Etching Using Radiation (e.g., Laser, Electron-beam, Ion-beam, Etc.) Patents (Class 216/94)
  • Patent number: 8637409
    Abstract: An etching method includes: applying a radiation to an etching aqueous solution; and etching a material to be etched by using the etching aqueous solution irradiated with the radiation.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: January 28, 2014
    Assignee: Fujitsu Limited
    Inventors: Shirou Ozaki, Masayuki Takeda
  • Patent number: 8603590
    Abstract: The invention relates to a method of embedding a metal trace in a silicone containing polymer layer, by the steps of applying an agent that does not adhere to a substrate; applying a polymer layer on the non adhering agent; irradiating a surface of the polymer with a light beam emitted by an excimer laser creating cuts, grooves, blind holes or vias; immersing the irradiated polymer in an autocatalytic bath containing metal ions and metallizing the polymer; thermally treating the metallized polymer layer to induce diffusion of the metalized metal into the first polymer layer; applying a polymer layer on the thermally treated metallized polymer; and thermally treating the metallized polymer.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: December 10, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Lucien D. Laude, Neil Hamilton Talbot, Robert J. Greenberg
  • Publication number: 20130323472
    Abstract: A method for producing a component with at least one functional element includes providing a substrate; enriching a plasma jet with material of the at least one functional element to be formed; and applying at least one functional element on the substrate, in that material in at least essentially liquid form is applied by means of the enriched plasma jet, connected to the substrate and consolidated.
    Type: Application
    Filed: November 7, 2011
    Publication date: December 5, 2013
    Inventor: Kristian Müller-Niehuus
  • Patent number: 8585911
    Abstract: The present invention discloses a thin film multi-band antenna, which is formed by PVD-Roll to Roll process and is formed of metal-oxide, conductive polymer, conductive glue or CNT. In another aspect, the present invention discloses a manufacturing method of thin film antenna, comprising preparing gel, followed by coating the gel on a substrate to form a transparent thin film. Thermal process is performed to heat the thin film. The gel includes vinyl oxide and metal compounds, wherein the vinyl oxide includes PEO having In(NO)3.3H2O, In(Ac)3, SnCl2.2H2O, or Sn(C2O4) contained thereof.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: November 19, 2013
    Inventor: Kuo-Ching Chiang
  • Patent number: 8568605
    Abstract: A method for forming nanometer-sized patterns and pores in a membrane is described. The method comprises incorporating a reactive material onto the membrane, the reactive material being a material capable of lowering an amount of energy required for forming a pore and/or pattern by irradiating the membrane material with an electron beam, thus leading to a faster pore and/or pattern formation.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: October 29, 2013
    Assignee: California Institute of Technology
    Inventors: Sameer Walavalkar, Axel Scherer, Andrew P. Homyk
  • Patent number: 8551869
    Abstract: A method for roughening an epitaxy structure layer, including: providing an epitaxy structure layer; and etching a surface of the epitaxy structure layer by an excimer laser having an energy density of 1000 mJ/cm2 or less to form a roughened surface. In addition, a method for manufacturing a light-emitting diode having a roughened surface is provided.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: October 8, 2013
    Assignee: National Cheng Kung University
    Inventors: Shui-Jinn Wang, Wei-Chi Lee
  • Publication number: 20130248486
    Abstract: A highly polished surface on an aluminum substrate is formed using any number of machining processes. During the machining process, intermetallic compounds are typically generated at a top surface area of the aluminum substrate caused by spot heat generated between the tool edge and the cut tip of the aluminum substrate during the cutting process. The intermetallic compounds can leave surface imperfections after conventional mechanical polishing operations that render the surface of the aluminum substrate difficult to obtain a desired high glossiness due to exfoliation of the intermetallic compounds from the top surface. In order to remove the effect of the intermetallic compounds, an electron beam is applied to the surface resulting in Joule heating to melt down a top surface zone. In this way, any tooling traces and intermetallic compounds are eliminated.
    Type: Application
    Filed: September 26, 2012
    Publication date: September 26, 2013
    Applicant: Apple Inc.
