Compound Viewed As Composition (i.e., Wherein Atoms Or Molecules In A Chemical Formula Are Not Present As Whole Small Integer Values Or Cannot Be Multiplied By A Single-digit Factor To Yield Integer Values) Patents (Class 252/519.1)
  • Patent number: 8980125
    Abstract: An active material for a nonaqueous electrolyte secondary battery includes first particles and second particles provided to coat the first particles so as to be scattered on the surfaces of the first particles. The circularity of the first particles coated with the second particles is 0.800 to 0.950, and the ratio r1/r2 of the average particle diameter r1 of the second particles to the average particle diameter r2 of the first particles is 1/20 to 1/2.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: March 17, 2015
    Assignee: Sony Corporation
    Inventor: Kazuaki Endoh
  • Publication number: 20150064580
    Abstract: Compositions and methods of making compositions are provided for nitride- and/or oxide-modified electrode compositions. In certain embodiments, the nitride- and/or oxide-modified compositions have the general formula M1?zM?zOaF3?xNy. Such compositions may be used as bulk or surface compositions, and used in a battery as the anode or cathode. In other embodiments, the electrode includes a surface coating composition selected from metal nitrides and metal oxides, and a core composition having the formula M1?zM?zOaF3?x, or an oxide fluoride.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: UT-BATTELLE, LLC
    Inventors: Craig A. Bridges, Mariappan Parans Paranthaman, Gabriel M. Veith, Zhonghe Bi
  • Publication number: 20150060743
    Abstract: Perovskite related compound of the present invention have layered structures in which perovskite units and A-rare earth structure units are alternately arranged. The reduced cell parameters ar-cr and ?r-?r and the reduced cell volume Vr are within the following ranges: ar=6.05±0.6 ?, br=8.26±0.8 ?, cr=9.10±0.9 ?, ?r=103.4±10°, ?r=90±10°, ?r=90±10°, and Vr=442.37±67 ?3. At least one of the reduced cell parameters ar-cr can be m/n times as large as the aforementioned values, where m and n are independent natural numbers, the square roots of 2 or 3 or integral multiples thereof. Values of ar, br and cr can be replaced with one another, or values of ?r, ?r and ?r can be replaced with one another.
    Type: Application
    Filed: July 9, 2014
    Publication date: March 5, 2015
    Inventors: Masatomo Yashima, Kotaro Fuji, Kazuki Omoto, Yuichi Esaki, Chihiro Saito
  • Publication number: 20150053898
    Abstract: To provide a composite oxide powder for a solid oxide fuel cell containing lanthanum, strontium and/or calcium, manganese and oxygen and having a highly uniform composition, and its production method. A composite oxide powder containing lanthanum, strontium and/or calcium, manganese and oxygen, wherein the coefficient of variation (?) of lanthanum is at most 6.0% and the coefficient of variation (?) of manganese is at most 13.0%, as calculated from the peak area ratio of the L? ray of lanthanum and the K? ray of manganese measured by an energy dispersive X-ray spectrometer attached to a scanning electron microscope.
    Type: Application
    Filed: July 22, 2014
    Publication date: February 26, 2015
    Applicant: AGC SEIMI CHEMICAL CO., LTD.
    Inventors: Futoshi NADA, Takene HIRAI
  • Publication number: 20150048280
    Abstract: A method for manufacturing a nanostructured metal oxide calcinate suitable for biosensor through a procedure of redox reaction is disclosed in this invention. The nanostructured metal oxide calcinate is free of impurities and produced with better electrocatalytic activity and better conductivity. Thus, an electrode of biosensor can be modified via the nanostructured metal oxide calcinate. The method for manufacturing the nanostructured metal oxide calcinate includes: disposing a first metal material and a second metal material into a reaction slot and making the first metal material and the second metal material dissolved within a solvent to form a mixture, wherein the pH value of the mixture ranges between 0 to 7, the mixture performs a redox reaction process for obtaining a metal oxide material; and eventually calcining the metal oxide material for obtaining a nanostructured metal oxide calcinate.
    Type: Application
    Filed: December 11, 2013
    Publication date: February 19, 2015
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chun-Hu Chen, Cheng-Chi Kuo, Wen-Jie Lan
  • Publication number: 20150048281
    Abstract: An oxide film according to this invention is a film of an oxide (possibly including inevitable impurities) containing silver (Ag) and nickel (Ni). This oxide film is an aggregate of microcrystals, an amorphous form including microcrystals, or an amorphous form and has p-type conductivity, which exhibits no clear diffraction peak with the XRD analysis, as seen in a chart in FIG. 3 indicating X-ray diffraction (XRD) analysis results of a first oxide film and a second oxide film. This oxide film achieves a broader bandgap than that of a conventional oxide film as well as high p-type conductivity. This oxide film is an aggregate of microcrystals, an amorphous form containing microcrystals, or an amorphous form as described above, and is thus easily formed on a large substrate and is suitable also for industrial production.
    Type: Application
    Filed: March 1, 2013
    Publication date: February 19, 2015
    Applicant: Ryukoku University
    Inventors: Seiji Yamazoe, Takahiro Wada
  • Publication number: 20150048282
    Abstract: The present invention relates to a transparent compound semiconductor and to a production method therefor, and is adapted to provide a transparent compound semiconductor of high stability and charge mobility while being transparent. The transparent compound semiconductor according to the present invention has a composition of Ba1?XLaXSnO3 (0<x<0.1) and has a charge mobility of at least 10 cm2/V·sec.
    Type: Application
    Filed: April 5, 2013
    Publication date: February 19, 2015
    Inventors: Kookrin Char, Jisoon Ihm
  • Publication number: 20150041732
    Abstract: This invention relates to a ceramic composition, which is suitable for use in DOC and DPF for removing nitrogen oxide, carbon monoxide and unburned particles from exhaust gas systems of vehicles or for use in a thermistor temperature sensor for an industrial high-temperature environment similar thereto, and to a thermistor device manufactured using the composition. The ceramic composition is prepared by adding a perovskite phase having a perovskite crystalline structure represented by ABO3 with Sn of Group 4B or Sb or Bi of Group 5B, wherein A includes at least one element selected from among Groups 2A and 3A elements except for LA, and B includes at least one element selected from among transition metals of Groups 4A, 5A, 6A, 7A, 8A, 2B and 3B.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Choon Sik Kim, Jae Moon Jung
  • Patent number: 8952302
    Abstract: The present invention relates to a ceramic-coated heater in which the outer surface of a heater rod is coated with ceramic to improve the physical properties thereof including durability, corrosion resistance, and the like, thereby enabling the heater to be used in water or air. The outer surface of the heater rod is coated with a ceramic composition to which an acrylic corrosion resistant wax is added, thereby strengthening the bonding force of the coating layer film, and thus improving the physical properties thereof including durability, corrosion resistance, and the like to enable the heater to be used in water. Therefore, the ceramic-coated heater of the present invention enables high thermal conductivity using less current and reduces energy consumption so that it can be utilized in a wide variety of industrial fields.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: February 10, 2015
    Assignee: Thermolon Korea Co., Ltd.
