Dose Or Dose Rate Measurement Patents (Class 250/370.07)
  • Patent number: 8858888
    Abstract: One feature pertains to a radiation dosimeter comprising a microdosimeter cell array that includes a first microdosimeter cell having a first semiconductor volume configured to generate a first current in response to incident radiation. The first semiconductor volume may have at least one of a first size, a first shape, a first semiconductor type, and/or a first semiconductor doping type and concentration that is associated with a first biological cell type or a first biological cell component type. The dosimeter may further comprise a processing circuit communicatively coupled to the microdosimeter cell array and configured to generate a signal based on the first current. The signal generated may be indicative of an amount of radiation absorbed by the microdosimeter cell array. A display may be utilized by the dosimeter to show a radiation level reading based on the signal generated.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 14, 2014
    Inventors: James Francis Ziegler, Chao-tuan Liu, Razmig Hagop Messerian, Wayne Newhauser
  • Patent number: 8859944
    Abstract: A method and apparatus of coordinated in-pixel light detection is provided. In one aspect, the method includes implementing an N-number of avalanche photodiodes inside a pixel circuit of a light detection circuit. The method also includes coordinating an output of the N-number of avalanche photodiodes through a counter circuit. The method further includes reducing a deadtime of the light detection circuit by a factor of ā€˜Nā€™ through the N-number of avalanche photodiodes and the counter circuit operating in concert. The method furthermore includes measuring an intensity of a light through the light detection circuit. N-number of avalanche photodiodes is in a common well of a semiconductor technology. N-number of avalanche photodiodes is fabricated on a deep submicron semiconductor technology. A fill factor of the pixel circuit improves and a deadtime reduces through fabrication of the avalanche photodiodes in a common well. Also, a photon count rate increases through reducing the deadtime.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: October 14, 2014
    Assignee: King Abdulaziz City Science and Technology
    Inventors: Munir Eldesouki, Mohamed Jamal Deen, Qiyin Fang
  • Patent number: 8853638
    Abstract: According to an embodiment, a radioactivity evaluation method has: a first input step; a selection step in which the calculating section selects a representative neutron energy spectrum and a representative neutron fluence rate; a second input step; an radioactivity calculating step in which the calculating section calculates quantities of the radioactivity that correspond to the representative neutron energy spectra and the representative neutron fluence rates; a data storing step; a nuclide-by-nuclide radioactivation reaction rate calculating step in which the calculating section calculates a radioactivation reaction rate of each nuclide based on the neutron energy spectra at the position of each of the object sections; an object-by-object adding-up step; a nuclide determining step; and an object position determining step.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 7, 2014
    Assignees: The Japan Atomic Power Company, Kabushiki Kaisha Toshiba
    Inventors: Kenichi Tanaka, Hidenori Tanabe, Hideaki Ichige, Masahiko Kurosawa, Satoshi Yagishita, Kaoru Matsushita, Takayuki Hirouchi, Hidehiko Iida, Tatsuya Ikeda, Koh Akatsu
  • Patent number: 8853615
    Abstract: A method for measuring radiation of energy photons, such as ultraviolet radiation, on a surface, may include programming at least one transistor by at least transmitting an electric charge to it. The method may further include measuring an electrical quantity of the at least one transistor receiving radiation of energy photons and estimating, based on this electrical quantity, an amount of radiation received.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: October 7, 2014
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Julia Castellan, Philippe Boivin
  • Publication number: 20140291533
    Abstract: To provide a radiation image detecting device providing high responsivity and high precision of an emission start judgment, an electronic cassette has a panel unit and a control unit. The panel unit has a two-dimensional array of normal pixels for accumulating signal charge upon receiving X-rays and detection pixels for detecting the X-rays. A signal processing circuit periodically samples a dose signal, corresponding to an X-ray dose per unit of time, from the detection pixels. An emission start judgment unit performs based on the dose signals of the detection pixels a first judgment process for judging whether X-ray emission has been started, and a second judgment process for judging whether a result of the first judgment process is correct. The control unit sets a second sampling cycle SP2 used in the second judgment process longer than a first sampling cycle SP1 used in the first sampling process.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: FUJIFILM Corporation
    Inventor: Yasufumi ODA
  • Patent number: 8841622
    Abstract: A direct ion storage (DIS) radiation detector or dosimeter has a design that is easy and low cost to manufacture using semiconductor processing techniques. The detectors include internal communications interfaces so they are easy to read. Different interfaces, including wired, e.g. USB ports, and wireless interfaces, may be used, so that the dosimeters may be read over the internet. The detectors can thus be deployed or used in a variety of detection systems and screening methods, including periodic or single time screening of people, objects, or containers at a location by means of affixed dosimeters; screening of objects, containers or people at a series of locations by means of affixed dosimeters, and surveillance of an area by monitoring moving dosimeters affixed to people or vehicles.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: September 23, 2014
    Assignee: Mirion Technologies, Inc.
    Inventors: Jukka Kahilainen, Thomas Logan
  • Publication number: 20140264039
    Abstract: An integrated circuit includes a sensing module, a measuring module, a comparing module, and memory. The sensing module senses radiation incident on the integrated circuit. The measuring module communicates with the sensing module and measures an amount of the radiation incident on the integrated circuit. The comparing module communicates with the measuring module and compares the amount of the radiation to a predetermined threshold and generates an indication that the amount of the radiation is less than the predetermined threshold or that the amount of the radiation is greater than or equal to the predetermined threshold. The memory stores the indication.
    Type: Application
    Filed: June 26, 2013
    Publication date: September 18, 2014
    Inventors: Hal Kurkowski, Subbayya Chowdary Yanamadala, Prem Ramachandran Nayar, James Price Cusey, Shiauchwun G. Pwu, John Wettroth
  • Patent number: 8829452
    Abstract: An avalanche photodiode (APD) electro-magnetic radiation (EMR) detector for visible to near infrared wavelengths is described. The detector includes an EMR absorption region, a voltage biasing element, and a charge multiplication region. The EMR absorption region includes a substantially regular array of silver or aluminum nanoparticles embedded in a matrix material. The voltage biasing element is configured to apply a bias voltage to the matrix material such that electrical current is directly generated in the EMR absorption region based on a cooperative plasmon effect in the detector material when electro-magnetic radiation in the visible to near infrared wavelength range is incident upon the detector material, where the dominant mechanism for decay in the cooperative plasmon effect is non-radiative. The charge multiplication region is arranged relative to the EMR absorption region to avalanche multiply the electrical current generated in the EMR absorption region.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 9, 2014
    Assignee: Rockwell Collins, Inc.
    Inventor: Robert G. Brown
  • Patent number: 8816289
    Abstract: The present invention discloses a gamma dose rate measurement system comprising a shielding device and an electronic device. The shielding device is arranged for masking a visible light, so that only a light source substantially being a gamma ray passes through the shielding device. The electronic device comprises a sensing module, an image analysis module and a display module. The sensing module generates a current signal after sensing the gamma ray; the image analysis module receives the current signal and generates an analysis result including a total gamma dose rate and a gamma energy spectrum; and the display module is arranged for displaying the analysis result.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: August 26, 2014
    Assignee: National Applied Research Laboratories
    Inventors: Din Ping Tsai, Chih-Chieh Wu, Chih-Chung Chou, Tai-Shan Liao, Chi-Hung Huang
  • Patent number: 8810416
    Abstract: An assembly (13) for monitoring ionising radiation comprises a detector substrate (2) for generating electronic charge responsive to incident ionising radiation, the detector substrate (2) having an array of ionising radiation sense volumes (12) formed in it. A circuit substrate (14) supporting an array of read-out circuits (16) corresponding to the array of sense volumes is mechanically and electrically coupled to the detector substrate (14). Each of the read-out circuits (16) is switchable between first and second charge integration modes for receiving charge from a corresponding sense volume. A charge integration circuit (30) is configured in the first charge integration mode to integrate charge corresponding to sensing of a single ionising radiation detection event in a corresponding sense volume and in the second charge integrating mode to integrate charge corresponding to sensing a plurality of ionising radiation detection events in the corresponding sense volume.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: August 19, 2014
    Assignee: Radiation Watch Limited, LLC
    Inventors: Peter Trevor Doughty, Michael John Anderson, David Jeremy Prendergast, Ian Benson
  • Patent number: 8791418
    Abstract: A two-dimensional array of memory cells may be used to implement a spatial dosimeter. The two-dimensional array of cells may be implemented by an integrated circuit memory. Because of the relatively small size of the integrated circuit memory, the resolution of the resulting array may be less than 100 nanometers. The change in threshold voltage of each of the cells, as a result of radiation exposure, may be used to calculate the dose seen at each cell, allowing dose profiles in two dimensions with sub-micrometer resolution.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: July 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Angelo Visconti, Mauro Bonanomi, Giorgio Cellere, Alessandro Paccagnella
  • Publication number: 20140203181
    Abstract: Digital images or the charge from pixels in light sensitive semiconductor based imagers may be used to detect gamma rays and energetic particles emitted by radioactive materials. Methods may be used to identify pixel-scale artifacts introduced into digital images and video images by high energy gamma rays. Statistical tests and other comparisons on the artifacts in the images or pixels may be used to prevent false-positive detection of gamma rays. The sensitivity of the system may be used to detect radiological material at distances in excess of 50 meters. Advanced processing techniques allow for gradient searches to more accurately determine the source's location, while other acts may be used to identify the specific isotope. Coordination of different imagers and network alerts permit the system to separate non-radioactive objects from radioactive objects.
    Type: Application
    Filed: September 13, 2013
    Publication date: July 24, 2014
    Applicant: Image Insight Inc.
    Inventor: Eric P. Rubenstein
  • Patent number: 8772729
    Abstract: An avalanche photodiode (APD) electro-magnetic radiation (EMR) detector is described. The detector includes an EMR absorption region, a voltage biasing element, and a charge multiplication region. The EMR absorption region includes a substantially regular array of nano-particles embedded in a matrix material. The voltage biasing element is configured to apply a bias voltage to the matrix material such that electrical current is directly generated in the EMR absorption region based on a cooperative plasmon effect in the detector material when electro-magnetic radiation in a predetermined wavelength range is incident upon the detector material, where the dominant mechanism for decay in the cooperative plasmon effect is non-radiative. The charge multiplication region is arranged relative to the EMR absorption region to avalanche multiply the electrical current generated in the EMR absorption region.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 8, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Robert G. Brown, James H. Stanley
  • Patent number: 8766199
    Abstract: A detector tile (116) of an imaging system (100) includes a photosensor array (204) and electronics (208) electrically coupled to the photosensor array (204), wherein the electronics includes a dose determiner (402) that determines a deposited dose for the detector tile (116) and generates a signal indicative thereof. In one non-limiting instance, this signal is utilized to correct parameters such as gain and thermal coefficients, which may vary with radiation dose.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: July 1, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Marc A. Chappo, Randall P. Luhta, Rodney A. Mattson
  • Patent number: 8742357
    Abstract: A semiconductor radiation sensor (100), comprising a substrate (102), a carrier material (104) mounted to the substrate (102), and a semiconductor detector (106) mounted to the carrier material (104). A radiation sensitive portion of the semiconductor detector (106) is oriented towards the carrier material (104) and generally away from the substrate (102), and the carrier material is adapted to transmit radiation to the radiation sensitive portion of the semiconductor detector (106). A dosimeter comprising the radiation sensor (100) and a method of manufacturing the radiation sensor (100) are also provided.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: June 3, 2014
    Assignee: University of Wollongong
    Inventor: Anatoly Rozenfeld
  • Patent number: 8735842
    Abstract: A non-visible particle detection device includes an optical module capable of converting an ionizing radiation into visible light. The optical module includes has an attachment unit that is configured to removably attach the optical module to the image capturing module of a mobile device. The image capturing module generates a photon digital image based on the photons converted from the ionizing radiation. The mobile device can be implemented with a radiation dose determining module to execute a radiation dose equivalent calculation method. Based on the pixel brightness analysis of the photon digital image, the radiation equivalent dose can be determined. This method sums up the total brightness of all pixels in the images, determines whether the total brightness is smaller than the minimum effective brightness, and determines the radiation equivalent dose when the total brightness is equal to or larger than the minimum effective brightness.