    Inventors: SIMON R. LANCASTER-LAROCQUE, Purwadi RAHARJO, Kensuke UEMURA
  • Patent number: 8540892
    Abstract: High quantum yield InP nanocrystals are used in the bio-technology, bio-medical, and photovoltaic, specifically IV, III-V and III-VI nanocrystal technological applications. InP nanocrystals typically require post-generation HF treatment. Combining microwave methodologies with the presence of a fluorinated ionic liquid allows Fluorine ion etching without the hazards accompanying HF. Growing the InP nanocrystals in the presence of the ionic liquid allows in-situ etching to be achieved. The optimization of the PL QY is achieved by balancing growth and etching rates in the reaction.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: September 24, 2013
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Geoffrey F. Strouse, Derek D. Lovingood
  • Patent number: 8534709
    Abstract: The present invention relates to a method for manufacturing a security element (12) having a metalized microrelief pattern and a negative pattern in register therewith, in which P) a substrate (20) is provided with an embossing pattern having elevations (24) and depressions (26) that form first and second regions having different first and second height levels, wherein the desired microrelief pattern (28) is introduced into the first regions of the embossing pattern, and the second regions of the embossing pattern are developed in the form of the desired negative pattern, M) the embossing pattern with the first and second regions is contiguously metalized (30), and L) the metalized embossing pattern is impinged on with laser radiation, to selectively remove the metalization (30) in the second regions of the embossing pattern through the action of the laser radiation.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: September 17, 2013
    Assignee: Giesecke & Devrient GmbH
    Inventors: Winfried Hoffmuller, Marius Dichtl, Andre Gregarek
  • Publication number: 20130232783
    Abstract: Disclosed is a ceramic substrate including silicon in which the concentration of a silicon oxide and a silicon composite oxide in the surface thereof is less than or equal to 2.7 Atom %.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hiroshi Tonomura, Takeshi Kitahara, Hiroya Ishizuka, Yoshirou Kuromitsu, Yoshiyuki Nagatomo
  • Patent number: 8529782
    Abstract: A microstructure manufacturing method includes (a) generating first light including an interference fringe by crossing two laser beams, (b) forming a denatured region and a non-denatured region on an object having thermal non-linearity by applying the first light onto the object, so that the denatured region and the non-denatured region are disposed so as to correspond to a period of the interference fringe of the first light, and (c) etching the object so that the denatured region or the non-denatured region is selectively eliminated.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: September 10, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Jun Amako
  • Patent number: 8512579
    Abstract: The invention relates to methods and apparatus for manufacturing intravascular stents wherein the intravascular stent has its inner surface treated to promote the migration of endothelial cells onto the inner surface of the intravascular stent. In particular, the inner surface of the intravascular stent has at least one groove formed therein.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: August 20, 2013
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd.
    Inventors: Christopher E. Banas, Julio C. Palmaz, Eugene A. Sprague
  • Patent number: 8512588
    Abstract: A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: August 20, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joseph W. Tringe, Rodney L. Balhorn, Saleem Zaidi
  • Patent number: 8506833
    Abstract: A method for producing a molded body, said method comprising: providing a film comprising a thermoplastic plastic and having a film thickness D ranging from 1 ?m to 1000 ?m; irradiating the film with ionizing radiation, to produce irradiated regions in the film; thermally reshaping the film into a molded body and generating at least one hollow structure, wherein a temperature of the thermal reshaping remains below the melting temperature for the thermoplastic plastic; removing the irradiated regions, to create pores having a diameter ? from about 10 nm to about 10 ?m in the molded body; and removing the molded body from a mold.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: August 13, 2013
    Assignee: Karlsruhe Institute of Technology
    Inventors: Stefan Giselbrecht, Roman Truckenmüller, Christina Trautmann
  • Patent number: 8507829
    Abstract: A method for producing rough surface structures comprising the following step: running a laser beam along filling lines (1) over an area to be processed, wherein the filling line (1) is broken down into particular laser dots (2) with a distance a, and wherein the laser dots (2) are moved in a X direction and in a Y direction in a plane with a random factor b relative to the filling line (1) so that they form a cloud of dots.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: August 13, 2013
    Assignee: ACSYS Lasertechnik GmbH
    Inventors: Silvo Heinritz, Uwe Heinritz, Marcus Polster, Claudia Hartmann, Mirko Jedynak
  • Publication number: 20130196513
    Abstract: Disclosed is a processing method which can achieve a high processing rate, and is capable of making a surface smooth, In order to achieve this an SiC substrate is arranged in a potassium hydroxide solution containing hydrogen peroxide, and ultraviolent radiation is irradiated on the surface of the SiC substrate.
