Adhesive Or Autogenous Bonding Of Two Or More Self-sustaining Preforms Wherein At Least Two Of The Preforms Are Not Intended To Be Removed (e.g., Prefabricated Base, Etc.) Patents (Class 216/33)
  • Patent number: 8911636
    Abstract: A method of fabricating a micro-device having micro-features on glass is presented. The method includes the steps of preparing a first glass substrate, fabricating a metallic pattern on the first glass substrate, preparing a second glass substrate and providing one or more apertures on the second glass substrate, heating the first glass substrate and the second glass substrate with a controlled temperature raise, bonding the first glass substrate and the second glass substrate by applying pressure to form a bonded substrate, wherein the metallic pattern is embedded within the bonded substrate, cooling the bonded substrate with a controlled temperature drop and thereafter maintaining the bonded substrate at a temperature suitable for etching, etching the metallic pattern within the bonded substrate, wherein an etchant has access to the metallic pattern via the apertures, forming a void within the bonded substrate, wherein the void comprises micro-features.
    Type: Grant
    Filed: September 29, 2013
    Date of Patent: December 16, 2014
    Inventor: Viswanadam Gautham
  • Patent number: 8877074
    Abstract: Systems and methods for producing micromachined devices, including sensors, actuators, optics, fluidics, and mechanical assemblies, using manufacturing techniques of lead frames, substrates, microelectronic packages, printed circuit boards, flex circuits, and rigid-flex materials. Preferred embodiments comprise using methods from post-semiconductor manufacturing to produce three-dimensional and free-standing structures in non-semiconductor materials. The resulting devices may remain part of the substrate, board or lead frame which can then used as a substrate for further packaging electronic assembly operations. Alternatively, the devices may be used as final components that can be assembled within other devices.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: November 4, 2014
    Assignee: The Regents of the University of California
    Inventors: Mark Bachman, Guann-Pyng Li
  • Publication number: 20140305533
    Abstract: There is provided a method of producing a fluid channel device including laminating a plurality of polyimide films including at least one polyimide film having a port and at least one polyimide film having a channel, the polyimide films including at least one thermoplastic polyimide film; and adhering a plurality of the polyimide films by applying heat such that the ports are communicated with the channels. There is also provided the flow channel device produced by the method.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 16, 2014
    Applicant: Sony Corporation
    Inventor: Yoichi KATSUMOTO
  • Publication number: 20140292317
    Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar
  • Patent number: 8845910
    Abstract: The object of the present invention is to strongly join an aluminum alloy part with an FRP prepreg. An object obtained by subjecting an aluminum alloy to a suitable liquid treatment so as to form a surface having large, micron-order irregularities and also fine irregularities with a period of several tens of nanometers, eliminating the presence of sodium ions from the surface and additionally forming a surface film of aluminum oxide, which is thicker than a natural oxide layer, has been found to have a powerful adhesive strength with epoxy-based adhesives. By simultaneously curing an FRP prepreg which uses the same epoxy-based adhesive in the matrix, an integral composite or structure in which FRP and aluminum alloy have been united at a joining strength of unprecedented magnitude is produced.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 30, 2014
    Assignee: Taisei Plas Co., Ltd.
