Abstract: The invention relates to a reeling apparatus (1) and a method for coiling a tube using the apparatus. The apparatus is configured to coil a tube (5), and comprises a main reel (2) connected to a spindle (3) and configured to rotate around a central axis (C), a tube holding ring (4) configured to rotate together with the main reel and to collect an initial part of the tube, a guide element (6) at a distance (d2) from the main reel to guide the tube to the apparatus. The tube holding ring is located outside and at a radial distance (d1) from the main reel with respect to the central axis, and the guide element is movable between an outer position (A) for guiding the tube to be coiled onto the tube holding ring, and an inner position (B) for guiding the tube to be coiled onto the main reel.
Abstract: The invention relates to a method for catching and taking up as well as a winding machine for continuously winding up threads. In order to catch the thread on a winding spindle, two thread guides form a thread section upstream and downstream of the winding spindle. Preferably, said thread guides are simultaneously displaced in a synchronous manner during the catching process and in such a way that the thread section is guided vertically over the winding spindle. Preferably, the thread guides are simultaneously and synchronously displaced by coupling the thread guides to each other and displacing the same with the aid of a common drive unit.
Abstract: An apparatus for winding a cross-wound bobbin onto a bobbin tube is provided and comprises a bobbin creel including two bobbin creel arms for the mounting of two bobbin tube centering plates, a thread intake device effective in the region of an arm and with which is associated a thread severing device, a drive unit for a bobbin shaft/cross-wound bobbin, and a traversing thread guide adapted to be driven to move back and forth along the bobbin shaft/cross-wound bobbin. A given bobbin creel arm is provided with at least one intake or suction channel that is directed radially inwardly from the periphery of the centering plate and that opens into a hollow shaft guided outwardly through an associated arm. A suction head is adapted to be placed against the hollow shaft and is provided with a thread clamping mechanism and the thread severing device.
Abstract: A filament winding apparatus winds yarn impregnated with resin around the surface of a mandrel with a guide member that moves back and forth axially. Yarn winding is initiated while an end of the yarn is held by a holding device provided in a relatively rotatable manner on a rotary shaft. After winding is started, the yarn extending from the mandrel to the holding device is cut. When winding is finished, the yarn is held with the holding device and the yarn is cut between the mandrel and the holding device with a yarn cutting device.
Abstract: A textile machine thread traversing device includes a traversing arm and a holding device to retain the arm as it moves in a back and forth motion. A drive mechanism is connected to the holding device to rotate the holding device relative to a turning axis. A programmable control system is configured with the drive mechanism and includes a detecting device disposed to detect the angular position of the traversing arm and to control the drive mechanism as a function of the angular position.
Abstract: A method and an apparatus for winding a continuously advancing yarn at a constant winding speed to a package on a rotating tube. The tube is mounted on a driven winding spindle. Before the winding cycle, a yarn guide moves the yarn from a threading position to a transfer range for transferring it to the yarn traversing device. In so doing, a transfer tail wind is produced on the tube outside of the traverse range. In accordance with the invention, the speed of the yarn guide is controlled as a function of the winding speed such that a certain number of winds are deposited on the tube for producing the transfer tail wind.