With Lens Patents (Class 219/121.75)
  • Patent number: 7872209
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: January 18, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 7872246
    Abstract: When the second harmonic of a YAG laser is irradiated onto semiconductor films, concentric-circle patterns are observed on some of the semiconductor films. This phenomenon is due to the non-uniformity of the properties of the semiconductor films. If such semiconductor films are used to fabricate TFTs, the electrical characteristics of the TFTs will be adversely influenced. A concentric-circle pattern is formed by the interference between a reflected beam 1 reflected at a surface of a semiconductor film and a reflected beam 2 reflected at the back surface of a substrate. If the reflected beam 1 and the reflected beam 2 do not overlap each other, such interference does not occur. For this reason, a laser beam is obliquely irradiated onto the semiconductor film to solve the interference. The properties of a crystalline silicon film formed by this method are uniform, and TFTs which are fabricated by using such crystalline silicon film have good electrical characteristics.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 18, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro Tanaka
  • Publication number: 20110008973
    Abstract: In the case of a lens array type homogenizer optical system, the incident angle and intensity of a laser beam 1 entering a large-sized lens (long-axis condenser lens 22) of a long-axis condensing optical system, which is provided on the rear side, are changed for every shot by performing laser irradiation while long-axis lens arrays 20a and 20b are reciprocated in a direction corresponding to a long axial direction of a linear beam (X-direction). Therefore, vertical stripes are significantly reduced. Further, the incident angle and intensity of a laser beam 1 entering a large-sized lens (projection lens 30) of a short-axis condensing optical system, which is provided on the rear side, are changed for every shot by performing laser irradiation while short-axis lens arrays 26a and 26b are reciprocated in a direction corresponding to a short axial direction of a linear beam (Y-direction). Therefore, horizontal stripes are significantly reduced.
    Type: Application
    Filed: May 30, 2008
    Publication date: January 13, 2011
    Applicant: IHI CORPORATION
    Inventors: Norihito Kawaguchi, Ryusuke Kawakami, Kenichiro Nishida, Miyuki Masaki, Masaru Morita
  • Publication number: 20100304506
    Abstract: The present invention is to provide a laser irradiation method for performing homogeneous laser irradiation to the irradiation object even when the thickness of the irradiation object is not even. In the case of irradiating the irradiation object having uneven thickness, the laser irradiation is performed while keeping the distance between the irradiation object and the lens for condensing the laser beam on the surface of the irradiation object constant by using an autofocusing mechanism. In particular, when the irradiation object is irradiated with the laser beam by moving the irradiation object relative to the laser beam in the first direction and the second direction of the beam spot formed on the irradiation surface, the distance between the irradiation object and the lens is controlled by the autofocusing mechanism before the irradiation object is moved in the first and second directions.
    Type: Application
    Filed: August 4, 2010
    Publication date: December 2, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Koichiro TANAKA, Yoshiaki YAMAMOTO
  • Publication number: 20100294749
    Abstract: A method for laser beam machining of a workpiece in which a laser beam is focused by an objective, into or onto the workpiece having a boundary surface, to produce a machining effect by a two-photon process, and the position of the focal point with respect to the workpiece is shifted. To obtain a reference for the position of the focal point, an image of a luminating modulation object is projected through the objective onto the workpiece into the focal plane or so as to intersect it. Reflections of the image occurring at the boundary surface are imaged into an autofocus image plane, and are detected by a camera. The camera image plane either intersects the autofocus image plane when the image of the illuminating modulation object lies in the focal plane, or lies in the autofocus image plane when the image of the modulation object intersects the focal plane.
    Type: Application
    Filed: November 20, 2008
    Publication date: November 25, 2010
    Applicant: CARL ZEISS AG
    Inventors: Michael Kempe, Peter Westphal, Wolfgang Grau, Georg Von Freymann
  • Patent number: 7829818
    Abstract: In an ink jet head nozzle plate manufacturing method, a laser beam is generated using a laser beam source. A direction of the laser beam is changed using a mirror that reflects the laser beam. The laser beam reflected by the mirror is condensed using micro-lenses arranged on a common plane. Nozzle openings are formed in a nozzle plate using the laser beam condensed by the micro-lenses.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: November 9, 2010
    Assignee: SII Printek Inc.