    Inventor: Chung Kwon Park
  • Publication number: 20150014605
    Abstract: The amount of lithium ions that can be received and released in and from a positive electrode active material is increased, and high capacity and high energy density of a secondary battery are achieved. Provided is a lithium-manganese composite oxide represented by LixMnyMzOw, where M is a metal element other than Li and Mn, or Si or P, and y, z, and w satisfy 0?x/(y+z)<2, y>0, z>0, 0.26?(y+z)/w<0.5, and 0.2<z/y<1.2. The lithium manganese composite oxide has high structural stability and high capacity.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 15, 2015
    Inventors: Takahiro KAWAKAMI, Shuhei YOSHITOMI, Teruaki OCHIAI, Yumiko SAITO, Yohei MOMMA, Satoshi SEO, Mayumi MIKAMI, Shunsuke ADACHI
  • Patent number: 8932781
    Abstract: Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 13, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Lei Yang, Zhe Cheng, Ze Liu, Meilin Liu
  • Patent number: 8932495
    Abstract: Embodiments of the invention generally provide hydrogen-doped and/or fluorine-doped transparent conducting oxide (TCO) materials and processes for forming such doped TCO materials. In one embodiment, a method for fabricating a doped TCO on a substrate surface includes forming a TCO material on a substrate, exposing the TCO material to a hydrogen plasma while forming a hydrogen-doped TCO material during an atmospheric pressure plasma (APP) process, wherein the hydrogen-doped TCO material contains atomic hydrogen at a concentration within a range from about 1 at % (atomic percent) to about 30 at %, and exposing the hydrogen-doped TCO material to a thermal annealing process. In another embodiment, the method includes exposing the TCO material to a fluorine plasma while forming a fluorine-doped TCO material during the APP process, wherein the fluorine-doped TCO material contains atomic fluorine at a concentration within a range from about 1 at % to about 30 at %.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 13, 2015
    Assignee: Clearist, Inc.
    Inventors: Paul Phong Nguyen, Scott Allen Jewhurst
  • Patent number: 8932481
    Abstract: A cathode active material includes a core including a material having an olivine structure, and a nitrogen atom doped into at least a portion of the core.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: January 13, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyu-sung Park, Young-min Choi
  • Patent number: 8920687
    Abstract: Provided is a cathode active material for nonaqueous electrolyte rechargeable batteries which allows production of batteries having improved load characteristics with stable quality, and also allows production of batteries having high capacity. Also provided are a cathode for nonaqueous electrolyte rechargeable batteries and a nonaqueous electrolyte rechargeable battery. The cathode active material includes secondary particles each composed of a plurality of primary particles, and/or single crystal grains, and has a specific surface area of not smaller than 20 m2/g and smaller than 0.50 m2/g, wherein average number A represented by formula (1) is not less than 1 and not more than 10: A=(m+p)/(m+s) (m: the number of single crystal grains; p: the number of primary particles composing the secondary particles; s: the number of secondary particles).
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: December 30, 2014
    Assignee: Santoku Corporation
    Inventors: Tetsu Fujiwara, Masayuki Moritaka, Akihito Kaneko
  • Publication number: 20140377479
    Abstract: The invention provides a transparent conducting film which comprises a compound of formula (I): Zn1-x[M]xO1-y[X]y(I) wherein: x is greater than 0 and less than or equal to 0.25; y is from 0 to 0.1; [X] is at least one dopant element which is a halgen; and [M] is: (a) a dopant element which is selected from: a group 14 element other than carbon; a lanthanide element which has an oxidation state of +4; and a transition metal which has an oxidation state of +4 and which is other than Ti or Zr; or (b) a combination of two or more different dopant elements, at least one of which is selected from: a group 14 element other than carbon; a lanthanide element which has an oxidation state of +4; and a transition metal which has an oxidation state of +4 and which is other than Ti or Zr. The invention further provides coatings comprising the films of the invention, processes for producing such films and coatings, and various uses of the films and coatings.
    Type: Application
    Filed: September 11, 2014
    Publication date: December 25, 2014
    Inventors: Peter P. EDWARDS, Martin JONES, Malek Moshari AL-MAMOURI, John Stuart ABELL
  • Patent number: 8894889
    Abstract: A compound semiconductor precursor ink composition includes an ink composition for forming a chalcogenide semiconductor film and a peroxide compound mixed with the ink composition. A method for forming a chalcogenide semiconductor film and a method for forming a photovoltaic device each include using the compound semiconductor precursor ink composition containing peroxide compound to form a chalcogenide semiconductor film.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: November 25, 2014
    Assignee: Neo Solar Power Corp.
