form first and second layers in the vessel, with the second solution between said first and second layers. The single-walled carbon nanotubes are predominantly in the first layer, and the second and multi-walled carbon nanotubes are predominantly in the second layer.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: June 18, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ageeth A. Bol, George S. Tulevski
  • Patent number: 8459470
    Abstract: A grafted nonwoven substrate is disclosed having average fiber sizes of 0.7 to 15 microns, and a void volume of 50 to 95%, and a polymer comprising cationic aminoalkyl(meth)acryloyl monomer units grafted to the surface of the nonwoven substrate. The article may be used as a filter element to purify or separate target materials, such as oligonucleotides or monoclonal antibodies (MAb), from a fluid mixture.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: June 11, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Douglas E. Weiss, Clinton P. Waller, Jr., Michael R. Berrigan, Andrew W. Rabins, Jeffrey A. Lucas, Kannan Seshadri, Catherine A. Bothof
  • Patent number: 8460861
    Abstract: A producing method for a living organism-applicable hydrogen-contained fluid, which includes hydrogen molecules in living organism-applicable fluid enclosed in a container (2i) with hydrogen molecule permeability, is provided. This method includes a hydrogen exposing step of exposing hydrogen molecules to the container (2i) in which the living organism-applicable fluid is enclosed from the outside of the container without opening the container. The container with hydrogen molecule permeability is one that allows a dissolved hydrogen concentration of a normal saline solution to be 1 ppb or greater when the container filled with the normal saline solution is immersed for 5 hours in a volume of hydrogen water, which stably maintains an approximately saturated state (1.6 ppm at 20 C degrees under 1 barometric pressure) and is 20 times the content volume of the container.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: June 11, 2013
    Assignee: MIZ Co. Ltd.
    Inventors: Bunpei Satoh, Kazuyoshi Arai, Fumitake Satoh
  • Patent number: 8460550
    Abstract: Apparatus for the continuous processing and solids handling in first near-critical and supercritical fluids. The present invention also allows for treatment of the starting material with the first near-critical or supercritical fluid. The remaining raffinate is then continuously transferred and may be collected in a second fluid.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 11, 2013
    Assignee: Thar Process, Inc.
    Inventors: Lalit Chordia, Jose Martinez, Andrew Kegler, Desai Bhishmakumar
  • Publication number: 20130126776
    Abstract: The invention provides a heat transfer composition comprising (i) a first component selected from trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)), cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)) and mixtures thereof; (ii) carbon dioxide (R-744); and (iii) a third component selected from propylene (R-1270), propane (R-290), n-butane (R-600), isobutane (R-600a), and mixtures thereof.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 23, 2013
    Applicant: Mexichem Amanco Holding S.A. de C.V.
    Inventor: Robert E. Low
  • Patent number: 8444744
    Abstract: A method for extracting nickel and lithium includes solvent extraction step of using three or more extraction stages to subject a solution containing lithium and nickel to solvent extraction with 2-Ethylhexyl phosphonic acid mono-2-ethylhexyl ester at a pH of 8.0 to 8.5, whereby the nickel and the lithium are co-extracted into a resultant organic phase.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 21, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Makoto Narisako, Toshiyuki Yamaoka, Daisuke Kobayashi, Naoki Higuchi
  • Patent number: 8435387
    Abstract: The present invention generally relates to the small-scale separation of a mixture of two or more components with different boiling points into enriched fractions. In some embodiments, a first and second fluid (e.g., a liquid and a gas, a liquid and a liquid, etc.) are passed through a channel. The first fluid may include at least two components, each with a unique boiling point. Upon contacting the first and second fluids within the channel, at least a portion of the most volatile of the components in the first fluid (i.e., the component with the lowest boiling point) may be transferred from the first fluid to the second fluid. In some instances, the transfer of the volatile component(s) from the first fluid to the second fluid may be expedited by heating, in some cases above the boiling point(s) of the component(s) to be transferred from the first fluid to the second fluid. Contact between the first and second fluids may be maintained, for example, via segmented flow, bubbling flow, etc.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: May 7, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Ryan L. Hartman, Hemantkumar R. Sahoo, Klavs F. Jensen
  • Publication number: 20130102948
    Abstract: A blood filtration device, system, and method that can and selectively remove or reduce an unwanted, in certain cases unknown, substance from a patient's blood stream. More specifically, a specific size or size range of unwanted substance is selectively removed. The unwanted substance includes one or more of a pathogen, a toxin, an activated cell, and an administered drug. The device and system employ a microfluidic separation device that minimizes thrombogenesis and can permit the use of anticoagulants to be avoided. The device or system can be portable and can include its own power supply. Sensors in the system may monitor for the presence and/or concentration of unwanted species including pathogens or drugs and invoke a blood cleansing process responsively to the sensor signals in closed loop control process. The control may combine the infusion of therapeutic agents into the blood of a patient as well.