    Inventors: Masanori Naritomi, Naoki Andoh
  • Patent number: 8845911
    Abstract: A method is provided for producing a microstructured molded object that is intended for culturing of biological cells. According to this method, a plastically deformable first porous film is prepared, as well as a deformable second film and a deformable sacrificial film. The first, second and sacrificial film are placed in a stack. Next, the sacrificial film is subjected to pressure to press the stack into a mold. The mold has recesses, such that deformed regions in the form of cavities are produced in the sacrificial film, the first film and the second film, and undeformed regions remain. During the pressing of the film stack into the mold, the first film and the second film are joined to each other, so that they form a composite film. At least portions of the deformed regions of the second film are etched so that sections of the second film are chemically dissolved.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: September 30, 2014
    Assignee: Technische Universität Ilmenau
    Inventors: Joerg Hampl, Frank Weise, Gregor Schlingloff, Andreas Schober, Uta Fernekorn
  • Patent number: 8840797
    Abstract: A unique and cost-effective method for producing a multilayer ceramic structure by using a first green film that contains a ceramic material, and the multilayer ceramic structure produced thereby. The method including the steps of: (a) producing at least one porous region in the first green film, the at least one porous region extending from the surface of the first green film; (b) applying a first layer, in sections, to the surface of the first green film, wherein one section of the first layer is located above the at least one porous region produced in step (a); (c) positioning at least one additional green film on the surface of the first green film, to which the first layer has been applied; (d) laminating the first green film and the at least one additional green film to form a green film composite; and (e) sintering the green film composite.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: September 23, 2014
    Assignees: Micro Systems Engineering GmbH, Technische Universitaet Wien
    Inventors: Thomas Haas, Dieter Schwanke, Achim Bittner, Ulrich Schmid
  • Publication number: 20140224763
    Abstract: This joining method of joining a target substrate and a support substrate includes: an adhesive coating operation that includes coating the target substrate or the support substrate with an adhesive; an adhesive removing operation that includes supplying a solvent of the adhesive onto an outer peripheral portion of the target substrate or the support substrate, which is coated with the adhesive in the adhesive coating operation, to thereby remove the adhesive on the outer peripheral portion; and a joining operation that includes pressing and joining the target substrate and the support substrate together, in which the adhesive on the outer peripheral portion is removed in the adhesive removing operation, and the support substrate coated with no adhesive, or pressing and joining the support substrate, in which the adhesive on the outer peripheral portion is removed in the adhesive removing operation, and the target substrate coated with no adhesive.
    Type: Application
    Filed: August 3, 2012
    Publication date: August 14, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shinji Okada, Masatoshi Shiraishi, Masatoshi Deguchi
  • Patent number: 8790520
    Abstract: A method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board according to one example embodiment includes punching a plurality of segments out of at least one sheet of substrate material to form a plurality of layers of the Z-directed component. A channel is formed through the substrate material either before or after the segments are punched. At least one of the formed layers includes at least a portion of the channel. A conductive material is applied to at least one surface of at least one of the formed layers. A stack of the formed layers is combined to form the Z-directed component.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: July 29, 2014
    Assignee: Lexmark International, Inc.
    Inventors: Paul Kevin Hall, Keith Bryan Hardin, Zachary Charles Nathan Kratzer, Qing Zhang
  • Publication number: 20140194862
    Abstract: An optical surgical probe includes a cannula; a light guide within the cannula, configured to receive a light beam from the light source, to guide the light beam to a distal end of the light guide, and to emit the light beam at the distal end of the light guide; and a multi-spot generator at a distal end of the cannula, the multi-spot generator having a faceted proximal surface with oblique facets, configured to receive the light beam emitted at the distal end of the light guide and to split the received light beam into multiple beam-components, and a distal surface through which the multiple beam-components exit the multi-spot generator, wherein the proximal surface of the multi-spot generator is micro-structured with a modulation length smaller than a wavelength of the light beam in order to reduce the reflectance of light back into the probe.
    Type: Application
    Filed: January 8, 2013
    Publication date: July 10, 2014
    Applicant: ALCON RESEARCH, LTD.
    Inventors: Ronald T. Smith, Mark H. Farley, Dustin J. Bouch
  • Patent number: 8771533
    Abstract: A dielectric material layer is deposited on exposed surfaces of a bonded structure that includes a first substrate and a second substrate. The dielectric material layer is formed on an exposed planar surface of a second substrate and the entirety of peripheral sidewalls of the first and second substrates. The dielectric material layer can be formed by chemical vapor deposition, atomic layer deposition, or plasma induced deposition. Further, the dielectric material layer seals the entire periphery of the interface between the first and second substrates. If a planar portion of the dielectric material layer can be removed by planarization to facilitate thinning of the bonded structure, the remaining portion of the dielectric material layer can form a dielectric ring.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Emily Kinser, Richard S. Wise, Hakeem B. S. Akinmade-Yusuff
  • Patent number: 8771529
    Abstract: A method of imprint lithography includes imprinting a first pattern with a first template on a first substrate of a lithographic template. A second pattern is imprinted with a second template on the substrate of the lithographic template. The first pattern and the second pattern at least partially overlap, thus forming a third pattern. The third pattern is lithographically formed on a second substrate with the lithographic template. In an embodiment, the first pattern is a concentric line pattern formed by thin film deposition. In an embodiment, the second pattern is a radial line pattern. In an embodiment the first pattern and the second pattern may have line frequency increased.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 8, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kim Yang Lee, Bing Yen, David Kuo, Koichi Wago, Shih-Fu Lee, Dieter Weller
  • Publication number: 20140178648
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: NANOSYS, INC.
    Inventor: Robert S. Dubrow
  • Patent number: 8758635
    Abstract: The present disclosure relates to a method for making a thermoacoustic element. In the method, a graphene film is arranged on a metal substrate. A nonmetal substrate is stacked with the graphene film located on the metal substrate to form a laminate structure. The graphene film is sandwiched between the nonmetal substrate and the metal substrate. The metal substrate is removed from the stacked structure. A number of through-holes are formed in the nonmetal substrate. The graphene film is exposed through the plurality of through-holes.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: June 24, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8754338
    Abstract: An electronics interconnection system is provided with reduced capacitance between a signal line and the surrounding dielectric material. By using a non-homogenous dielectric, the effective dielectric constant of the material is reduced. This reduction results in less power loss from the signal line to the dielectric material, and therefore reduces the number of buffers needed on the signal line. This increases the speed of the signal, and reduces the power consumed by the interconnection system. The fabrication techniques provided are advantageous because they can be preformed using today's standard IC fabrication techniques.
    Type: Grant
    Filed: May 28, 2011
    Date of Patent: June 17, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 8746846
    Abstract: A nozzle plate includes: a nozzle plate main body made of metal, the nozzle plate main body having nozzle rows formed of nozzles arranged in parallel and penetrating the nozzle plate main body in a thickness direction, wherein at the outer edge of the nozzles on a droplet discharge surface of the nozzle plate main body, a water-repellent film is provided, and primer treatment is performed on at least part of the periphery of the droplet discharge surface of the nozzle plate main body, the periphery outside the water-repellent film.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: June 10, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Katsuji Arakawa
  • Publication number: 20140151328
    Abstract: A release layer is adequately protected by a protective layer when a laminate is subjected to a desired treatment. A method for forming a laminate 10 includes a protective layer forming step of forming a protective layer 15 for covering a face that is a surface of a release layer 14 and which is not adhered to a support plate 12 and not superimposed at least on an adhesive layer 13; and a protective layer removal step of removing a portion of the protective layer 15, which is exposed at the time of forming the laminate 10.
    Type: Application
    Filed: November 5, 2013
    Publication date: June 5, 2014
    Applicant: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Atsushi Miyanari, Akihiko Nakamura
  • Patent number: 8741159
    Abstract: A method of fabricating a touch screen panel according to an embodiment of the present invention includes: forming a reinforcing layer on the top and the bottom of a glass substrate by reinforcing the entire surface of the glass substrate defining a plurality of unit cell regions; forming the touch screen panels in the unit cell regions on a side of the glass substrate with the reinforcing layers; cutting the reinforced glass substrate into the touch screen panels; forming passivation layers on the outer surfaces of the touch screen panels and sequentially stacking the touch screen panels; and simultaneously with the stacking, performing healing on the non-reinforced cut-sides of the stacked touch screen panels.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: June 3, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kyu-taek Lee, Kwan-Young Han
  • Publication number: 20140144106
    Abstract: The present disclosure provides a slipsheet and/or divider sheet and method for making the same, and method for moving and storing containers with use of the slipsheets or divider sheets. The sheets have an imprint or an embossing that provides a raised planar surface. The raised planar surface preferably comprises a plurality of ridges, crowns or crests, which are preferably arranged in a pattern throughout an upper surface of the sheet. To make the sheet, a die can be etched to have protuberances or bumps, and the die is preferably pressed into a sheet of pliable thermoplastic material. The sheet thus made has a plurality of indentation formed by the protuberances or bumps on the die, and the sheet has a planar outer surface comprising a plurality of ridges, crowns and crests between the indentations.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 29, 2014
    Applicant: Fresh Pak Corp.
    Inventor: John Bazbaz
  • Publication number: 20140124476
    Abstract: An exemplary surgical probe and methods of making the same are disclosed. An exemplary surgical probe may include a tubular body and a scissor assembly received at least partially within the body. The scissor assembly may include a first blade fixed to the tubular body that includes a body portion and an end portion. The scissor assembly may further include a second blade that is configured to move longitudinally within the tubular body. The body portions of the first and second blades may each define respective cross sections normal to a longitudinal axis of the tubular body. The cross sections may each define centrally disposed edges adjacent one another, and the cross sections may each be asymmetrical about a line substantially parallel to the centrally disposed edges.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: ALCON RESEARCH, LTD.
    Inventor: Thomas Linsi
  • Publication number: 20140104288
    Abstract: This disclosure provides systems, methods, and apparatus for through substrate via inductors. In one aspect, a cavity is defined in a glass substrate. At least two metal bars are in the cavity. A first end of each metal bar is proximate a first surface of the substrate, and a second end of each metal bar is proximate a second surface of the substrate. A metal trace connects a first metal bar and a second metal bar. In some instances, one or more dielectric layers can be disposed on surfaces of the substrate. In some instances, the metal bars and the metal trace define an inductor. The inductor can have a degree of flexibility corresponding to a variable inductance. Metal turns can be arranged in a solenoidal or toroidal configuration. The toroidal inductor can have tapered traces and/or thermal ground planes. Transformers and resonator circuitry can be realized.
    Type: Application
    Filed: November 20, 2012
    Publication date: April 17, 2014
    Inventors: Ravindra V. Shenoy, Jitae Kim, Kwan-yu Lai, Jon Bradley Lasiter, Philip Jason Stephanou, Donald William Kidwell, Evgeni Petrovich Gousev
  • Publication number: 20140076846
    Abstract: A method and apparatus for ultra thin wafer backside processing are disclosed. The apparatus includes an outer ring holding a high temperature grinding and/or dicing tape to form a support structure. An ultra thin wafer or diced wafer is adhered to the tape within the ring for wafer backside processing. The wafer backside processing includes ion implantation, annealing, etching, sputtering and evaporation while the wafer is in the support structure. Alternative uses of the support structure are also disclosed including the fabrication of dies having metalized side walls.
    Type: Application
    Filed: September 16, 2012
    Publication date: March 20, 2014
    Inventors: Tao Feng, Ming Sun
  • Publication number: 20140065034
    Abstract: Lab-on-a-chip microfluidic devices having micro-channels able to withstand an internal channel pressure of more than 4,000 psi are described. The micro-channels have rounded cross-sections that prevent turbulent flow within a fluid conveyed within the channel. The channel may have serpentine-shaped length extending between a channel inlet and a channel outlet, the channel thereby being of sufficient length to observe both the stationary and moving phases of the fluid in a chip having a sufficiently small footprint that it is suitable for incorporation into a miniaturized spectrometer. Methods of fabricating lab-on-a-chip microfluidic devices are described by etching recesses in chip substrates such that a first substrate recess mirrors a second substrate recess in an opposed orientation, aligning the substrates such the recesses cooperatively define a micro-channel having a rounded cross-section, and bonding the substrates to define a smooth-walled micro-channel.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Yun Zheng, Edward Wassell, Manuel Balvin, Stephanie Getiy
  • Publication number: 20140057210
    Abstract: Methods to fabricate reaction cartridges for biological sample preparation and analysis are disclosed. A cartridge may have a reaction chamber and openings to allow fluids to enter the chamber. The cartridge may also have handles to facilitate its use. Such cartridges may be used for polymerase chain reaction.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Imran R. MALIK, Axel SCHERER, Erika F. GARCIA, Xiomara L. MADERO
  • Publication number: 20140057311
    Abstract: Provided herein are microfluidic devices that can be used as a 3D bioassay, e.g., for drug screening, personalized medicine, tissue engineering, wound healing, and other applications. The device has a series of channels {e.g., small fluid channels) in a small polymer block wherein one or more of the channels can be filled with a biologically relevant gel, such as collagen, which is held in place by posts. As shown herein, when the device is plated with cells such as endothelial cells, new blood vessels grow in the gel, which is thick enough for the cells to grow in three dimensions. Other channels, e.g., fluid channels, allow drugs or biological material to be exposed to the 3D cell growth. Cells, such as endothelial cells, can be cultured and observed as they grow on the surface of a 3D gel scaffold, where e.g., rates of angiogenesis can be measured, as well as intervascularization and extravascularization of cancerous cells.
    Type: Application
    Filed: September 29, 2011
    Publication date: February 27, 2014
    Inventors: Roger Dale Kamm, Haruhiko Harry Asada, Waleed Ahmed Farahat, Ioannis K. Zervantonakis, Levi B. Wood, Chandrasekhar Kothapalli, Seok Chung, Jeffrey D. Macklis, Suzanne Tharin, Johanna Varner, Young Kum Park, Kwang Ho Lee, Le Thanh Tu Nguyen, Choong Kim
  • Patent number: 8641913
    Abstract: A method includes applying a final etch-resistant material to an in-process substrate so that the final etch-resistant material at least partially covers first microcontact portions integral with the substrate and projecting upwardly from a surface of the substrate, and etching the surface of the substrate so as to leave second microcontact portions below the first microcontact portions and integral therewith, the final etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step. A microelectronic unit includes a substrate, and a plurality of microcontacts projecting in a vertical direction from the substrate, each microcontact including a base region adjacent the substrate and a tip region remote from the substrate, each microcontact having a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: February 4, 2014
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Yoichi Kubota, Teck-Gyu Kang, Jae M. Park
  • Patent number: 8623226
    Abstract: A method of making a shaped electrical conductor (610, 630) includes providing a first sheet of metal (319) and applying a first and second thermoplastic adhesive pattern (311, 312) to a first and a second surface thereof. The second pattern is are fully justified with the applied first pattern. The first sheet is etched to remove metal not covered by the patterns so that no metal bridges remain between disconnected coated portions. A second sheet of metal (339) is provided and a third and fourth thermoplastic adhesive pattern (333, 334) is applied to a first and second surface thereof. The third and fourth patterns are fully justified. The second sheet is etched as for the first sheet. Contact regions (315, 335) in the second and third patterns are joined to form electrical contact between the first and second sheets.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 7, 2014
    Assignee: Eastman Kodak Company
    Inventors: Donald S. Rimai, Roland R. Schindler, II, Christopher J. White
  • Patent number: 8623227
    Abstract: The present disclosure relates to a method for making a transmission electron microscope grid. The method includes: (a) providing a substrate with a graphene layer on a surface of the substrate; (b) applying a carbon nanotube film structure to cover the graphene layer; (c) removing the substrate, to obtain a graphene layer-carbon nanotube film composite structure; and (d) placing the graphene layer-carbon nanotube film composite structure on a grid.
    Type: Grant
    Filed: March 19, 2011
    Date of Patent: January 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiao-Yang Lin, Chen Feng, Li-Na Zhang, Kai-Li Jiang
  • Patent number: 8597526
    Abstract: A method for making a graphene/carbon nanotube composite structure includes providing a metal substrate including a first surface and a second surface opposite to the first surface, growing a graphene film on the first surface of the metal substrate by a CVD method, providing at least one carbon nanotube film structure on the graphene film, and combining the at least one carbon nanotube film structure with the graphene film, coating a polymer layer on the at least one carbon nanotube film structure, and combining the polymer layer with the at least one carbon nanotube film structure and the graphene film, and forming a plurality of stripped electrodes by etching the metal substrate from the second surface.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 3, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Publication number: 20130306594
    Abstract: Disclosed herein is a block copolymer comprising a first block derived from a vinyl aromatic monomer; and a second block derived from an acrylate monomer; where a chi parameter that measures interactions between the first block and the second block is greater than or equal to about 0.05, when measured at 240° C. Disclosed herein too is a method comprising polymerizing a vinyl aromatic monomer to form a first block; and polymerizing a second block onto the first block to form a block copolymer; where the second block is derived by polymerizing an acrylate monomer; and where the block copolymer has a chi parameter of greater than or equal to about 0.05, when measured at 240° C.; where the chi parameter is a measure of interactions between the first block and the second block.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Inventors: Phillip Dene Hustad, Peter Trefonas, III, Frank Steven Bates, Marc Andrew Hillmyer, Justin Glenn Kennemur
  • Patent number: 8585910
    Abstract: A process for producing a micromachined tube (microtube) suitable for microfluidic devices. The process entails isotropically etching a surface of a first substrate to define therein a channel having an arcuate cross-sectional profile, and forming a substrate structure by bonding the first substrate to a second substrate so that the second substrate overlies and encloses the channel to define a passage having a cross-sectional profile of which at least half is arcuate. The substrate structure can optionally then be thinned to define a microtube and walls thereof that surround the passage.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 19, 2013
    Assignee: Integrated Sensing Systems Inc.