    Type: Application
    Filed: March 18, 2011
    Publication date: August 1, 2013
    Inventors: Akihisa Kubota, Mutsumi Touge
  • Publication number: 20130195723
    Abstract: Methods of forming at least one nanochannel include: (a) providing a substrate having a thick single or a thick multi-layer overlayer; (b) milling at least one channel through the overlayer into the substrate; then (c) removing the overlayer; and (d) forming at least one nanochannel in the substrate having an average width and depth dimension that is less than about 10 nm in response to the milling and removing steps.
    Type: Application
    Filed: September 19, 2011
    Publication date: August 1, 2013
    Inventors: John Michael Ramsey, Laurent Menard, Valeri Gorbuounov
  • Publication number: 20130168356
    Abstract: An object and project of the present invention is to provide a method for producing silicon fine particles and a method for controlling a particle diameter of silicon fine particles which enable efficient production of silicon fine particles having a uniform particle diameter.
    Type: Application
    Filed: September 9, 2011
    Publication date: July 4, 2013
    Applicant: BRIDGESTONE CORPORATION
    Inventors: Seiichi Sato, Mari Miyano, Shigeki Endo, Osamu Shiino, Shingo Ono, Masato Yoshikawa
  • Patent number: 8451146
    Abstract: A method for manufacturing keycap includes applying a first coating layer on a surface of a keycap layer, applying a second coating layer on top of the first coating layer, etching at least a portion of the first coating layer to a first depth to form a first etched area, and etching at least a portion of the first etched area to a second depth to form a second etched area.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 28, 2013
    Assignee: Apple Inc.
    Inventors: Peter H. Mahowald, Omar Sze Leung
  • Patent number: 8449808
    Abstract: A plastic shell with ink-free pattern and its manufacturing method thereof are provided. The manufacturing method includes a step of providing a multilayered film with ink-free pattern, a step of adhering a protective layer of the multilayered film on a surface of a plastic shell body, and a step of performing a laser engraving procedure to present a relief pattern on a surface of the protective layer.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: May 28, 2013
    Assignee: Quanta Computer Inc.
    Inventor: Shu-Chen Lin
  • Patent number: 8449787
    Abstract: A wet etching method that includes forming an insulating film on a substrate, and irradiating laser light to the insulating film during wet etching of the insulating film using an etching solution.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: May 28, 2013
    Assignee: Fujitsu Limited
    Inventors: Tadahiro Imada, Yoshihiro Nakata, Koji Nozaki
  • Publication number: 20130126478
    Abstract: The present invention provides an etching solution for silver or silver alloy comprising one at least ammonium compound represented by the formula (1), (2) or (3) below and an oxidant:
    Type: Application
    Filed: January 15, 2013
    Publication date: May 23, 2013
    Applicant: INKTEC CO., LTD.
    Inventors: Kwang-Choon CHUNG, Hyun-Nam CHO, Young-Kwan SEO
  • Publication number: 20130126474
    Abstract: The invention describes a process to remove a recast layer and/or burrs from machining processes to provide a surface of a titanium medical device without dissipation of copper or zinc from the surface of the medical device.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 23, 2013
    Inventors: Alan Shi, Bernard Q. Li, Daniel D. Sorensen, Darren A. Janzig
  • Patent number: 8435607
    Abstract: A housing for a portable electronic device includes a metallic base, a chemical plating layer, a prime layer, a color coating layer, a decorative layer, and a transparent protection layer. The chemical plating layer, the prime layer, the color coating layer, the decorative layer, and the transparent protection layer are coated on the metallic base in that order. The decorative layer defines a pattern extending through the decorative layer.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: May 7, 2013
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Jen-Hong Hsu, Hai-Lin Chen, Jian-Wei Zhang, Yong Yang, Ying-Hao Feng, Yu-Guo Zhang
  • Publication number: 20130092657
    Abstract: The present invention relates to a novel etching media in the form of printable, homogeneous etching pastes with non-Newtonian flow properties for the improved etching of inorganic oxides and silicon surfaces and which allow to prepare smaller features.