    Type: Application
    Filed: March 24, 2011
    Publication date: April 25, 2013
    Inventors: Ilan K. Reich, Edward F. Leonard, Fred Mermelstein
  • Patent number: 8425777
    Abstract: A method of separating includes mixing a fluid into a mixture that has been separated from an oil well stream and that includes water, oil, and gas. The mixture including the fluid is fed into a separator and allowed to separate into a water phase and an oil/fluid phase. The cleaned water phase is removed from the separator via an outlet for water. The oil/fluid phase is subjected to a separation step separating the oil/fluid into an oil phase and a gaseous phase, from which gaseous phase the fluid is recovered by a condensation step and recycled for injection into the mixture. The separator is a liquid-liquid/gas separator in which the pressure is in the range of 0.5 bar to 25 bar, while the mixture including the fluid is separated into the water phase and an oil/gas phase.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: April 23, 2013
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Patent number: 8415506
    Abstract: The present invention provides energy and economically efficient and environmentally responsible processes for using acetone to dry, dehydrate and/or dewater various hydrated feedstocks.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: April 9, 2013
    Assignee: DynaSep Inc.
    Inventors: Brian J. Waibel, Hans Schonemann, David J. Lawrence, Paul Robinson
  • Patent number: 8398857
    Abstract: This invention is directed to a process for separating a solute from a solute-bearing material. A substantial amount of solute is extracted from the solute-bearing material by contacting particles of the solute-bearing material with globules of an extraction solvent. The particle size of the solute-bearing material and the globule size of the extraction solvent are balanced such that little if any solute or extraction solvent remains in the solute-bearing material.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 19, 2013
    Assignee: Epic Oil Extractors, LLC
    Inventor: Darrell J. Phillips
  • Patent number: 8398860
    Abstract: A method of purifying a surfactant for use in a pharmaceutical formulation, which comprises mixing the surfactant with a solvent and bringing said mixture into contact with a semi-permeable membrane so as to allow impurities present in the surfactant and having a molecular weight lower than the molecular weight cut-off of the membrane to pass through the membrane, whilst retaining the purified surfactant.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: March 19, 2013
    Assignee: Sindan Pharma SRL
    Inventors: Constantin Busoi, Maria Rotaru, Bogdan-Mihai Oghina, Mariana Surmeian
  • Patent number: 8388846
    Abstract: Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 5, 2013
    Assignee: Streamline Automation, LLC
    Inventors: Geoffrey Chew, Alton J. Reich, H. Waite H. Dykes, Jr., Roberto Di Salvo
  • Patent number: 8388708
    Abstract: A process and device for the material utilization of soot from the waste water of a gasification appliance (heavy oil POX) in which a hydrogen- and carbon monoxide-containing (crude synthesis gas) is generated from relatively high-boiling hydrocarbons by partial oxidation, is disclosed. The soot-loaded waste water from the heavy oil POX is mixed with naphtha and is subsequently introduced into a separator (decanter) from which a substantially soot-free water fraction and a substantially water-free naphtha/soot mixture are taken off separately, where the naphtha/soot mixture is fed as feed to a further gasification appliance (naphtha POX), in which appliance predominantly naphtha is converted into a crude synthesis gas by partial oxidation.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 5, 2013
    Assignee: Linde Aktiengesellschaft
    Inventor: Juergen Glaser
  • Patent number: 8382986
    Abstract: A method of dewatering algae and recycling water therefrom is presented. A method of dewatering a wet algal cell culture includes removing liquid from an algal cell culture to obtain a wet algal biomass having a lower liquid content than the algal cell culture. At least a portion of the liquid removed from the algal cell culture is recycled for use in a different algal cell culture. The method includes adding a water miscible solvent set to the wet algal biomass and waiting an amount of time to permit algal cells of the algal biomass to gather and isolating at least a portion of the gathered algal cells from at least a portion of the solvent set and liquid of the wet algal biomass so that a dewatered algal biomass is generated. The dewatered algal biomass can be used to generated algal products such as biofuels and nutraceuticals.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 26, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale