Methods Patents (Class 250/362)
  • Publication number: 20140151563
    Abstract: Radioimaging methods, devices and radiopharmaceuticals therefor.
    Type: Application
    Filed: November 18, 2013
    Publication date: June 5, 2014
    Applicant: Biosensors International Group, Ltd.
    Inventors: Benny ROUSSO, Shlomo BEN-HAIM, Ran RAVHON, Yoel ZILBERSTEIN, Simona BEN-HAIM, Nathaniel ROTH
  • Publication number: 20140151562
    Abstract: Systems, devices, processes, and algorithms for adapting and/or adjusting a reflectivity of a reflector in a radiation detector. The reflectivity can be changed by a reflectivity control signal that is generated based on an estimated count rate of events so as to adjust a probability of a photosensor detecting light resulting from the event via, for example, a scintillation event. By adjusting the probability, an energy resolution of the radiation detector can be optimized. The reflectivity of a reflector can be changed by changing a state of a thin film, a liquid crystal layer, or a suspended magnetic particle layer.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Gin-Chung WANG, Jerry Wang, Huini Du
  • Publication number: 20140151564
    Abstract: An ion detector (1) comprising a semi-conductor avalanche photodiode (4) and a scintillation layer (2), the scintillation layer having a thickness in the range 0.1 mm to 00 mm, the scintillation layer arranged to generate photons towards the photodiode resulting from ions impinging on the scintillation layer.
    Type: Application
    Filed: June 29, 2012
    Publication date: June 5, 2014
    Inventors: Mark Brouard, Claire Vallance, Andrei Nomerotski, Renato Turchetta
  • Patent number: 8741570
    Abstract: The present invention pertains to a method and a device for the determination of thermo-optical properties, particularly the size or size distribution, of fluorescently labeled biomolecules or biomolecule complexes, particularly nucleic acids, in a reaction solution.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: June 3, 2014
    Assignee: Ludwig-Maximilians-Universitat Munchen
    Inventors: Stefan Duhr, Philipp Baaske
  • Patent number: 8735831
    Abstract: Disclosed herein are a system, method, and computer-readable storage medium for determining a time pickoff for both digital and analog photomultiplier circuits. Rather than basing time pickoff on the leading edge of a photomultiplier signal crossing a threshold or the first signal from a digital photomultiplier, a method for more accurate time calculations is disclosed. The system searches for peak values associated with the signal using differentiation, peak hold searching, and Gaussian distributions. Based on these calculations and comparisons, a more accurate time pickoff is determined.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: May 27, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nan Zhang, Matthias J. Schmand
  • Patent number: 8735829
    Abstract: A radiographic image capturing system includes a radiographic image capturing device, a grid, an acquiring unit, and a processor. The radiographic image capturing device includes a radiation detector in which pixels having a sensitivity with respect to radiation or light are disposed two-dimensionally at a predetermined pixel spacing. The grid is placed on a radiation source side of the radiation detector, and includes radiation absorbing members that are disposed at a predetermined spacing. The acquiring unit acquires an inclination angle of the grid, with respect to an array direction of the pixels, with which a spatial frequency of moiré fringes generated by the absorbing members in a captured radiographic image will be equal to or greater than a predetermined spatial frequency. The processor executes predetermined processing for making a relative angle between the grid and the radiation detector the acquired inclination angle.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: May 27, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Takeshi Kuwabara
  • Patent number: 8735830
    Abstract: Zinc telluride scintillators and related devices and methods are provided.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 27, 2014
    Assignee: Radiation Monitoring Devices, Inc.
    Inventors: Vivek Nagarkar, Harish B. Bhandari, Valeriy Gaysinskiy
  • Patent number: 8735828
    Abstract: Apparatus and methods for measuring radiation levels in vivo in real time. Apparatus and methods include a scintillating material coupled to a retention member.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: May 27, 2014
    Assignee: The Board of Regents of the University of Texas System
    Inventors: A. Sam Beddar, Tina Marie Briere, Louis Archambault
  • Patent number: 8735835
    Abstract: A data processing unit for an integrated magnetic resonance (MR) and positron emission tomography (PET) system includes an RF shield housing, a first input port in the RF shield housing configured to receive a PET detector signal, a first filter disposed in the RF shield housing, in communication with the first input port, and configured to remove MR noise from the PET detector signal, a second input port in the RF shield housing configured to receive DC power, a second filter disposed in the RF shield housing, in communication with the second input port, and configured to remove the MR noise from the DC power, and a signal processing circuit disposed in the RF shield housing and powered by the DC power, the signal processing circuit including an analog-to-digital converter to digitize the PET detector signal.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 27, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: James Frank Caruba
  • Publication number: 20140138547
    Abstract: An apparatus for detecting a high energy photon includes a scintillator material having an array of scintillator pixels, a photon transducer bonded to the scintillator material, and an integrated circuit coupled to the photon transducer. Each scintillator pixel is configured to receive a high energy photon and to scintillate upon interacting with the received high energy photon to generate a scintillation photon. The photon transducer is configured to generate an electrical signal indicative of detecting the high energy photon upon the photon transducer interacting with the scintillation photon generated by a scintillator pixel in the array of scintillator pixels. The integrated circuit is configured to receive the electrical signal and to provide an output signal having information related to detecting the high energy photon and identifying the scintillator pixel that interacted with the high energy photon to generate the scintillation photon.
    Type: Application
    Filed: September 13, 2012
    Publication date: May 22, 2014
    Applicant: RAYTHEON COMPANY
    Inventor: Matthew D. Chambers
  • Patent number: 8729478
    Abstract: Embodiments of radiographic imaging apparatus and methods for operating the same can include a first scintillator, a second scintillator, a plurality of first photosensitive elements, and a plurality of second photosensitive elements. The plurality of first photosensitive elements receives light from the first scintillator and has first photosensitive element characteristics chosen to cooperate with the first scintillator properties. The plurality of second photosensitive elements are arranged to receive light from the second scintillator and has second photosensitive element characteristics different from the first photosensitive element characteristics and chosen to cooperate with the second scintillator properties. Further, the first scintillator can have first scintillator properties and the second scintillator can have second scintillator properties different from the first scintillator properties.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Carestream Health, Inc.
    Inventors: Timothy J. Tredwell, Mark E. Shafer, Robert W. Kulpinski, Timothy J. Wojcik
  • Patent number: 8716669
    Abstract: A method for estimating a line or response in a positron emission tomography scanner having depth of interaction estimation capability. The method utilizes information from both detector modules detecting a coincident event. A joint probability density function combining factors accounting for intermediate Compton scattering interactions and/or a final interaction that may be either a Compton scattering interaction or photoelectric absorption is calculated. In a preferred embodiment, a Bayesian estimation scheme is used to integrate the PDF for all permutations of the measured signal pairs, and the permutation with the largest joint probability is selected to construct the estimated line of response.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 6, 2014
    Assignee: University of Washington
    Inventors: Robert S. Miyaoka, Kyle Champley, Lawrence MacDonald, Thomas K. Lewellen
  • Publication number: 20140117243
    Abstract: In an aspect, a method and device of inspecting an electromagnetic radiation sensing panel and a method of manufacturing an electromagnetic radiation detector are provided. The method includes generating converted electromagnetic radiation by irradiating incident electromagnetic radiation onto an electromagnetic radiation conversion layer, measuring the generated converted electromagnetic radiation and evaluating data regarding the converted electromagnetic radiation, generating converted electromagnetic radiation based on the data regarding the converted electromagnetic radiation, and irradiating the generated converted electromagnetic radiation onto an electromagnetic radiation sensing panel.
    Type: Application
    Filed: June 19, 2013
    Publication date: May 1, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventor: Tae Jin Hwang
  • Publication number: 20140110573
    Abstract: A photosensor gain detection apparatus that includes a detector including a photosensor configured to output a signal. Also included in the apparatus is an after-pulse/dark-pulse detector device that detects an after-pulse or a dark-pulse in the signal output by the photosensor, and outputs an indication signal when the after-pulse or the dark-pulse is detected, the after-pulse and the dark-pulse representing after-events in the photosensor triggered from a previous photon generating event. The apparatus additionally includes an integrator device that integrates the signal output by the photosensor and to output an integrated signal, a histogram device connected to the integrator and the after-pulse/dark-pulse detector device, and that generates a histogram from the integrated signal and the indication signal, a gain determination device that determines a gain of the photosensor based on the generated histogram, and a memory configured to store the determined gain.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Inventors: Gin Chung WANG, Huini Du, Jerry Wang
  • Publication number: 20140110589
    Abstract: A method of arranging detector modules within a gamma ray detector apparatus, each detector module including an array of scintillation crystals to convert light into electrical signals, the light being generated in response to incident gamma rays generated by an annihilation event, the method including obtaining performance information of each of the detector modules, and determining a relative location for each of the detector modules within the gamma ray detector based on the obtained performance information of the detector modules.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Inventors: Gin Chung WANG, Kent C. BURR, Huini DU, Jerry WANG
  • Publication number: 20140110588
    Abstract: The present disclosure discloses, in one arrangement, a single crystalline iodide scintillator material having a composition of the formula AM1-xEuxI3, A3M1-xEuxI5 and AM2(1-x)Eu2xI5, wherein A consists essentially of any alkali metal element (such as Li, Na K, Rb, Cs) or any combination thereof, M consists essentially of Sr, Ca, Ba or any combination thereof, and 0?x?1. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the iodide scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Application
    Filed: May 2, 2011
    Publication date: April 24, 2014
    Inventors: Kan Yang, Mariya Zhuravleva, Charles L. Melcher, Piotr Szupryczynski
  • Patent number: 8704182
    Abstract: Provided are a dosimeter which uses thermoluminescent plates and with which a three-dimensional dose distribution of radiation can be acquired, a method of producing the dosimeter, and a method of using the dosimeter. A thermoluminescent layered product 11 is constituted of a plurality of thermoluminescent plates 13 which are layered. Each of the thermoluminescent plates 13 is constituted of a thermoluminescent phosphor containing no aluminum (III) and a heat-resistant resin. The thermoluminescent phosphor comprises lithium tetraborate as a base material and manganese as a luminescent center contained in the base material.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 22, 2014
    Assignee: Rikkyo Gakuin
    Inventors: Akio Urushiyama, Kiyomitsu Shinsho, Yuji Tomizawa
  • Patent number: 8698086
    Abstract: A scintillator material according to one embodiment includes a bismuth-loaded aromatic polymer having an energy resolution at 662 keV of less than about 10%. A scintillator material according to another embodiment includes a bismuth-loaded aromatic polymer having a fluor incorporated therewith and an energy resolution at 662 keV of less than about 10%. Additional systems and methods are also presented.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: April 15, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Nerine Jane Cherepy, Robert Dean Sanner, Stephen Anthony Payne, Benjamin Lee Rupert, Benjamin Walter Sturm
  • Publication number: 20140097346
    Abstract: A method and device for improving the optical performance (such as time resolution) of scintillation detectors using the optical bleaching technique are disclosed. Light of a selected wavelength is emitted by a light source into a scintillator. The wavelength is selected to meet the minimum energy requirement for releasing of charge carriers captured by the charge carrier traps in the scintillation material. Trap-mediated scintillation components are thus reduced by optical bleaching and the optical performance of the scintillator crystal and the detector is enhanced.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 10, 2014
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Peter Carl Cohen, A. Andrew Carey, Mark S. Andreaco, Matthias Schmand
  • Patent number: 8692204
    Abstract: One embodiment disclosed relates a method of detecting a patterned electron beam. The patterned electron beam is focused onto a grating with a pattern that has a same pitch as the patterned electron beam. Electrons of the patterned electron beam that pass through the grating un-scattered are detected. Another embodiment relates to focusing the patterned electron beam onto a grating with a pattern that has a second pitch that is different than a first pitch of the patterned electron beam. Electrons of the patterned electron beam that pass through the grating form a Moiré pattern that is detected using a position-sensitive detector. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 8, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Shinichi Kojima, Christopher F. Bevis, Joseph Maurino, William M. Tong
  • Patent number: 8686347
    Abstract: Example apparatus and methods for use in normalization of testing machines used to test samples in vessels are disclosed. An example apparatus includes verification source and a photon emitter positioned in the verification source. The example photon emitter includes a C14 source, a scintillator adjacent to the C14 source, and a filter adjacent to the scintillator. The example photon emitter is to emit photons through the filter for detection by a photon counter.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: April 1, 2014
    Assignee: Abbott Laboratories
    Inventors: Paul A. Matuszewski, Omar S. Khalil, Kurt M. Klosterman, James L. Dempski, Jose Pioquinto
  • Publication number: 20140084169
    Abstract: A method for improving timing response in light-sharing scintillation detectors is disclosed. The method includes detecting an event, by a plurality of photo sensors, from a scintillation crystal. The method then includes sampling and digitizing the photo sensor outputs by an analog-to-digital converter. Then the method includes correcting associated timing data, by a processor, for each of the photo sensor outputs based on a lookup table. The method then includes selectively time shifting the photo sensor outputs based on the lookup table to generate corrected photo sensor outputs. The method then includes summing the corrected photo sensor outputs by the processor. The method then includes generating an event time, by the processor, for the detected event based on the sum of the corrected photo sensor outputs.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Mehmet Aykac, Michael Loope, Mark Musrock
  • Publication number: 20140084149
    Abstract: A method is for detecting gamma rays using a gamma ray detector, and includes determining a first count of gamma rays having an energy in a first energy interval, using a controller coupled to the gamma ray detector. A second count of gamma rays having an energy in a second energy interval is determined, the second energy interval having a higher energy than the first energy interval, using the controller. A third count of gamma rays having an energy in a third energy interval is determined, the third energy interval having a higher energy than the second energy interval, using the controller. The second count of gamma rays is compensated for noise based upon a ratio of the second count and the third count, using the controller.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventor: Christian Stoller
  • Publication number: 20140084170
    Abstract: When employing specular reflective material in a scintillator crystal array, light trapping in the crystal due to repetitive internal reflection is mitigated by roughening at least one side (16) of each of a plurality of pre-formed polished scintillator crystals. A specular reflector material (30) is applied (deposited, wrapped around, etc.) to the roughened crystals, which are arranged in an array. Each crystal array is coupled to a silicon photodetector (32) to form a detector array, which can be mounted in a detector for a functional scanner or the like.
    Type: Application
    Filed: April 26, 2012
    Publication date: March 27, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Herfried Karl Wieczorek, Andreas Thon, Steven Cooke
  • Publication number: 20140084168
    Abstract: A radiation detection apparatus includes a sonde having a housing and comprising a scintillator disposed within the housing and a calibration source coupled to the scintillator to fluoresce the scintillator at a known wavelength of electromagnetic radiation. The radiation detection apparatus further includes an electromagnetic radiation sensing device coupled to the scintillator and disposed within the housing and a first programmable/re-programmable processing module (PRPM) coupled to the electromagnetic radiation sensing device and disposed within the housing. The PRPM can be programmed to use state information when analyzing pulses corresponding to shock, vibration, or another noise source. In another embodiment, the PRPM can be used to monitor the health of the radiation detection apparatus.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Inventor: Artan Duraj
  • Publication number: 20140077085
    Abstract: A system for efficient neutron detection is described. The system includes a neutron scintillator formed with a number of protruding parallel ribs each side of the scintillator, forming a first set of ribs and a second set of ribs. The ribs have a protrusion height that provides a selected neutron absorption efficiency. The system includes a set of wavelength shifting fibers positioned between each adjacent pair of ribs on both the first side and the second side. Each set of wavelength shifting fibers are in optical proximity to the adjacent pair of the ribs that set of fibers are positioned between.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 20, 2014
    Applicant: PARTTEC LTD.
    Inventors: Herschel Ellis Workman, Craig R. Kline
  • Publication number: 20140061482
    Abstract: A wavelength shifting material is optically coupled to one of a scintillator and a solid-state photomultiplier and transmits photons along and about a straight linear path. The wavelength shifting material enhances photon sensing performance of the solid state photomultiplier.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James A. Wear, Sergei Dolinsky, Ravindra Mohan Manjeshwar
  • Publication number: 20140061483
    Abstract: In a coincidence determination of a PET device, the PET device uses a scintillator of radioactive isotope containing background noise due to intrinsic radioactivity as a radiation detector. The PET device counts a pair of annihilation radiations that is assumed to occur from a same nuclide. The annihilation radiations are detected within a predetermined coincidence time window by a plurality of radiation detectors. The method includes determining a coincidence with a wide energy window that allows detecting the background noise due to intrinsic radioactivity as multiple coincidences; removing the multiple coincidences; and using an energy window narrower than the wide energy window to limit a coincidence event to a coincidence event in a photopeak from a positron nuclide only.
    Type: Application
    Filed: March 18, 2013
    Publication date: March 6, 2014
    Applicant: NATIONAL INSTITUTE OF RADIOLOGICAL SCIENCES
    Inventors: Eiji YOSHIDA, Taiga YAMAYA
  • Publication number: 20140060659
    Abstract: A method of measuring contamination in fluid that is expelled from a food processing system is presented. The method of measuring is carried out with fluorescence. The fluid is typically allowed to enter into an energy transfer system, but if the contamination exceeds a certain level, the fluid should be prevented from entering the energy transfer system. The fluid is generally comprised of water expelled from a sugar processing operation.
    Type: Application
    Filed: October 3, 2011
    Publication date: March 6, 2014
    Inventors: Ling Liang, Patrcik Pu Chen, Rodney H. Banks, Michael W. Willer, Narasimha M. Rao, Christopher Brant Wilson
  • Patent number: 8664608
    Abstract: Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 4, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Lloyd G. Clonts, Ronald G. Cooper, Morris Lowell Crow, Jr., Bruce W. Hannan, Jason P. Hodges, John D. Richards, Richard A. Riedel
  • Publication number: 20140054466
    Abstract: An imaging device capable of obtaining image data with a small amount of X-ray irradiation is provided. The imaging device obtains an image using X-rays and includes a scintillator and a plurality of pixel circuits arranged in a matrix and overlapping with the scintillator. The use of a transistor with an extremely small off-state current in the pixel circuits enables leakage of electrical charges from a charge accumulation portion to be reduced as much as possible, and an accumulation operation to be performed substantially at the same time in all of the pixel circuits. The accumulation operation is synchronized with X-ray irradiation, so that the amount of X-ray irradiation can be reduced.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 27, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiyuki KUROKAWA, Takayuki IKEDA
  • Patent number: 8658978
    Abstract: Methods and apparatus for a radiation monitor. In one embodiment, a radiator monitor comprises a housing, a detector material having an adjustable density in the housing, an optical coupler adjacent the detector material to receive Cherenkov energy generated in the detector material, a photodetector coupled to the optical coupler, and a processing module coupled to the photodetector to determine whether a detection threshold is exceeded.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: February 25, 2014
    Assignee: Raytheon Company
    Inventors: Brandon W. Blackburn, Kevin Perry
  • Publication number: 20140048711
    Abstract: Systems and methods of generating timing triggers to determine timing resolutions of gamma events for nuclear imaging includes receiving a pulse signature representing a succession of triggers associated with a photomultiplier. When a number of triggers occurring within a predetermined time interval matches a predetermined number, an event trigger can be initiated. A delayed version of the pulse signature can be generated and compared to a predetermined timing trigger level. When the delayed version matches the predetermined timing trigger level, a timing trigger can be generated. Based on the timing trigger level, the timing trigger can be generated at the pulse of the delayed version that corresponds to the first photoelectron of a gamma event. The timing trigger can correspond to a timestamp for the first photoelectron so that a data acquisition system can identify the pulse from which to acquire energy information to generate a nuclear image.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Debora Henseler, Peter Hansen, Meinrad Schienle
  • Publication number: 20140042326
    Abstract: A method is provided for determining the three-dimensional position of an interaction location within a scintillating crystal at which an high-energy photon produces a plurality of scintillation photons. The method includes the use of a sensor-on-entrance-surface photodetector device to determine a distribution pattern of the scintillation photons in the crystal.