    Inventor: Toshihiko Harajiri
  • Patent number: 7812280
    Abstract: Embodiments of the present invention are directed to methods and systems for micromachining a conical surface. In one embodiment, such a system may include a rotating platform for receiving a long line of laser illumination, a mask having a predetermined pattern comprising a sector of a planar ring, the mask being positioned on the rotating platform, a workpiece stage having a rotational axis for rotating a removably-affixed workpiece comprising a conical surface, wherein the sector comprises the planar image of the conical surface, an excimer laser for producing a laser beam, a homogenizer for homogenizing the laser beam in at least a single direction, at least one condenser lens, a turning mirror and at least one projection lens.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: October 12, 2010
    Assignee: Resonetics, Inc.
    Inventors: Sergey V. Broude, Rong Gu, David S. Holbrook, Kenneth T. McDaniel, Pascal Miller, David L. Wall
  • Patent number: 7795560
    Abstract: An apparatus for processing a work-piece (80) includes a laser source (102) and a first lens assembly (108). The laser source is configured for emitting laser beams. The first lens assembly is configured for adjustably focusing the laser beams onto the work-piece. The first lens assembly is disposed in optical alignment with the laser source and includes a first lens set having a positive refractive power and a second lens set having a negative refractive power. Because of the first lens assembly, the laser beams emitted from the laser source can be focused accurately onto the work-piece, and then the apparatus for processing the work-piece has accurately focused laser beams as a result.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 14, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Publication number: 20100219171
    Abstract: A laser processing system and a laser processing method that can highly accurately and efficiently specify a focus position of a processing laser using visible lasers are provided.
    Type: Application
    Filed: July 10, 2007
    Publication date: September 2, 2010
    Inventors: Akio Sato, Hiroyuki Suzuki, Akihiko Tsuboi
  • Publication number: 20100193484
    Abstract: A system and method for precision cutting using multiple laser beams is described, The system and method includes a combination of optical components that split the output of a single laser into multiple beams, with the power, polarization status and spot size of each split beam being individually controllable, while providing a circularly polarized beam at the surface of a work piece to be cut by the laser beam. A system and method for tracking manufacture of individual stents is also provided.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 5, 2010
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Li Chen, Randolf Von Oepen
  • Publication number: 20100181295
    Abstract: The present invention relates to a method and to a device for separating solder material deposits (12) from a substrate (10), in which a receiving sleeve (19) having a receiving opening (22) is positioned to overlap with a solder material deposit arranged on the substrate in such a manner that an opening edge (21) of the receiving opening is brought into abutment against the substrate in an essentially sealing manner, the solder material deposit is subjected to thermal energy and a sleeve lumen (23) that is defined by the receiving sleeve and that is disposed transverse to a longitudinal axis (30) of the receiving sleeve is subjected to an air flow (28) that is directed to an output device (29) of the receiving sleeve.
    Type: Application
    Filed: June 10, 2008
    Publication date: July 22, 2010
    Inventor: Ghassem Azdasht
  • Patent number: 7759602
    Abstract: A laser processing head comprises nozzle-holding means (5) for holding a nozzle in which a nozzle hole (11) is formed; condensing optical system-holding means (3) for holding a condensing optical system (2), the condensing optical system-holding means being slidably arranged in the nozzle-holding means while maintaining sealing, moving means (6) for slide-moving the nozzle-holding means and the condensing optical system-holding means relative to each other; gas-feeding means (13, 19) for feeding a gas into a laser processing head chamber (8) formed between the condensing optical system of the condensing optical system-holding means and the nozzle hole of the nozzle-holding means; passages (31) formed in the nozzle-holding means to communicate the laser processing head chamber with the exterior of the nozzle-holding means; slide members (33) that slide in the passages while maintaining sealing; and coupling means (35) for coupling the slide members to the condensing optical system-holding means.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: July 20, 2010
    Assignee: Fanuc Ltd.