    Type: Grant
    Filed: January 21, 2012
    Date of Patent: May 27, 2014
    Assignee: National Applied Research Laboratories
    Inventors: Din Ping Tsai, Chih-Chieh Wu, Tai-Shan Liao, Chi-Hung Huang
  • Patent number: 8729483
    Abstract: Certain embodiments described herein are directed to devices and systems that can be used for direct and indirect detection of radiation such as X-rays. In certain examples, the device can include a modulator optically coupled to a sensor. In some examples, the modulator can be configured to switch between different states to provide an imaging signal in one state and a dosimetry signal in another state.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: May 20, 2014
    Assignee: Perkinelmer Holdings, Inc.
    Inventor: Farhad Ghelmansarai
  • Publication number: 20140131583
    Abstract: A radiation detector dosimeter system/method implementing a corrected energy response detector is disclosed. The system incorporates charged (typically tungsten impregnated) injection molded plastic that may be formed into arbitrary detector configurations to affect radiation detection and dose rate functionality at a drastically reduced cost compared to the prior art, while simultaneously permitting the radiation detectors to compensate for radiation intensity and provide accurate radiation dose rate measurements. Various preferred system embodiments include configurations in which the energy response of the detector is nominally isotropic, allowing the detector to be utilized within a wide range of application orientations. The method incorporates utilization of a radiation detector so configured to compensate for radiation counts and generate accurate radiation dosing rate measurements.
    Type: Application
    Filed: May 13, 2013
    Publication date: May 15, 2014
    Inventor: Olivier Gaƫtan Giarmana
  • Patent number: 8692206
    Abstract: Systems, devices, and methods are described including implantable radiation sensing devices having exposure determination devices that determines cumulative exposure information based on the at least one in vivo measurand.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 8, 2014
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Michael A. Smith, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Publication number: 20140088401
    Abstract: A radiation dosimeter includes a semiconductor substrate and a buried insulator layer disposed on the semiconductor substrate. The buried insulator layer has a plurality of charge traps. A semiconductor layer is disposed on the buried insulator layer. The semiconductor layer has an emitter, an intrinsic base, and a collector laterally arranged with respect to one another. In response to radiation exposure by the radiation dosimeter, positive charges are trapped in the plurality of charge traps in the buried insulator layer, the amount of positive charge trapped being used to determine the amount of radiation exposure.
    Type: Application
    Filed: October 9, 2012
    Publication date: March 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Effendi Leobandung, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20140070107
    Abstract: An apparatus comprises a conducting substrate layer, a dielectric layer formed over the conducting substrate layer, a channel formed over at least a portion of the dielectric layer and first and second source/drain regions formed on respective first and second portions of the channel. The channel comprises a thin-film carbon material. The conducting substrate layer, the dielectric layer, the channel and the first and second source/drain regions are configured such that exposure to radiation causes a change in a threshold voltage of the apparatus.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: Yu-Ming Lin, Jeng-Bang Yau
  • Publication number: 20140034841
    Abstract: A method for measuring a dose related to the non-ionizing effects of a radiation of particles comprises the irradiation of a capacitive element provided with an electrode made from a semiconductor material, the measurement of the capacitance of the capacitive element in an accumulation regime and the determination of the dose related to the non-ionizing effects from the measurement of capacitance of the capacitive element in the accumulation regime.
    Type: Application
    Filed: January 31, 2012
    Publication date: February 6, 2014
    Applicant: UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES
    Inventors: Richard Arinero, Julien Mekki, Antoine Touboul, Frederic Saigne, Jean-Roch Vaille
  • Patent number: 8637842
    Abstract: A method of using automatic whole body personnel contamination monitors and/or means for decontaminating individuals exposed to radioactive material contamination is provided. The inventive method involves the use of these monitors and/or decontamination means in intermodal containers of mobile-unit structures dedicated to responding to radiological emergency situations. Also provided are such mobile-unit structures, as well as systems that employ such mobile-unit structures.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 28, 2014
    Assignee: UniTech Services Group, Inc.
    Inventors: Leslie B. Case, III, Michael R. Fuller, Gregg A. Johnstone, Thomas Pearce O'Kelley, Glenn E. Roberts
  • Publication number: 20130334432
    Abstract: A direct ion storage (DIS) radiation detector or dosimeter has a design that is easy and low cost to manufacture using semiconductor processing techniques. The detectors include internal communications interfaces so they are easy to read. Different interfaces, including wired, e.g. USB ports, and wireless interfaces, may be used, so that the dosimeters may be read over the internet. The detectors can thus be deployed or used in a variety of detection systems and screening methods, including periodic or single time screening of people, objects, or containers at a location by means of affixed dosimeters; screening of objects, containers or people at a series of locations by means of affixed dosimeters, and surveillance of an area by monitoring moving dosimeters affixed to people or vehicles.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 19, 2013
    Applicant: Mirion Technologies Inc.
    Inventors: Jukka Kahilainen, Thomas Logan
  • Publication number: 20130292576
    Abstract: The present invention discloses a gamma dose rate measurement system comprising a shielding device and an electronic device. The shielding device is arranged for masking a visible light, so that only a light source substantially being a gamma ray passes through the shielding device. The electronic device comprises a sensing module, an image analysis module and a display module. The sensing module generates a current signal after sensing the gamma ray; the image analysis module receives the current signal and generates an analysis result including a total gamma dose rate and a gamma energy spectrum; and the display module is arranged for displaying the analysis result.
    Type: Application
    Filed: August 15, 2012
    Publication date: November 7, 2013
    Inventors: Din Ping TSAI, Chih-Chieh WU, Chih-Chung CHOU, Tai-Shan LIAO, Chi-Hung HUANG
  • Patent number: 8563936
    Abstract: Bidimensional dosimetric detector, comprising: a monolithic base-matrix (1) made of homoepitaxial silicon with a surface for exposition to the radiation, a plurality of radiation-sensible junction diodes (2) for producing a plurality of electrical signals in response to the radiation, electrical terminals (3) connected to said diodes for feeding said produced electrical signals to an acquisition and processing unit (5), wherein the perimeter of one or more said diodes is defined by a boundary region of the electrical field of same diode.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: October 22, 2013
    Assignee: Universita' Degli Studi Firenze
    Inventors: Mara Bruzzi, Marta Bucciolini, Cinzia Talamonti, David Menichelli
  • Publication number: 20130270430
    Abstract: The invention relates to a real-time dosimetry monitoring system which is simple to deploy, efficient and economical and which limits the production of waste.
    Type: Application
    Filed: November 17, 2011
    Publication date: October 17, 2013
    Applicant: WYTEK
    Inventors: Patrick Pailler, Christian Chatellier, Yoann Hilairet, GrƩgory Jean
  • Patent number: 8552391
    Abstract: A matrix with a biologically active substance is exposed to UV radiation. The biologically active substance is selected to initiate photoconversions originating vitamin D synthesis. An optical parameter of the biologically active substance is being changed under UV irradiation. Change of the optical parameter is measured, thus measuring the amount of UV radiation that has caused the vitamin D synthesis occurred through photoconversion. Measuring occurs by way of a dosimeter.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: October 8, 2013
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Iryna P. Terenetska, Tetiana M. Orlova, Eugene K. Kirilenko, Grygory A Galich, Anna M. Eremneko
  • Patent number: 8519345
    Abstract: A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current ID, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: August 27, 2013
    Assignee: King Abdullah University of Science and Technology (KAUST)
    Inventors: Muhammad Arsalan, Atif Shamim, Nicholas Garry Tarr, Langis Roy
  • Patent number: 8492727
    Abstract: An detector material for detecting electro-magnetic radiation is described. The detector material includes a substantially regular array of nano-particles embedded in a matrix material. The nano-particles are arranged such that when a bias voltage to the matrix material is applied, electrical current is directly generated based on a cooperative plasmon effect in the detector material when electro-magnetic radiation in a predetermined wavelength range is incident upon the detector material, where the dominant mechanism for decay in the cooperative plasmon effect is non-radiative.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 23, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Robert G. Brown, James H. Stanley
  • Patent number: 8436313
    Abstract: Certain embodiments described herein are directed to devices and systems that can be used for direct and indirect detection of radiation such as X-rays. In certain examples, the device can include a modulator optically coupled to a sensor. In some examples, the modulator can be configured to switch between different states to provide an imaging signal in one state and a dosimetry signal in another state.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 7, 2013
    Assignee: PerkinElmer Holdings, Inc.