    Type: Application
    Filed: January 25, 2013
    Publication date: February 13, 2014
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Robert S. Miyaoka, Thomas K. Lewellen, Tao Ling
  • Publication number: 20140042327
    Abstract: A radiation imaging apparatus, comprising a sensor panel including a sensor array on which a plurality of sensors arranged in an array form and a scintillator layer provided on the sensor array, and a unit configured to perform signal processing based on a signal from the sensor array, wherein the sensor array includes a peripheral region and a central region located inside the peripheral region, the scintillator layer is disposed over the peripheral region and the central region so as to have uniform luminance efficiency with respect to the sensor array, and the unit performs the signal processing by using only signals from sensors disposed in the central region, of signals from the plurality of sensors, output from the sensor panel.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 13, 2014
    Inventors: Masato Inoue, Shinichi Takeda, Satoru Sawada, Takamasa Ishii, Taiki Takei, Kota Nishibe
  • Patent number: 8648309
    Abstract: Proppant placed in a subterranean fracture zone is detected with a spectral identification method in which capture gamma ray spectra are obtained during a logging run carried out with a logging tool having a neutron emitting source and at least one detector sensitive to thermal neutron capture gamma rays. Capture gamma rays from one or more high thermal neutron cross-section materials in the proppant are distinguished from capture gamma rays produced by thermal neutron capture reactions with other downhole formation and borehole constituents utilizing a spectral processing/deconvolution technique. The capture gammas rays from the high thermal neutron capture cross section material in the proppant are used to identify propped fracture zones either alone or in combination with other proppant identification methods which rely on measuring thermal neutron related count rates and/or thermal neutron capture cross-sections from neutron, compensated neutron, and/or pulsed neutron capture logging tools.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: February 11, 2014
    Assignee: CARBO Ceramics Inc.
    Inventors: Harry D. Smith, Jr., Robert Duenckel
  • Publication number: 20140021356
    Abstract: A detector (22) detects an event. First and second time-to-digital converters (TDCs) (70, 72) generate first and second time stamps (TS1, TS2) for the detection of the event. The first TDC and the second TDC are both synchronized with a common clock signal (62) that defines a fixed time offset between the second TDC and the first TDC. An autocalibration circuit (120) adjusts the first TDC and the second TDC to keep the time difference between the second time stamp and the first time stamp equal to the fixed time offset between the second TDC and the first TDC. The detector may be a detector array, and trigger circuitry (28) propogates a trigger signal from a trigger detector of the array of detectors to the first and second TDC's. Skew correction circuitry (132, 134, 136, 142, 60, 162) adjusts a timestamp (TS) based on which detector is the triggering detector.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 23, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Antonius Maria Zwaans, Thomas Frach
  • Publication number: 20140021354
    Abstract: An apparatus and method for channel count reduction in solid-state-based positron emission tomography that multiplexes read-outs from photo-detectors using a sum delay circuit, including a sum channel and a delay-sum channel. The sum channel sums signals from sensors in an array and is digitized to extract the timing and energy information. A delay-sum channel includes a discrete delay line that introduces a known delay after each sensor, creating a time signature for the sensor, followed by a summing circuit that adds the delayed signals. The delay-sum channel is digitized using a high speed counters to extract location information. Start and Stop signals for the counter are derived when the sum channel output and the delay-sum channel output cross a pulse ID threshold, respectively. The pulse ID threshold is chosen to minimize the Compton scatter and not clip the photo-peak events.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicants: Toshiba Medical Systems Corporation, Kabushiki Kaisha Toshiba
    Inventors: Daniel GAGNON, Sachin S. Junnarkar
  • Publication number: 20140025341
    Abstract: A method for correctly identifying at least one source, in particular at least one nuclide, enclosed in a human body and/or a container, is provided, the method comprising the following steps: detecting and measuring the at least one source by means of a gamma spectroscopic device; identifying, in a first estimation step, the at least one source by means of a standard nuclide identification procedure for evaluating a measured first spectrum of the at least one source; applying a second estimation step on the basis of the result of the first estimation step, wherein the result of the first estimation step is used for acquiring a plurality of second spectra of the at least one source found by the standard nuclide identification procedure for a plurality of absorption scenarios and for a plurality of scattering scenarios; and comparing the measured first spectrum with a scatter and absorber spectrum obtained from the plurality of second spectra generated in the second estimation step.