    Inventors: Atsushi Mori, Ryoma Okazaki
  • Publication number: 20100176100
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 15, 2010
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20100163536
    Abstract: The invention provides a substrate treatment method and apparatus. Embodiments show a substrate in the form of a rotary encoder ring having a pattern of marks producable by means of a laser treatment device controllable to produce the pattern in the correct manner whilst there is continuous relative displacement between the ring and the laser treatment device.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 1, 2010
    Applicant: RENISHAW PLC
    Inventors: Alexander David Scott Ellin, James Reynolds Henshaw, David Roberts McMurtry
  • Patent number: 7742212
    Abstract: A focused laser beam having an optical axis passes sequentially through a simple, positive lens, a pair of plane, parallel windows, and a second, simple, negative lens. Each of the plane, parallel windows are mounted to a galvanometer motor and positioned orthogonally to one another. The focused laser beam is therefore displaced in a controlled manner from the optical axis to enable laser machining of very precise geometric features over a large processing window. A field size of one thousand microns is achieved.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: June 22, 2010
    Inventors: Michael J. Scaggs, Thomas Schoelzel
  • Publication number: 20100147812
    Abstract: There is described a method for producing a hole using e.g. a lasers, wherein short laser pulse durations are used. The laser pulse durations are varied, short laser pulse durations being utilized only in the area to be removed in which an influence on the penetration behavior and discharge behavior is noticeable while longer pulse durations of >0.4 ms are used. This is the case for the inner surface of a diffuser of a hole, for example, which can be produced very accurately by means of short laser pulse durations.
    Type: Application
    Filed: January 5, 2007
    Publication date: June 17, 2010
    Inventors: Thomas Beck, Silke Settegast
  • Patent number: 7709768
    Abstract: A variable astigmatic focal beam spot is formed using lasers with an anamorphic beam delivery system. The variable astigmatic focal beam spot can be used for cutting applications, for example, to scribe semiconductor wafers such as light emitting diode (LED) wafers. The exemplary anamorphic beam delivery system comprises a series of optical components, which deliberately introduce astigmatism to produce focal points separated into two principal meridians, i.e. vertical and horizontal. The astigmatic focal points result in an asymmetric, yet sharply focused, beam spot that consists of sharpened leading and trailing edges. Adjusting the astigmatic focal points changes the aspect ratio of the compressed focal beam spot, allowing adjustment of energy density at the target without affecting laser output power. Scribing wafers with properly optimized energy and power density increases scribing speeds while minimizing excessive heating and collateral material damage.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: May 4, 2010
    Assignee: JP Sercel Associates Inc.
    Inventors: Patrick J. Sercel, Jeffrey P. Sercel, Jongkook Park
  • Publication number: 20100089881
    Abstract: Methods and systems process a semiconductor substrate having a plurality of structures to be selectively irradiated with multiple laser beams. The structures are arranged in a plurality of substantially parallel rows extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects a first target location on or within the semiconductor substrate. The method also generates a second laser beam that propagates along a second laser beam axis that intersects a second target location on or within the semiconductor substrate. The second target location is offset from the first target location in a direction perpendicular to the lengthwise direction of the rows by some amount such that, when the first target location is a structure on a first row of structures, the second target location is a structure or between two adjacent structures on a second row distinct from the first row.
    Type: Application
    Filed: December 15, 2009
    Publication date: April 15, 2010
    Applicant: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo
  • Publication number: 20100089886
    Abstract: Vision correction and tracking systems may be used in laser machining systems and methods to improve the accuracy of the machining. The laser machining systems and methods may be used to scribe one or more lines in large flat workpieces such as solar panels. In particular, laser machining systems and methods may be used to scribe lines in thin film photovoltaic (PV) solar panels with accuracy, high speed and reduced cost. The vision correction and/or tracking systems may be used to provide scribe line alignment and uniformity based on detected parameters of the scribe lines and/or changes in the workpiece.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 15, 2010
    Applicant: J.P. SERCEL ASSOCIATES INC.
    Inventors: Jeffrey P. Sercel, Donald J. Lemmo, Terrence A. Murphy, JR., Lawrence Roberts, Tom Loomis, Miroslaw Sokol
  • Publication number: 20100072183
    Abstract: An apparatus for cutting a substrate includes a laser oscillator generating a femtosecond laser beam, a first beam splitter splitting the femtosecond laser beam into first and second femtosecond laser beams, a first condenser lens receiving the first femtosecond laser beam and condensing the first femtosecond laser beam to have a first focal depth, a second condenser lens receiving the second femtosecond laser beam, and condensing the second femtosecond laser beam to have a second focal depth different from the first focal depth, and a second beam splitter receiving and splitting the first femtosecond laser beam condensed through the first condenser lens and the second femtosecond laser beam condensed through the second condenser lens, and irradiating the split first and second femtosecond laser beams at different positions on a substrate to be cut.