    Inventors: Douglas Ray Sparks, Nader Najafi
  • Publication number: 20130299453
    Abstract: A method for making a component for a gas turbine engine comprises forming a non-metal substrate having at least one metal receiving surface. A cathode is formed corresponding to a shape of the at least one metal receiving surface. The cathode is submerged into an ionic liquid plating solution. The solution comprises a source of metal cations and a first ionic liquid solvent. An electrical current is applied through the plating solution to the cathode, thereby depositing metal cations onto the cathode and forming an outer metal element The outer metal element is secured to the at least one metal receiving surface of the non-metal substrate.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Benjamin Joseph Zimmerman, Curtis H. Riewe
  • Patent number: 8569175
    Abstract: The invention relates to a method for dry chemical treatment of substrates selected from the group comprising silicon, ceramic, glass, and quartz glass, in which the substrate is treated in a heated reaction chamber with a gas which contains hydrogen chloride as etching agent, and also to a substrate which can be produced in this way. The invention likewise relates to uses of the previously mentioned method.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: October 29, 2013
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Stefan Reber, Gerhard Willeke
  • Publication number: 20130276974
    Abstract: Embodiments of method of manufacturing an implantable pump, including providing an upper layer comprising a dome structure for housing a drug chamber and a cannula in fluid communication with the drug chamber, providing a middle deflection layer adjacent the drug chamber, providing a bottom layer comprising electrolysis electrodes, and bonding the upper layer, middle deflection layer, and bottom layer to form the pump.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 24, 2013
    Inventors: Changlin Pang, Fukang Jiang, Jason Shih, Sean Caffey, Mark S. Humayun, Yu-Chong Tai
  • Publication number: 20130270224
    Abstract: Dielectric composite structures comprising interfaces possessing nanometer scale corrugated interfaces in interconnect stack provide enhances adhesion strength and interfacial fracture toughness. Composite structures further comprising corrugated adhesion promoter layers to further increase intrinsic interfacial adhesion are also described. Methods to form the nanometer scale corrugated interfaces for enabling these structures using self assembling polymer systems and pattern transfer process are also described.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: Lawrence A. Clevenger, Timothy J. Dalton, Elbert E. Huang, Sampath Purushothaman, Carl J. Radens
  • Publication number: 20130264295
    Abstract: A target material capturing filter is described herein. The target material capturing filter may include an inlet through which a fluid enters; an outlet through which at least a portion of the fluid is discharged; a first flow path that is connected to the inlet; a second flow path that is connected to the outlet; and a filter unit that is disposed between the first flow path and the second flow path and captures the target material by letting drop at least a portion of the fluid that flows through the first flow path.
    Type: Application
    Filed: January 9, 2013
    Publication date: October 10, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: June-young LEE, Hui-sung MOON, Min-seoks KIM, Yeon-jeong KIM, Sang-hyun BAEK, Tae-seok SIM, Jin-mi OH, Jeong-gun LEE, Hun-joo LEE, Hyo-young JEONG
  • Patent number: 8551352
    Abstract: The invention relates to a method for producing a device with a membrane used to encapsulate a fluid contained in a cavity, in which: two substrates (110, 120) are provided; a membrane (111) is placed on one and/or on the other of the substrates; one or more walls (113) are formed, helping to laterally define the cavity (114), in which said walls are located on or in one of the substrates and/or on or in the other of the substrates, and said cavity is intended to contain the fluid, the two substrates (110, 120) are assembled together by superimposing one on the other so as to complete the cavity, in which the or each membrane (111) also helps to define the cavity, the fluid (117) is encapsulated in the cavity between the substrates, and the or each membrane is soaked by the fluid, at least a portion of one of the substrates and/or the other of the substrates is removed insofar as one and/or the other of the substrates are equipped with a membrane, in order to release the membrane at least in the central po
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 8, 2013
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Arnaud Pouydebasque, Sébastien Bolis, Fabrice Jacquet
  • Publication number: 20130260171
    Abstract: A charge collection tape is disclosed that includes a foil substrate and an adhesive layer laminated on the foil substrate. The foil substrate is constructed of an aluminum base foil having a conductive metal coating overlying and in direct contact with a non-oxidized surface of the aluminum base foil. A method of making the charge collection tape is also disclosed.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 3, 2013
    Applicant: ADHESIVES RESEARCH, INC.