    Type: Application
    Filed: November 29, 2010
    Publication date: January 23, 2014
    Applicant: FLIR Radiation GmbH
    Inventors: Marcus Neuer, Yong Kong, Ralf Lentering, Jüegen Stein
  • Publication number: 20140021355
    Abstract: The present invention aims at providing a scintillator for high temperature environments which has satisfactory light emission characteristics under high temperature environments; and a method for measuring radiation under high temperature environments. The scintillator for high temperature environments comprises a colquiriite-type crystal represented by the chemical formula LiM1M2X6 (where M1 is at least one alkaline earth metal element selected from Mg, Ca, Sr and Ba, M2 is at least one metal element selected from Al, Ga and Sc, and X is at least one halogen element selected from F, Cl, Br and I), for example, typified by LiCaAlF6, and the crystal optionally containing a lanthanoid element such as Ce or Eu. The method for measuring radiation under high temperature environments uses the scintillator.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 23, 2014
    Applicants: TOHOKU UNIVERSITY, TOKUYAMA CORPORATION
    Inventors: Kentaro Fukuda, Noriaki Kawaguchi, Akira Yoshikawa, Takayuki Yanagida, Yui Yokota
  • Publication number: 20140014842
    Abstract: A system of the present invention is capable of detecting, imaging and measuring both neutrons and gamma rays. The system has three parallel plates each containing a plurality of detectors. Each plate has different detectors. The first plate has plastic scintillation detectors. The second plate has a plurality of stilbene scintillation detectors having pulse-shape discrimination (PSD) properties. The third plate has a plurality of inorganic detectors. The first plate and the second plate are used in connection to detect, image and measure neutrons. The second plate and the third plate are used in connection to detect, image, and measure gamma rays.
    Type: Application
    Filed: November 2, 2011
    Publication date: January 16, 2014
    Inventor: James M. Ryan
  • Patent number: 8629404
    Abstract: An apparatus and method are provided for optimizing an amount of radiation dose and acquisition time in cardiac Single Photon Emission Computed Tomography (SPECT) imaging. The apparatus and method include providing an organ, acquiring images of the organ at projected views. Then a projected view that projects the organ as an annulus is selected; a region of interest (ROI) is also selected in the projected view, wherein the ROI is in a lateral wall of the organ. An average count in the ROI is determined; and an image quality of a reconstructed image based on the average count is predicted.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: January 14, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Alexander Hans Vija
  • Patent number: 8629402
    Abstract: Provided herein are scintillator screens comprising a substrate; a scintillation layer disposed over the substrate, the scintillation layer comprising a scintillator material; and an adhesive layer disposed by solvent coating over the scintillation layer, the adhesive layer comprising solvent-coatable thermally-sensitive elastomer, wherein the adhesive layer has a dust adhesion of ?1 dust particles/sq.in.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 14, 2014
    Assignee: Carestream Health, Inc.