    Type: Application
    Filed: May 17, 2011
    Publication date: April 18, 2013
    Applicants: NANO TERRA, INC., MERCK PATENT GESELLSCHAFT MIT BESCHRANKTER HAFTUNG
    Inventors: Jennifer Gillies, Ralf Kuegler, Eric Stern, Brian Mayers, Patrick Reust, Lindsay Hunting
  • Publication number: 20130092555
    Abstract: Methods and apparatuses for use in such methods for removing islands from laser cut articles. Methods include using a chemical etching solution to remove material in the strut-island gap. Optionally, heat and/or agitation can be applied during the etching process to increase the chemical activity of the chemical etching solution and/or to vibrate the islands out of position.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Nicholas R. Haluck, Austin M. Leach, Patrick C. Vien
  • Publication number: 20130089701
    Abstract: A method of forming an aperture (e.g., a through via, a blind via, a trench, an alignment feature, etc.) within a substrate includes irradiating a substrate with a laser beam to form a laser-machined feature having a sidewall. The laser-machined feature is then processed to change at least one characteristic (e.g., the sidewall surface roughness, diameter, taper, aspect ratio, cross-sectional profile, etc.) of the laser-machined feature. The laser-machined feature can be processed to form the aperture by performing an isotropic wet-etch process employing an etchant solution containing HNO3, HF and, optionally acetic acid.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Andy Hooper, Daragh Finn, Tim Webb, Lynn Sheehan, Kenneth Pettigrew, Yu Chong Tai
  • Patent number: 8409672
    Abstract: It is an object to provide a method of manufacturing a light-emitting device, which improves use efficiency of an evaporation material and increases accuracy in forming an evaporated pattern by using an evaporation donor substrate by which a material layer to be a transfer layer is prevented from being excessively evaporated and a desired evaporated pattern can be formed. In a method of manufacturing an evaporation donor substrate, a first substrate which is an evaporation donor substrate is irradiated with first light (laser light) through a second substrate which is a mask substrate, whereby a material layer over the first substrate is patterned. In addition, in a method of manufacturing a light-emitting device, the first substrate provided with the material layer which is patterned by the above method is irradiated with second light, whereby the material layer can be evaporated onto a third substrate which is a deposition target substrate.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: April 2, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kohei Yokoyama, Yosuke Sato
  • Publication number: 20130008868
    Abstract: According to one embodiment, a substrate processing method is disclosed. The method can include treating a substrate with a first liquid. The substrate has a structural body formed on a major surface of the substrate. The method can include forming a support member supporting the structural body by bringing a second liquid into contact with the substrate wetted by the first liquid, and changing at least a portion of the second liquid into a solid by carrying out at least one of causing the second liquid to react, reducing a quantity of a solvent included in the second liquid, and causing at least a portion of a substance dissolved in the second liquid to be separated. The method can include removing the support member by changing at least a part of the support member from a solid phase to a gaseous phase, without passing through a liquid phase.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 10, 2013
    Inventors: Yoshihiro UOZUMI, Shinsuke Kimura, Yoshihiro Ogawa, Hiroyasu Iimori, Tatsuhiko Koide, Hideaki Hirabayashi, Yuji Nagashima
  • Publication number: 20120308765
    Abstract: A nanostructure forming method includes: preparing a substrate having an appropriate processing value; applying laser beam having a pulse duration of picosecond order or less to a planar surface oriented in a propagation direction of the laser beam and a direction perpendicular to a polarization direction (electric field direction) of the laser beam in the interior of the substrate at an irradiation intensity which is close to the appropriate processing value of the substrate; forming a structure-modified portion at a focus at which the laser beam is concentrated and in a region which is close to the focus; and forming a nanostructure formed of a nano-hole by selectively etching the structure-modified portion.