    Type: Application
    Filed: November 20, 2009
    Publication date: March 25, 2010
    Inventor: Jeong Kweon Park
  • Publication number: 20100065536
    Abstract: A method and apparatus (1) for machining a semiconductor or ceramic workpiece (32) causes a portion of the workpiece to undergo high pressure phase transformation to form a high pressure phase transformation portion which has altered optical properties from the remainder of the workpiece. A laser is irradiated on the high pressure transformation portion to heat the high pressure transformation portion and cause it to soften and then the workpiece is plastically deformed, at smaller loads and forces, along the softened portion in order to accomplish the machining of the workpiece with a machining tool (21).
    Type: Application
    Filed: September 28, 2005
    Publication date: March 18, 2010
    Inventor: John Patten
  • Patent number: 7680163
    Abstract: A first mirror (5) that can be located at a reflection position (I) at which an optical path is blocked and a laser beam (a) is reflected, and a second mirror (6) that reflects the laser beam (a) which is reflected by the first mirror (5) are disposed between the condenser lens (2) and the object to be irradiated (4). The first mirror (5) is located at the reflection position (I) so that the laser beam (a) that is transmitted through the condenser lens (2) is sequentially reflected by the first and second mirrors (5 and 6), and an intensity of the laser beam (a) that is again reflected by the first mirror (5) is made to coincide with an intensity of the laser beam (a) that is reflected from the object to be irradiated (4), and the condenser lens (2) is heated in the same manner that the processing laser beam (a) is transmitted through the condenser lens (2) and irradiated on the object to be irradiated (4).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: March 16, 2010
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Junichi Shida, Suk-hwan Chung, Shuichi Uryu
  • Patent number: 7675003
    Abstract: In a laser irradiation device, a patterning method and a method of fabricating an Organic Light Emitting Display (OLED) using the same. The laser irradiation device includes a light source, a mask, a projection lens, and a Fresnel lens formed at a predetermined portion of the mask to change an optical path. When an organic layer pattern is formed using the laser irradiation device, laser radiation is irradiated onto a region of an organic layer, which is to be cut, and the laser radiation is appropriately irradiated onto a region of the organic layer, which is to be separated from a donor substrate. The laser radiation irradiated onto an edge of the organic layer pattern has a laser energy density greater than that of the laser radiation irradiated onto other portions of the organic layer pattern. As a result, it is possible to form a uniform organic layer pattern and reduce damage of the organic layer.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: March 9, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jae-Ho Lee, Tae-Min Kang, Seong-Taek Lee
  • Patent number: 7674999
    Abstract: A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and provide collimation along the fast axis. The selected lenslets have one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Abhilash J. Mayur, Timothy N. Thomas, Vijay Parihar, Vedapuram S. Achutharaman, Randhir P. S. Thakur
  • Publication number: 20100025386
    Abstract: The time required for forming a modified region within an object to be processed is shortened.
    Type: Application
    Filed: September 26, 2007
    Publication date: February 4, 2010
    Applicant: Hammamatsu Photonics K.K.
    Inventors: Koji Kuno, Tatsuya Suzuki, Norio Kurita, Tetsuya Osajima
  • Patent number: 7656592
    Abstract: An optical system is configured for projecting an image having a quasi-flat-topped intensity profile from a laser-beam having a Gaussian intensity profile. The optical system includes a diffraction limited lens for focusing the laser beam and one or more optical elements that introduce aberration into the beam before the beam is focused. The aberration introduced causes the Gaussian intensity profile to be changed to the quasi-flat-topped intensity profile at some position in a focal region of the diffraction-limited lens.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: February 2, 2010
    Assignee: Reliant Technologies, Inc.
    Inventor: George Frangineas
  • Publication number: 20100006548
    Abstract: A converging point of processing laser light is made to accurately follow a laser light irradiation surface of an object to be processed. An object to be processed 1 is irradiated with measuring laser light along a line to cut 5, astigmatism is added to a reflected light component of the measuring laser light reflected by a front face 3 of the object 1 irradiated with the measuring laser light, a displacement sensor signal corresponding to a converged light image of the reflected light component having the astigmatism added thereto is detected, and the displacement sensor signal is made to become a feedback reference value corresponding to the quantity of the reflected light component, so as to locate the converging point of the processing laser light at a predetermined position with respect to the front face 3.
    Type: Application
    Filed: September 26, 2007
    Publication date: January 14, 2010
    Inventors: Kazuhiro Atsumi, Koji Kuno, Tatsuya Suzuki
  • Publication number: 20090308853
    Abstract: The embodiments disclosed herein provide systems and methods for correcting a head-to-head offset in a laser machining system with two or more processing heads. A focusing lens is associated with each processing head, and is configured to receive an incident laser beam along an incident beam axis of propagation. The incident beam axis of propagation is offset from the primary axis of the focusing lens. The focusing lens is further configured to rotate about the incident beam axis of propagation in order to steer the incident laser beam's path with respect to a workpiece.
    Type: Application
    Filed: September 30, 2008
    Publication date: December 17, 2009
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventors: Yanfei Jiang, Mehmet E. Alpay
  • Patent number: 7617061
    Abstract: Disclosed is a method and apparatus for processing signals in a satellite/laser positioning system capable of generating location coordinates from received satellite signals and a received laser signal. A height coordinate bias value is maintained by a filter processor during periods when the laser signal is available. The height coordinate bias value represents an estimated difference between a satellite signal derived height coordinate and a laser signal derived height coordinate. During periods when the laser signal is available, the laser signal derived height coordinate is output. During periods when the laser signal is not available, a corrected height coordinate value is generated by applying the height coordinate bias value to the satellite signal derived height coordinate.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 10, 2009
    Assignee: Topcon Positioning Systems, Inc.
    Inventor: Vernon Joseph Brabec
  • Patent number: 7589332
    Abstract: In a via-hole formation method of forming a via-hole reaching a bonding pad, in a substrate of a wafer in which a plurality of devices are formed on a surface of the substrate and the bonding pad is formed on each of the devices, a pulse laser beam whose energy distribution is shaped into a top-hat shape is emitted to form a via-hole reaching a via-hole.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 15, 2009
    Assignee: Disco Corporation
    Inventors: Keiji Nomaru, Hiroshi Morikazu
  • Publication number: 20090223941
    Abstract: An object of the present invention is to provide a phase shifter for laser annealing which is capable of effectively preventing the sticking of particles. A first layer and a third layer are made of quartz glass, and a two-dimensional pattern of fine grooves is formed in the surfaces of the layers. The first layer and the third layer are arranged so that a second layer is sandwiched between the layers in a state in which the surfaces provided with the grooves face each other. A peripheral edge portion of the first layer is laminated on that of the third layer by a spacer. The second layer is made of an inactive gas introduced between the first layer and the third layer.
    Type: Application
    Filed: May 20, 2009
    Publication date: September 10, 2009
    Applicant: Advanced LCD Technologies Dev.Ctr. Co., Ltd.
    Inventor: Masayuki JYUMONJI
  • Publication number: 20090194514
    Abstract: An exemplary laser cutting device (300) includes a laser source (40), a lens module (51), a sprayer (60), a rotating subassembly (52), and a driving member (55). The lens module is configured for focusing a laser beam emitting from the laser source. The sprayer is rotatably connected to the lens module. The rotating subassembly is connected to the lens module. The rotating subassembly is configured for driving the lens module to rotate, such as to make the laser beam rotate relative to an axis of the laser beam. The driving member is connected to the lens and configured for driving the sprayer to rotate relative to the lens module.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 6, 2009
    Applicants: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: GUO-HAN YUE
  • Publication number: 20090194517
    Abstract: An exemplary laser cutting device (300) includes a laser source (40), a lens module (51), a sprayer (60), a first rotating subassembly (52), and a second rotating subassembly (53). The lens module is configured for focusing a laser beam emitting from the laser source. The first rotating subassembly is connected to the lens module and configured for driving the lens module to rotate relative to the laser source. The second rotating subassembly is rotatably connected to the lens module. The sprayer is connected to the second rotating subassembly and driven to rotate relative to the laser source by the second rotating subassembly.