    Inventor: Farhad Ghelmansarai
  • Patent number: 8426208
    Abstract: The present invention relates to devices, systems, and methods for determination of ionizing radiation. In some embodiments, the devices comprise nanocomposite materials containing nanostructures (e.g., carbon nanotubes) dispersed in radiation sensitive polymers. In some cases, the device may include a conductive pathway that may be affected upon exposure to ionizing radiation. Embodiments described herein may provide inexpensive, large area, low power, and highly sensitive radiation detection materials/devices.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: April 23, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jose M. Lobez
  • Patent number: 8421022
    Abstract: A microdosimeter, comprising an array of three-dimensional p-n junction semiconductor detectors, each providing a sensitive volume-target and a tissue equivalent medium for generating secondary charged particles. The array is manufactured from a semiconductor on insulator wafer and the detectors are located to detect secondary charged particles generated in the tissue equivalent medium.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 16, 2013
    Assignee: University of Wollongong
    Inventor: Anatoly Rozenfeld
  • Publication number: 20130062528
    Abstract: Systems, devices, and methods are described including implantable radiation sensing devices having exposure determination devices that determines cumulative exposure information based on the at least one in vivo measurand.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 14, 2013
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Michael A. Smith, Elizabeth A. Sweeney, Lowell L. Wood, JR.
  • Publication number: 20130064349
    Abstract: Systems, devices, and methods are described including implantable radiation sensing devices having exposure determination devices that determines cumulative exposure information based on the at least one in vivo measurand.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 14, 2013
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Michael A. Smith, Elizabeth A. Sweeney, Lowell L. Wood, JR.
  • Patent number: 8361829
    Abstract: A method for forming a semiconductor device includes forming an implant mask on a substrate, such that a first portion of the substrate is located under the implant mask, and a second portion of the substrate is exposed; performing oxygen ion implantation of the substrate; removing the implant mask; and forming a first field effect transistor (FET) on the first portion of the substrate, and forming a second FET on the second portion of the substrate, wherein the second FET has a higher radiation sensitivity than the first FET.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michael S. Gordon, Kenneth P. Rodbell, Jeng-Bang Yau
  • Publication number: 20130020477
    Abstract: A method for measuring radiation of energy photons, such as ultraviolet radiation, on a surface, may include programming at least one transistor by at least transmitting an electric charge to it. The method may further include measuring an electrical quantity of the at least one transistor receiving radiation of energy photons and estimating, based on this electrical quantity, an amount of radiation received.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: STMicroelectronics (Rousset) SAS
    Inventors: Julia Castellan, Philippe Boivin
  • Patent number: 8357907
    Abstract: A method for real-time measurement of a local dose received by a region of a target upon bombardment of the target by an incident beam of hadrons generates at least prompt gamma rays and neutrons. The particles emitted by the target are measured by collimating the region of the target and by placing a detector at a distance L from the region of the target to be measured. The detector is linked to a device for particle energy and time-of-flight measurement, in which the number of prompt gamma rays received by the detector is determined by selecting the recorded events, and a two-directional charged-particle detection system, placed in the beam of incident hadrons before the target, is used so as to obtain the transverse position of the incident hadrons in order to provide spatial information about the prompt gamma rays.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: January 22, 2013
    Assignee: Universite Claude Bernard-Lyon 1
    Inventors: Etienne Testa, Cedric Ray, Nicolas Freud
  • Patent number: 8350225
    Abstract: An organic semiconductor device for detecting and measuring radiation has a total active area of less than 100 square microns (?m2) and comprises at least two bulk organic semiconductor regions with each region connected on one side to an independent biasing voltage electrode and connected on an opposing side to a common output electrode.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: January 8, 2013
    Inventor: Michael Bardash
  • Publication number: 20120326044
    Abstract: Certain embodiments described herein are directed to devices and systems that can be used for direct and indirect detection of radiation such as X-rays. In certain examples, the device can include a modulator optically coupled to a sensor. In some examples, the modulator can be configured to switch between different states to provide an imaging signal in one state and a dosimetry signal in another state.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: PERKINELMER HOLDINGS, INC.