    Type: Application
    Filed: August 3, 2012
    Publication date: December 6, 2012
    Applicants: FUJIKURA LTD., THE UNIVERSITY OF TOKYO, BIO ELECTRO-MECHANICAL AUTONOMOUS NANO SYSTEMS LABORATORY TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Osamu NUKAGA, Seiji SAMUKAWA, Masakazu SUGIYAMA
  • Publication number: 20120292117
    Abstract: Wellbore tools include a body and a superhydrophobic surface disposed over at least a portion of the body. The superhydrophobic surface includes a patterned surface of a hydrophobic material exhibiting a higher hydrophobicity than an unpatterned surface of the hydrophobic material. A wellbore tool may include a seal, at least one sensor, and at least one flow line, each having at least one superhydrophobic surface. Methods of forming wellbore tools include forming a body, forming a hydrophobic surface over at least a portion of the body, and forming a pattern in a surface of the body, such that the patterned surface exhibits a higher hydrophobicity than an unpatterned surface of the same material.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Hendrick John, Sunil Kumar
  • Publication number: 20120285930
    Abstract: The invention pertains to a printing form and a process for preparing the printing form from a curable composition that includes an epoxy novolac resin having an epoxide equivalent weight of 156 to 300 g/equivalent, and an amine curing agent selected from primary amines and secondary amines, the agent having an amine equivalent weight of less than or equal to 60 g/equivalent. The process includes applying the curable composition to a supporting substrate to form a layer, curing the layer at one or more temperatures in a temperature range, and engraving to form at least one cell in the cured layer. The process prepares printing forms, particularly gravure printing forms, having a cured resin composition layer that is engravable, resistant to solvent inks and to mechanical wear, and capable of printing gravure-quality images.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Douglas J. Adelman, Cara L. Blankenbicker, Andrew P. Davis, Barbara B. Fones, Helen S. M. Lu, Mark E. Wagman
  • Patent number: 8282998
    Abstract: The present invention relates to a method of realizing an optical function on a component of a motor vehicle indicating or lighting device. This method is more particularly suited to producing a mask for a headlamp or light and/or to treating reflective surfaces. The method comprises a step of forming said component in a predetermined material and a step of exposing at least one surface of said component to laser radiation.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: October 9, 2012
    Assignee: Valeo Vision
    Inventors: Ghislain Lefevre, Thomas Giroud
  • Patent number: 8266785
    Abstract: A method for manufacturing a magnetoresistive sensor having improved pinned layer stability at small track widths. The method includes providing a substrate, and depositing a plurality of sensor layers. A layer of material that is resistant to removal by chemical mechanical polishing (CMP stop layer) and an antireflective coating layer are deposited. A photoresist mask is formed on the antireflective layer, and a reactive ion etch (RIE) is performed to remove portions of the ion mill resistant mask that are not covered by the photoresist mask, the RIE being performed in a plasma chamber having a platen, the performing the RIE further comprising applying a platen power of at least 70 W. An ion milling is performed to remove a portion of the sensor layers, the ion milling being terminating before all of the sensor materials have been removed.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: September 18, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: James Mac Freitag, Wipul Pemsiri Jayasekara, Mustafa Michael Pinarbasi
  • Patent number: 8269742
    Abstract: A manufacturing method of a coordinate position detecting device includes the steps of forming the common electrode on the resistive film of tour sides of the substrate having a rectangular-shaped configuration; measuring the electric potential of the resistive film by plural probes contacting a surface of the resistive film where the electric potential is supplied from the common electrode to the resistive film; calculating a resistive film removing area, based on a value of a measured electric potential, by a calculating part so that the electric potential distribution of the resistive film is made uniform; and removing the resistive film in the resistive film removing area calculated by the calculating part, by a laser light.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: September 18, 2012
    Assignee: Fujitsu Component Limited
    Inventor: Koichi Kondoh
  • Patent number: 8246847
    Abstract: There are provided an aqueous solution for separation of a conductive ceramics sintered body in which a conductive ceramic sintered body separated form a glass can be collected in a recyclable condition, and a separating method therefor, and an aqueous solution for separation with which a dark ceramics sintered body, a conductive ceramics sintered body and a glass are separately collected from a glass with a dark ceramics sintered body in which a conductive ceramics sintered body is formed on the dark ceramics sintered body, and a separating method therefor. A treatment liquid having an etching ability for at least one of a glass and a conductive ceramic sintered body is prepared as an aqueous solution 20 for separation of the conductive ceramics sintered body, then the aqueous solution 20 for separation is filled in a container 11, and a glass with a conductive ceramics sintered body 30 is immersed into the aqueous solution 20 for separation in the container 11.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: August 21, 2012
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Masahiro Hori, Kazuishi Mitani, Yasuhiro Saito, Nobuyuki Takatsuki, Kyouichi Shukuri, Shunji Kuramoto
  • Patent number: 8235769
    Abstract: To provide an electron beam assisted EEM method that can realize ultraprecision machining of workpieces, including glass ceramic materials, in which at least two component materials different from each other in machining speed in a machining process are present in a refined mixed state and the surface state is not even, to a surface roughness of 0.2 to 0.05 nm RMS. The EEM method comprises a working process in which a workpiece and chemically reactive fine particles are allowed to flow along the working face to remove atoms on the working face chemically bonded to the fine particles together with the fine particles through chemical interaction between the fine particles and the working face interface. The workpiece comprises at least two component materials present in a refined mixed state and different from each other in machining speed in the machining process.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: August 7, 2012
    Assignees: JTEC Corporation
    Inventor: Yuzo Mori
  • Publication number: 20120178956
    Abstract: A method for preparing a functional structured surface includes the controlled removal of material from a film including at least one buried pore, the inner surface of the pore including at least one chemical linkage group, where the material is removed so as to expose part of the inner surface of the pore that is not affected by the removal of material.