    Inventor: Brian A. HARKINS
  • Publication number: 20130255567
    Abstract: A method for making an epitaxial base includes the following steps. A plurality of grooves and a plurality of bulges are formed on an epitaxial growth surface of a substrate by etching the epitaxial growth surface. A carbon nanotube layer is located on the epitaxial growth surface, wherein the carbon nanotube layer defines a first part attached on top surface of bulges, and a second part suspended on the grooves. The second part of the carbon nanotube layer is attached on bottom surface of the grooves by treating the carbon nanotube layer.
    Type: Application
    Filed: October 9, 2012
    Publication date: October 3, 2013
    Inventors: YANG WEI, SHOU-SHAN FAN
  • Patent number: 8524097
    Abstract: Plasma etching of a liquid dielectric material such as a polyurethane solution results in volatile byproducts that are deposited onto the surface of an inert substrate. The surface treatment increases adhesiveness so that the surface of the inert material may be bonded to another material. Portions of a medical device comprising an inert substrate such as a fluoropolymer may therefore be securely affixed to other portions of the medical device formed of polymeric, metallic, or ceramic materials.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: September 3, 2013
    Assignee: Medtronic, Inc.
    Inventor: Greg Garlough
  • Publication number: 20130226178
    Abstract: An electrosurgical vessel sealing instrument having a first and a second opposing jaw member at a distal end thereof, wherein each jaw member includes a jaw housing, an inner tissue engaging surface, and an insulating layer disposed therebetween. The instrument includes the ability to move the jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue. The jaws include a tissue-contacting seal plate having obverse and reverse surfaces. A series of ribs extend from the reverse surface of the seal plate into an insulating layer, which, in turn, is affixed to a jaw housing. The ribbed structure of the seal plate reduces thermal spread and edge cutting during vessel sealing procedures, leading to improved surgical outcomes.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Applicant: TYCO Healthcare Group LP
    Inventors: Kim V. Brandt, Allan G. Aquino
  • Patent number: 8514027
    Abstract: A method of multi-stage substrate etching and a terahertz oscillator manufactured by using the method are provided. The method comprises the steps of forming a first mask pattern on any one surface of a first substrate, forming a hole by etching the first substrate using the first mask pattern as an etching mask, bonding, to the first substrate, a second substrate having the same thickness as a depth to be etched, forming a second mask pattern on the second substrate bonded, forming a hole by etching the second substrate using the second mask pattern as an etching mask, and removing an oxide layer having the etching selectivity between the first substrate and the second substrate.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chan Wook Baik, Jong Seok Kim, Seong Chan Jun, Sun Il Kim, Jong Min Kim, Chan Bong Jun, Sang Hun Lee
  • Patent number: 8486278
    Abstract: Embodiments of method of manufacturing an implantable pump, including providing an upper layer comprising a dome structure for housing a drug chamber and a cannula in fluid communication with the drug chamber, providing a middle deflection layer adjacent the drug chamber, providing a bottom layer comprising electrolysis electrodes, and bonding the upper layer, middle deflection layer, and bottom layer to form the pump.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: July 16, 2013
    Assignee: MiniPumps, LLC
    Inventors: Changlin Pang, Fukang Jiang, Jason Shih, Sean Caffey, Mark Humayun, Yu-Chong Tai
  • Patent number: 8461614
    Abstract: A packaging substrate device includes: a first laminate including a first ceramic substrate and a first copper pattern disposed on an upper surface of the first ceramic substrate; and a second laminate disposed over the first copper pattern and including a second ceramic substrate, a second copper pattern that is disposed on an upper surface of the second ceramic substrate, and a through hole extending through the second ceramic substrate and the second copper pattern to expose a copper portion of the first copper pattern. A light emitting semiconductor die can be mounted on the copper portion within the through hole. Efficient heat dissipation can be achieved through the first laminate.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 11, 2013
    Assignee: Tong Hsing Electronic Industries, Ltd.