    Inventor: Farhad Ghelmansarai
  • Publication number: 20120326045
    Abstract: The purpose of the present invention is to improve energy resolving power and prevent energy resolving power from deteriorating when a thick semiconductor detection element with a wide energy range is used, in a radiation measuring device using a semiconductor detector and a nuclear medicine diagnostic device. With the present invention, the purpose is achieved by pulsed wave value correction employing the difference of (Hs?Hf) between the pulsed wave height value Hs obtained from the slow speed shaping circuit, and the pulsed wave height value Hf obtained from the fast speed shaping circuit and normalized with respect to Hs. An even more desirable result may be obtained by employing either (Hs?Hf)/Hf or exp(k(Hs?Hf)/Hf), wherein k is a coefficient to be optimized, said optimization being dependent on the measurement assembly.
    Type: Application
    Filed: February 3, 2011
    Publication date: December 27, 2012
    Applicant: HITACHI, LTD.
    Inventors: Tomoyuki Seino, Yuichiro Ueno, Takafumi Ishitsu
  • Publication number: 20120313000
    Abstract: A detector tile (116) of an imaging system (100) includes a photosensor array (204) and electronics (208) electrically coupled to the photosensor array (204), wherein the electronics includes a dose determiner (402) that determines a deposited dose for the detector tile (116) and generates a signal indicative thereof. In one non-limiting instance, this signal is utilized to correct parameters such as gain and thermal coefficients, which may vary with radiation dose.
    Type: Application
    Filed: November 18, 2010
    Publication date: December 13, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marc A. Chappo, Randall P. Luhta, Rodney A. Mattson
  • Publication number: 20120273688
    Abstract: A non-visible particle detection device includes an optical module capable of converting an ionizing radiation into visible light. The optical module includes has an attachment unit that is configured to removably attach the optical module to the image capturing module of a mobile device. The image capturing module generates a photon digital image based on the photons converted from the ionizing radiation. The mobile device can be implemented with a radiation dose determining module to execute a radiation dose equivalent calculation method. Based on the pixel brightness analysis of the photon digital image, the radiation equivalent dose can be determined. This method sums up the total brightness of all pixels in the images, determines whether the total brightness is smaller than the minimum effective brightness, and determines the radiation equivalent dose when the total brightness is equal to or larger than the minimum effective brightness.
    Type: Application
    Filed: January 21, 2012
    Publication date: November 1, 2012
    Applicant: National Applied Research Laboratories
    Inventors: DIN PING TSAI, CHIH-CHIEH WU, TAI-SHAN LIAO, CHI-HUNG HUANG
  • Patent number: 8294111
    Abstract: A dosimeter and an associated method for detecting radiation are provided. A dosimeter includes a complementary pair of transistors, such as a first transistor that is doped in accordance with a first conductivity type, such as an n-doped metal oxide semiconductor field effect transistor (MOSFET) and a second transistor that is doped in accordance with a second conductivity type, different than the first conductivity type, such as a p-doped MOSFET. The first and second transistors may be configured to generate respective outputs that shift in opposite directions in response to radiation. The dosimeter may also include a circuit element configured to determine a measure of the radiation based upon a difference between the respective outputs of the first and second transistors. The circuit element may include an amplifier configured to amplify the difference between the respective outputs of the first and second transistors.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 23, 2012
    Assignee: The Boeing Company
    Inventors: William G. Bartholet, Dorina L. Hester
  • Publication number: 20120241633
    Abstract: An ultraviolet radiation dosimeter apparatus for measuring an individual's ultraviolet radiation exposure from incoming ultraviolet rays, including an ultraviolet radiation dosimeter body; an ultraviolet filter in the ultraviolet radiation dosimeter body; a detector semiconductor substrate in the ultraviolet radiation dosimeter body connected to the ultraviolet filter for detecting the incoming ultraviolet rays and producing a signal, the semiconductor substrate made of ZnSe(Te), and a chip in the ultraviolet radiation dosimeter body for receiving the signal and measuring the individual's ultraviolet radiation exposure from the incoming ultraviolet rays.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 27, 2012