    Type: Application
    Filed: May 31, 2008
    Publication date: August 6, 2009
    Applicants: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: GUO-HAN YUE
  • Patent number: 7569840
    Abstract: An alignment method of a laser beam processing machine comprising a chuck table, a laser beam application means having a condenser for applying a laser beam to the workpiece held on the chuck table, an image pick-up means for picking up an image of the workpiece held on the chuck table and a control means having a memory for storing the specifications of the workpiece, the method comprising the steps of storing the design coordinates of a processing position set based on the mark indicating the crystal orientation of a wafer and alignment marks; picking up an image of the periphery of the wafer with the image pick-up means and locating the mark indicating the crystal orientation of the wafer at a predetermined position; positioning the design coordinate position of each of the alignment marks set based on the mark indicating the crystal orientation of the wafer right below the condenser and applying a laser beam from the condenser so as to remove the insulating film in the alignment mark areas; and picking up
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: August 4, 2009
    Assignee: Disco Corporation
    Inventors: Hiroshi Morikazu, Eri Kawagishi
  • Publication number: 20090188900
    Abstract: A method of cutting material for use in an implantable medical device employs a plotted laser cutting system. The laser cutting system is computer controlled and includes a laser combined with a motion system. The laser precisely cuts segments out of source material according to predetermined pattern as designated by the computer. The segments are used in constructing implantable medical devices. The cutting energy of the laser is selected so that the cut edges of the segments are melted to discourage delamination or fraying, but communication of thermal energy into the segment beyond the edge is minimized to avoid damaging the segment adjacent the edge.
    Type: Application
    Filed: February 13, 2009
    Publication date: July 30, 2009
    Applicant: 3F Therapeutics, Inc.
    Inventors: Douglas S. Cali, Keith E. Myers
  • Patent number: 7564006
    Abstract: An apparatus (1) for generating a rotating laser beam (5) which may used for various applications including welding, cutting, drilling or ablation of materials. More particularly, the apparatus is able to produce a fast rotating and accurate laser beam, because the main optical device (100) that is rotated consists of a reflecting surface (102) rotating about an axis (X1) that it intersects.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: July 21, 2009
    Assignee: LASAG AG
    Inventors: Hans Peter Schwob, Joachim Hertzberg, Walter Zürcher, Friedrich Durand, Bruno Knobel
  • Publication number: 20090173724
    Abstract: Provided are a laser irradiation device and a laser irradiation method, which are suitable for a liquid crystal display device. The laser irradiation device comprises a semiconductor laser element group (1A) having a plurality of semiconductor laser elements (1) arranged therein for emitting laser beams of a wavelength of 370 nm to 480 nm, optical fibers (2) for transmitting the laser beams emitted from the semiconductor laser elements (1), a straight bundle (3) for holding the optical fibers (2) straight, an optical adjustor (4) for shaping the laser beams outputted from the optical fibers held by the straight bundle (3), into a linear shape and for smoothing the top of the laser intensity distribution thereby to output the smoothed laser beams, and an objective lens (5) for condensing the laser beams outputted from the optical adjustor (4), as a linear laser spot on an object The semiconductor laser element group (1A) has a total irradiation output value of 6 W to 100 W.
    Type: Application
    Filed: March 16, 2007
    Publication date: July 9, 2009
    Inventors: Yoshiaki Ogino, Katsumi Kimura, Yasuhiro Iida
  • Publication number: 20090107585
    Abstract: Technology scanning and irradiating grain-oriented electrical steel sheet moving in a rolling direction at a speed Vl with an elliptical spot formed by a laser beam in the width direction at Vc to improve the core loss of the grain-oriented electrical steel sheet, which adjusts the angle ?s formed by the scan direction of the elliptical beam and the long axis of the ellipse based on the equation ?s=tan?1(Vl/Vc) and which constructs the system for adjusting the ?s by an optical system for laser irradiation comprised of a cylindrical lens telescope, scan mirror, and f? lens arranged in that order, a system for changing the angle of the cylindrical lens telescope with respect to the scan direction of the scan mirror, and a system for changing the distance between lenses.