    Inventors: Wen-Chung Chiang, Keng-Chung Wu, Ying-Chi Hsieh, Cheng-Kang Lu, Ming-Huang Fu
  • Patent number: 8454851
    Abstract: A method for manufacturing a flexible display device in which a flexible substrate is acquired by forming display devices on one side of the substrate and thinning the substrate by removing surface portions on an opposite side of the substrate. The thickness of the substrate is changed from a first thickness, which gives rigidity to the substrate to the second thickness, which gives flexibility to the substrate.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: June 4, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Chang Dong Kim, Hyun Sik Seo, Yong In Park, Seung Han Paek, Jung Jae Lee, Sang Soo Kim
  • Patent number: 8429809
    Abstract: A method for manufacturing a mirror device is presented. The method includes forming a mirror from a first substrate and forming a hinge/support structure from a second substrate. The hinge/support structure is formed with a recessed region and a torsional hinge region. The mirror is attached to the hinge/support structure at the recessed region. Further, a driver system is employed to cause the mirror to pivot about the torsional hinge region.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: John W. Orcutt
  • Patent number: 8419962
    Abstract: A method of the present invention comprises: preparing the first substrate comprising a surface with a first recess and a second recess of which a bottom comprises a first electrode; immersing the first substrate into a electrolyte solution; inserting a second electrode into the electrolyte solution; injecting a bubble into the electrolyte solution with applying a voltage between the first and the second electrodes to dispose the bubble onto only the first recess; dispersing the first microstructure into the electrolyte solution to dispose it onto the first recess; injecting the bubble into the electrolyte solution to dispose the bubble onto the second recess; and dispersing the second microstructure into the electrolyte solution to dispose it onto the second recess.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 16, 2013
    Assignee: Panasonic Corporation
    Inventor: Tohru Nakagawa
  • Patent number: 8419957
    Abstract: A method for producing a micromechanical component is proposed, a trench structure being substantially completely filled up by a first filler layer, and a first mask layer being applied on the first filler layer, on which in turn a second filler layer and a second mask layer are applied. A micromechanical component is also proposed, the first filler layer filling up the trench structure of the micromechanical component and at the same time forming a movable sensor structure.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Roland Scheuerer, Heribert Weber, Eckhard Graf
  • Publication number: 20130069731
    Abstract: A method of multi-stage substrate etching, includes forming a first mask pattern on one surface of a first substrate; forming a hole by etching the first substrate using the first mask pattern as an etching mask; forming a second mask pattern on one surface of a second substrate; forming a hole by etching the second substrate to a predetermined depth using the second mask pattern as an etching mask; bonding the first and second substrates together such that an etched surface of the first substrate faces an etched surface of the second substrate; forming a third mask pattern on the second substrate; and forming a hole passing through the second substrate by etching the second substrate using the third mask pattern as an etching mask, whereby it is prevented the occurrence of a radius of curvature in the bottom surface and the overhang structure occurring on a step surface.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 21, 2013
    Inventors: Chan Wook Baik, Seog Woo Hong, Jong Seok Kim, Seong Chan Jun, Sun IL Kim
  • Publication number: 20130064265
    Abstract: A sensor for measuring heat generated from cells, including a thermopile manufactured by surface-micromachining technology, and a microfluidic flow-channel structure for mixing cells with medium and dividing the mixture into cells and medium. Medium and cells are uniformly mixed using a micro-mixer. The mixture is separated into a medium microfluid and a cell microfluid using the Zweifach-Fung effect, after which signals measured in the two microfluids are amplified. The difference between the two signal values determines the amount of heat generated from the cells. The influence of noise caused by a change in external environment is eliminated. Convection heat dissipation caused by fluid flow is minimized. The sensor accurately measures the amount of heat generated from cells flowing in the microfluidic flow-channel. Diseases such as cancer are diagnosed using the difference between the measured amount of heat generated from cells and the standard amount of heat generated from normal cells.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 14, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun Kyu Lee, Sung Ki Nam, Su Heon Jeong, Jung Kyun Kim, Do Kyun Woo, Sung Yang