    Type: Application
    Filed: September 8, 2010
    Publication date: July 12, 2012
    Inventors: Sandrine Dourdain, Pierre Terech
  • Patent number: 8206600
    Abstract: A method of etching a foil for use in an electrolytic capacitor utilizes a nanoimprinted optic to control the etch pattern. The optic is formed by creating a self-assembled monolayer (SAM) of hemispheres onto the surface of an optical quartz substrate. A laser is directed onto the optic while the foil underlies the optic, and the concentrated light source is used to effectively image an array of submicron spots. The resulting spots allow for controlled initiation of etch tunnels during a subsequent electrochemical etch of the foil, with the purpose of ultimately increasing foil capacitance through the increased surface area.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: June 26, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Bruce Ribble
  • Publication number: 20120152902
    Abstract: A method for forming nanometer-sized patterns and pores in a membrane is described. The method comprises incorporating a reactive material onto the membrane, the reactive material being a material capable of lowering an amount of energy required for forming a pore and/or pattern by irradiating the membrane material with an electron beam, thus leading to a faster pore and/or pattern formation.
    Type: Application
    Filed: November 17, 2011
    Publication date: June 21, 2012
    Inventors: Sameer WALAVALKAR, Axel SCHERER, Andrew P. HOMYK
  • Publication number: 20120145673
    Abstract: A dielectric barrier discharge plasma generator includes a dielectric chamber. The chamber contains or incorporates a solid surface that is to be treated with non-thermal plasma. The chamber can be substantially sealed and confine an atmosphere therein. An atmosphere control system is provided for controlling the atmosphere within the chamber. At least one or two electrodes are located outside of the chamber. When actuated by an appropriate source of plasma generating electrical power the electrodes cause the generation of a solid surface modifying non-thermal plasma in a plasma zone within the chamber. A transport system is provided for moving the electrode and the chamber relative to one another. A plasma zone is confined within the chamber adjacent to the electrodes, and remains substantially stationary relative to the electrodes. The chamber carries the solid surface through the plasma zone. The solid surface remains substantially stationary relative to the chamber.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 14, 2012
    Applicant: Tri-Star Technologies
    Inventor: Igor Murokh
  • Patent number: 8196285
    Abstract: A method and system for providing a PMR pole in a transducer including an intermediate layer are disclosed. A mask including line(s) having side(s) is provided. A hard mask is provided on the mask. Portions of the hard mask reside on the line side(s) and intermediate layer surface. The hard mask includes a wet-etchable layer and a high removal ratio layer on the wet-etchable layer. Part of the hard mask on the side(s) of the line is removed, exposing part of the line. The high removal ratio layer has a low angle removal rate on the line side(s) and a high angle removal rate on the intermediate layer surface. The low angle removal rate is at least four times the high angle removal rate. The line is removed, providing an aperture in the hard mask. A trench is provided in the intermediate layer. A PMR pole is provided.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: June 12, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinqiu Zhang, Liubo Hong
  • Publication number: 20120123135
    Abstract: A silsesquioxane resin is applied on top of the patterned photo-resist and cured to produce a cured silsesquioxane resin on top of the pattern surface. Subsequently, an aqueous base stripper or a reactive ion etch recipe containing CF4 is used to “etch back” the silicon resin to the top of the photoresist material, exposing the entire top surface of the photoresist. Then, a second reactive ion etch recipe containing O2 to etch away the photoresist. The result is a silicon resin film with via holes with the size and shape of the post that were patterned into the photoresist. Optionally, the new pattern can be transferred into the underlying layer(s).