    Type: Application
    Filed: August 29, 2006
    Publication date: April 30, 2009
    Inventors: Tatsuhiko Sakai, Hideyuki Hamamura
  • Publication number: 20090071947
    Abstract: There is disclosed a laser beam machine including: a light source that emits a laser beam; an aperture in a flat plate shape and arranged in a manner crossing an optical axis direction of a laser beam from the light source, and having an opening to pass a laser beam from the light source therethrough; a focusing portion that is arranged at a side opposite to the light source with respect to the aperture, and focuses a laser beam that has passed through the opening of the aperture and irradiates the laser beam onto a workpiece, wherein the focusing portion imparts astigmatism to a laser beam that has passed through the opening of the aperture, a first focal line and a second focal line of the focusing portion are produced by the astigmatism, the first focal line is formed by focusing of a laser beam distributed in a first direction crossing the optical axis direction, the second focal line is formed by focusing of a laser beam distributed in a second direction crossing the optical axis direction and the first
    Type: Application
    Filed: September 17, 2008
    Publication date: March 19, 2009
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Hiroshi Sekiguchi, Hirofumi Miyajima
  • Patent number: 7489454
    Abstract: A laser processing apparatus which can suppress the positional fluctuation in light-converging point of laser light during laser processing is provided. On an optical path of laser light L1 connecting a beam expander 34 and a first light-transmitting hole 32 of a lens holder 29 to each other in a laser processing apparatus 20, a stop member 38 including a second light-transmitting hole 39 having the same diameter as that of the first light-transmitting hole 32 is disposed. Hence, the amount of laser light L1 cut by the surrounding part of the first light-transmitting hole 32 can substantially be eliminated, whereby the lens holder 29 can be prevented from being heated upon irradiation with the laser light L1. Also, even when the stop member 38 is heated by the laser light L1 cut by the surrounding part of the second light-transmitting hole 39, heat is prevented from being transmitted from the stop member 38 to the lens holder 29, since the stop member 38 is separated from the lens holder 29.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 10, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Tetsuya Osajima
  • Publication number: 20090032511
    Abstract: The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Bruce E. Adams, Samuel C. Howells, Dean Jennings, Jiping Li, Timothy N. Thomas, Stephen Moffatt
  • Patent number: 7482553
    Abstract: A laser beam processing machine comprising a chuck table for holding a workpiece, a laser beam application means for applying a laser beam capable of passing through the workpiece to the workpiece held on the chuck table, and a processing-feed means for moving the chuck table and the laser beam application means relative to each other, the laser beam application means comprising a laser beam oscillation means, an optical transmission means for transmitting a laser beam oscillated by the laser beam oscillation means, and a transmitting/converging means having a single condenser lens for converging laser beams transmitted by the optical transmission means, wherein the transmitting/converging means converges a laser beam oscillated from the laser beam oscillation means at two or more focusing points which are displaced in the direction of the optical axis and the processing-feed direction through the single condenser lens.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: January 27, 2009
    Assignee: Disco Corporation
    Inventors: Satoshi Kobayashi, Keiji Nomaru
  • Patent number: 7482554
    Abstract: A laser beam processing machine including a chuck table for holding a workpiece, a laser beam application device for applying a laser beam to the workpiece held on the chuck table, and a processing-feed mechanism for moving the chuck table and the laser beam application device relative to each other. The condenser of the laser beam application device includes a first prism for dividing the laser beam oscillated from the laser beam oscillation mechanism into a first laser beam and a second laser beam, and a second prism for correcting optical paths of the first laser beam and the second laser beam so they become parallel to each other. An image forming lens forms respective spots of the first laser beam and the second laser beam whose optical paths have been corrected to be parallel to each other by the second prism, into images of spots having linear portions on the outer sides and arcuate portions on the inner sides.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: January 27, 2009
    Assignee: Disco Corporation
    Inventors: Kenji Furuta, Ryugo Oba
  • Publication number: 20080296275
    Abstract: A laser beam machining apparatus including a laser beam irradiation unit, the laser beam irradiation unit including: a laser beam oscillator for oscillating a laser beam; a beam splitter by which the laser beam oscillated by the laser beam oscillator is split into a first laser beam and a second laser beam; a rotary half-wave plate disposed between the laser beam oscillator and the beam splitter; a condenser lens disposed in a first optical path for guiding the first laser beam split by the beam splitter; a first reflecting mirror disposed in a second optical path for guiding the second laser beam split by the beam splitter; a first quarter-wave plate disposed between the beam splitter and the first reflecting mirror; a second reflecting mirror disposed in a third optical path for splitting thereinto the second laser beam returned to the beam splitter through the second optical path; a second quarter-wave plate disposed between the beam splitter and the second reflecting mirror; and a cylindrical lens dispose
    Type: Application
    Filed: April 28, 2008
    Publication date: December 4, 2008
    Applicant: DISCO CORPORATION
    Inventors: Ryugo Oba, Hiroshi Morikazu
  • Patent number: 7456371
    Abstract: The present invention provides a laser apparatus including a transmission-variable mirror and a method for forming a semiconductor device using the apparatus. For crystallizing an amorphous semiconductor film by irradiation of laser beams, a top surface and a back surface of the amorphous semiconductor film are irradiated with the laser beams. In this case, the transmission-variable mirror is used for dividing a laser light emitted from a laser source.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: November 25, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenji Kasahara, Ritsuko Kawasaki, Hisashi Ohtani, Koichiro Tanaka
  • Publication number: 20080268571
    Abstract: An apparatus for heating a chip includes: a laser generator for emitting a laser beam to a semiconductor chip to heat the semiconductor chip; and a beam intensity adjuster disposed on a laser emission path between the semiconductor chip and the laser generator to equalize the intensity of the laser beam to be emitted to the semiconductor chip. A flip chip bonder having the chip heating apparatus, and a method for bonding a flip chip using the same are also provided.