    Inventors: Brian P. Aylward, Seshadri Jagannathan, Kevin L. Bishop, Richard A. Lombardo
  • Patent number: 8624192
    Abstract: A system for controlling photomultiplier gain drift is disclosed. According to one aspect, the system includes first means for measuring a noise signal of the photomultiplier, the first means configured emit a measurement signal representative of the photomultiplier's noise signal. The system further includes second means for maintaining the measured noise signal at a constant level, based on the measurement signal. The disclosed embodiments apply to stabilization of the gain of photomultipliers and, more specifically, to stabilization of neutron measurement systems using photomultipliers.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: January 7, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Stéphane Normand, Anne-Marie Frelin, Hassen Hamrita, Vladimir Kondrasovs
  • Patent number: 8625868
    Abstract: According to one embodiment, a radiation diagnostic apparatus includes a photon-counting detector, a counting information storage unit, an image reconstituting unit, and a controlling unit. The detector performs counting on light derived from incident radiation. The counting information storage unit stores therein counting information based on the counting result of the detector. The image reconstituting unit reconstitutes a medical image by performing a back projection process on projection data that is generated by use of the counting information stored in the counting information storage unit. After the reconstitution of the medical image, the controlling unit performs control so that all or part of the counting information is maintained in the counting information storage unit.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: January 7, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Takuzo Takayama, Manabu Teshigawara, Kenta Moriyasu
  • Patent number: 8624194
    Abstract: A radiation detecting device is manufactured by a method that includes forming a scintillator layer on a substrate carrying a plurality of photodetectors and a plurality of convex patterns each including a plurality of convexities, the plurality of convex patterns coinciding with the respective photodetectors, the scintillator layer being formed in such a manner as to extend over the plurality of convex patterns; and forming a crack in a portion of the scintillator layer that coincides, in a stacking direction, with a gap between adjacent ones of the convex patterns by cooling the substrate carrying the scintillator layer. The plurality of convex patterns satisfy specific conditions.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: January 7, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoko Ueyama, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Publication number: 20140001365
    Abstract: Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus furthers include a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Douglas W. Akers, Mark W. Drigert
  • Publication number: 20130341514
    Abstract: Described is a method for determination of an unknown radiation dose to which an optically stimulated luminescence (OSL) sensor has been exposed utilizing a pulsed optically stimulated luminescence (POSL) technique and a battery operated portable instrument.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 26, 2013
    Applicant: LANDAUER, INC.
    Inventors: MARK S. AKSELROD, KENT J. DILLIN
  • Patent number: 8614420
    Abstract: A radiation detection system can include a scintillating member including a polymer matrix, a first scintillating material, and a second scintillating material different from the first scintillating material and at least one photosensor coupled to the scintillating member. The radiation detection system can be configured to receive particular radiation at the scintillating member, generate a first light from the first scintillating material and a second light from the second scintillating material in response to receiving the particular radiation, receive the first and second lights at the at least one photosensor, generate a signal at the photosensor, and determine a total effective energy of the particular radiation based at least in part on the signal. Practical applications of the radiation detection system can include identifying a particular isotope present within an object, identifying a particular type of radiation emitted by the object, or locating a source of radiation within the object.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 24, 2013
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Peter R. Menge, Rongfu Li, Anne B. Hardy
  • Publication number: 20130334426
    Abstract: A method for locally resolved measurement of a radiation distribution (24) produced using a lithography mask (16) comprises providing a radiation converter (31, 131) having an at least two-dimensional arrangement of converter elements (32, 132) which can respectively be put in an active and a passive state, and are configured to convert incoming radiation in respect of its wavelength in the active state. The method further includes: manipulating the radiation converter (31, 131) several times such that respectively only a fraction of the converter elements (32, 132) adopts the active state, irradiating the radiation converter (31, 131) with the radiation distribution (24) after every manipulation of the radiation converter (31, 131) so that the active converter elements (32, 132) emit wavelength-converted is measuring radiation (34), recording respective places of origin (54) of the measuring radiation at every irradiation with the radiation distribution (24).
    Type: Application
    Filed: August 22, 2013
    Publication date: December 19, 2013
    Applicant: CARL ZEISS SMT GmbH
    Inventor: Rolf FREIMANN