    Type: Application
    Filed: June 22, 2010
    Publication date: May 17, 2012
    Inventors: Michael L. Bradford, Eric Scott Moyer, Kasumi Takeuchi, Sheng Wang, Craig Rollin Yeakle
  • Patent number: 8177988
    Abstract: A method for manufacturing a substrate for a liquid discharge head having a silicon substrate provided with a supply port of a liquid comprises steps of preparing a substrate which is provided with a passive film on one side face thereof, has a first recess and a second recess provided therein so as to penetrate from the one side face into the inner part through the passive film, wherein the recesses satisfy a relation of a ×tan 54.7 degrees?d, where a is defined as a distance between the first recess and the second recess, and d is defined as a depth of the second recess, and forming the supply port by anisotropically etching the crystal from the one side face.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: May 15, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroto Komiyama, Hirokazu Komuro, Satoshi Ibe, Takuya Hatsui, Keisuke Kishimoto, Shimpei Otaka, Sadayoshi Sakuma
  • Publication number: 20120091144
    Abstract: Provided is a flexible cryostat for use in applications including surrounding high temperature superconductor cabling. The flexible cryostat disclosed here in an embodiment includes a polymer pipe as the outer surface of the cryostat. In an embodiment, both the inner and outer pipes of a cryostat are replaced with polymer pipes which have the same or different thickness and composition. One or both of the polymer pipes can be used in combination with a permeation barrier, which is, in separate embodiments, ethylene vinyl alcohol, or a metallic layer such as aluminum or stainless steel. The flexible polymer pipe can surround the permeation barrier, or the permeation barrier can be positioned at the inner or outer surface of one or both flexible polymer pipes.
    Type: Application
    Filed: March 7, 2011
    Publication date: April 19, 2012
    Inventors: Rolf Gerald Baumgartner, Ryan Andrew Sievers
  • Patent number: 8133554
    Abstract: Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces are disclosed herein. In one embodiment, a method includes depositing molecules of a gas onto a microfeature workpiece in the reaction chamber and selectively irradiating a first portion of the molecules on the microfeature workpiece in the reaction chamber with a selected radiation without irradiating a second portion of the molecules on the workpiece with the selected radiation. The first portion of the molecules can be irradiated to activate the portion of the molecules or desorb the portion of the molecules from the workpiece. The first portion of the molecules can be selectively irradiated by impinging the first portion of the molecules with a laser beam or other energy source.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: March 13, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Dan Gealy
  • Patent number: 8114305
    Abstract: A method of manufacturing a silicon substrate for a liquid discharge head with a liquid supply opening formed therein includes: forming one processed portion by laser processing on the substrate from one surface of the substrate; expanding the one processed portion to form a recess portion by performing laser processing at a position which overlaps a part of the one processed portion and does not overlap another part of the one processed portion; and etching from the one surface the substrate with the recess portion formed therein to form the liquid supply opening.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: February 14, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroto Komiyama, Hirokazu Komuro, Satoshi Ibe, Takuya Hatsui, Keisuke Kishimoto, Kazuhiro Asai, Shimpei Otaka
  • Publication number: 20120017825
    Abstract: A method for growing a crystalline composition, the first crystalline composition may include gallium and nitrogen. The crystalline composition may have an infrared absorption peak at about 3175 cm?1, with an absorbance per unit thickness of greater than about 0.01 cm?1. In one embodiment, the composition ay have an amount of oxygen present in a concentration of less than about 3×1018 per cubic centimeter, and may be free of two-dimensional planar boundary defects in a determined volume of the first crystalline composition.
    Type: Application
    Filed: November 9, 2006
    Publication date: January 26, 2012
    Applicant: General Electric Company
    Inventors: Mark Philip D'Evelyn, Kristi Jean Narang, Dong-Sil Park, Huicong Hong, Xian-An Cao, Larry Qiang Zeng
  • Patent number: 8092558
    Abstract: There is disclosed a microchannel reactor module for the immediate catalytic release of hydrogen from hydrogenated organic molecules along with the recovery of hydrogen gas and the recovery of dehydrogenated organic molecules as a liquid. More specifically, the disclosure provides a polyimide-based microchannel plate that is particularly useful for a process of immediate catalytic release of hydrogen from a hydrogenated organic molecule or formulation of molecules.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: January 10, 2012
    Assignee: Asemblon, Inc.
    Inventors: David G. O'Connor, Robert B. Nelson
  • Publication number: 20110304485
    Abstract: A method for manufacturing keycap includes applying a first coating layer on a surface of a keycap layer, applying a second coating layer on top of the first coating layer, etching at least a portion of the first coating layer to a first depth to form a first etched area, and etching at least a portion of the first etched area to a second depth to form a second etched area.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: Apple Inc.
    Inventors: Peter H. Mahowald, Omar Sze Leung