    Type: Application
    Filed: October 16, 2007
    Publication date: October 30, 2008
    Applicant: Samsung Techwin Co., Ltd.
    Inventor: Sung-Wook Kim
  • Publication number: 20080251504
    Abstract: A laser-welding apparatus may include a laser source, an incoming laser beam produced by the laser source, and a beam splitter that splits the incoming laser beam to form a leading beam and a trailing beam. A first focusing lens may focus the leading beam and a second focusing lens may focus the trailing beam to form a trailing-beam pattern on a workpiece. The trailing-beam pattern may include a crescent-shape having arms and a tail portion.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 16, 2008
    Inventors: Feng Lu, Mariana G. Forrest
  • Publication number: 20080245779
    Abstract: A laser processing machine that includes a chuck table adapted to hold a workpiece thereon and laser beam irradiation unit for applying a laser beam to the workpiece held on the chuck table. The laser beam irradiation unit includes: a laser beam oscillation section for emitting a pulse laser beam; a defection section for deflecting the pulse laser beam emitted from the laser beam oscillation section; and a concentrator having an ellipsoidal focusing spot forming section for focusing the pulse laser beam deflected by the deflection unit and forming a focusing spot into an ellipse.
    Type: Application
    Filed: March 14, 2008
    Publication date: October 9, 2008
    Applicant: DISCO CORPORATION
    Inventors: Keiji Nomaru, Hiroshi Morikazu, Taiki Sawabe
  • Publication number: 20080242056
    Abstract: A variable astigmatic focal beam spot is formed using lasers with an anamorphic beam delivery system. The variable astigmatic focal beam spot can be used for cutting applications, for example, to scribe semiconductor wafers such as light emitting diode (LED) wafers. The exemplary anamorphic beam delivery system comprises a series of optical components, which deliberately introduce astigmatism to produce focal points separated into two principal meridians, i.e. vertical and horizontal. The astigmatic focal points result in an asymmetric, yet sharply focused, beam spot that consists of sharpened leading and trailing edges. Adjusting the astigmatic focal points changes the aspect ratio of the compressed focal beam spot, allowing adjustment of energy density at the target without affecting laser output power. Scribing wafers with properly optimized energy and power density increases scribing speeds while minimizing excessive heating and collateral material damage.
    Type: Application
    Filed: May 9, 2008
    Publication date: October 2, 2008
    Applicant: J.P. SERCEL ASSOCIATES, INC.
    Inventors: Patrick J. Sercel, Jeffrey P. Sercel, Jongkook Park
  • Publication number: 20080217310
    Abstract: A method for profiling the perimeter border of a semiconductor chip, characterized by the following steps: the semiconductor chip is supported near to the perimeter border on supporting points which are spaced apart in the perimeter direction of the semiconductor chip, laser beams are directed to the perimeter border with the aid of at least two lasers or of two lens systems coupled with at least one laser, which are arranged on the perimeter of the laser chip, the lasers or lens systems and the semiconductor chip are rotated in relation to each other around the centre of the semiconductor chip, and the lasers or lens systems are moved in a plane vertical to the rotational plane such that portions of the perimeter border between the supporting points are profiled by laser irradiation, subsequently, the supporting points on the semiconductor chip are changed and the remaining border portions of the perimeter border are profiled, and during profiling, the hitting point of the laser beams on the perimeter border
    Type: Application
    Filed: June 5, 2007
    Publication date: September 11, 2008
    Inventor: Harald Fischer