    Inventors: Craig F. Smith, Vladimir Ryzhikov, Sergei Naydenov, Dennis Wood, Volodymyr Perevertailo
  • Patent number: 8212218
    Abstract: A system for determining an amount of radiation includes a dosimeter configured to receive the amount of radiation, the dosimeter comprising a circuit having a resonant frequency, such that the resonant frequency of the circuit changes according to the amount of radiation received by the dosimeter, the dosimeter further configured to absorb RF energy at the resonant frequency of the circuit; a radio frequency (RF) transmitter configured to transmit the RF energy at the resonant frequency to the dosimeter; and a receiver configured to determine the resonant frequency of the dosimeter based on the absorbed RF energy, wherein the amount of radiation is determined based on the resonant frequency.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Michael S. Gordon, Steven J. Koester, Conal E. Murray, Kenneth P. Rodbell, Stephen M. Rossnagel, Robert L. Wisnieff, Jeng-bang Yau
  • Publication number: 20120154170
    Abstract: Dosimeters with wireless communications capability, upon actuation, communicate with a cell phone or other data capture and relay device (DCRD) with an application that allows communication with the dosimeters. The cell phone or other DCRD is a single device or part of an ad hoc network. The cell phone or other DCRD, once it receives raw data from a dosimeter, relays the data to a central station using mobile telephone or Wi-Fi or other communications networks. The data is processed at the central station, and available over the Internet or cell phone.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: MIRION TECHNOLOGIES, INC
    Inventors: Jukka Kahilainen, Thomas D. Logan
  • Patent number: 8198595
    Abstract: This invention provides a radiation dosimeter and new method of operation which comprise two types of the metal-oxide-semiconductor field-effect transistor (MOSFET) circuits allowing to amplify the threshold voltage changes due to radiation and provide temperature compensation. The first type dosimeter is a radiation integrated circuit (RADIC) which includes two radiation field-effect transistors (RADFET) and two MOSFETs, integrated into the same substrate. The second type of radiation circuit includes two RADFETs, integrated into the same substrate, and two resistors. The amplification of the threshold voltage change is achieved by using amplification principles of an MOSFET inverter. In both cases, under the ionizing irradiation, the gate of first RADFET is forward biased and the gate of second RADFET is biased off. In the reading mode the amplified differential threshold voltage change is measured. The increased radiation sensitivity allows to measure of the milli-rad doses.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: June 12, 2012
    Inventor: Volodymyr Polishchuk
  • Patent number: 8187887
    Abstract: The present invention relates to devices, systems, and methods for determination of ionizing radiation. In some embodiments, the devices comprise nanocomposite materials containing nanostructures (e.g., carbon nanotubes) dispersed in radiation sensitive polymers. In some cases, the device may include a conductive pathway that may be affected upon exposure to ionizing radiation. Embodiments described herein may provide inexpensive, large area, low power, and highly sensitive radiation detection materials/devices.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: May 29, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Jose M. Lobez
  • Patent number: 8183534
    Abstract: A radiation dosimetry apparatus and method use a scintillating optical fiber array for detecting dose levels. The scintillating optical fiber detectors generate optical energy in response to a predetermined type of radiation, and are coupled to collection optical fibers that transmit the optical energy to a photo-detector for conversion to an electrical signal. The detectors may be embedded in one or more modular, water-equivalent phantom slabs. A repeatable connector couples the collection fibers to the photo-detector, maintaining the fiber ends in a predetermined spatial relationship. The detector fibers may be distributed as desired in a three-dimensional detection space, and may be oriented with their longitudinal axes at different orientations relative to a transmission axis of an incident radiation beam. A calibration method uses two measurements in two spectral windows, one with irradiation of the scintillator at a known dose and one with only irradiation of the collection fiber.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: May 22, 2012
    Inventors: Frederic Lacroix, Luc Beaulieu, Sam Beddar, Mathieu Guillot, Luc Gingras, Louis Archambault