    Inventors: Feng-Yu Yang, Ching Ting, Yueh-Chun Liao
  • Publication number: 20140332735
    Abstract: The present invention provides a complex oxide sintered body 10 wherein Zr/(In+Zr+Y) is 0.05 to 4.5 at % and Y/(In+Zr+Y) is 0.005 to 0.5 at % in an atomic ratio when indium, zirconium, and yttrium are designated by In, Zr, and Y, respectively. Moreover, the present invention provides a sputtering target including the complex oxide sintered body 10 and a transparent conductive oxide film obtained by sputtering the sputtering target.
    Type: Application
    Filed: November 29, 2012
    Publication date: November 13, 2014
    Inventors: Hideto Kuramochi, Kimiaki Tamano, Hitoshi Ilgusa, Ryo Akiike, Tetsuo Shibutami
  • Publication number: 20140308583
    Abstract: The disclosure relates to an anode material for a sodium-ion battery having the general formula AOx—C or ACx—C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula MySb-M?Ox—C, Sb-MOx—C, MySn-M?Cx—C, or Sn-MCx—C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 16, 2014
    Inventors: Arumugam Manthiram, II Tae Kim, Eric Allcorn
  • Patent number: 8852464
    Abstract: Electrically conducting vanadium arsenate or vanadium phosphate materials are described. The materials include a vanadium arsenate or vanadium phosphate framework structure about organic template and water molecules which may be removed to leave a microporous structure. The three-dimensional vanadium framework may provide electronic conductivity, while the extra-framework constituents may provide ionic conductivity.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 7, 2014
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Victoria Soghomonian, Jean J. Heremans
  • Patent number: 8852452
    Abstract: A lithium transition metal oxide powder for use in a rechargeable battery is disclosed, where the surface of the primary particles of said powder is coated with a LiF layer, where this layer consists of a reaction product of a fluorine-containing polymer and the primary particle surface. The lithium of the LiF originates from the primary particles surface. Examples of the fluorine-containing polymer are either one of PVDF, PVDF-HFP or PTFE. Examples of the lithium transition metal oxide are either one of —LiCodMeO2, wherein M is either one of both of Mg and Ti, with e<0.02 and d+e=1; —Li1+aM?1?aO2±bM1kSm with ?0.03<a<0.06, b<0.02, M? being a transition metal compound, consisting of at least 95% of either one or more elements of the group Ni, Mn, Co and Ti; M1 consisting of either one or more elements of the group Ca, Sr, Y, La, Ce and Zr, with 0?k?0.1 in wt %; and 0<m<0.6, m being expressed in mol %; and —LiaNixCOyM?zO2±eAf, with 0.9<a?<1.1, 0.5?x?0.9, 0<y?0.4, 0<z?0.35, e<0.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 7, 2014
    Assignee: Umicore
    Inventors: Jens Paulsen, Randy De Palma, HeonPyo Hong, KyuBo Kim
  • Publication number: 20140291588
    Abstract: Provided are a mixed cathode active material having improved power characteristics and safety, and a lithium secondary battery including the same. More particularly, the present invention relates to a mixed cathode active material which may assist power in a low SOC range to widen an available state of charge (SOC) range and may simultaneously provide improved safety by blending substituted LFP, in which operating voltage is adjusted by substituting a portion of iron (Fe) with other elements such as titanium (Ti), in order to prevent a rapid increase in resistance of manganese (Mn)-rich having high capacity but low operating voltage in a low SOC range (e.g., a SOC range of 10% to 40%), and a lithium secondary battery including the mixed cathode active material.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 2, 2014
    Inventors: Song Taek Oh, Sang Uck Lee, Su Rim Lee, Geun Chang Chung, Jae Kook Kim, Jin Sub Lim
  • Patent number: 8834740
    Abstract: A polycrystalline cobalt-nickel-manganese ternary positive material is provided. The polycrystalline cobalt-nickel-manganese ternary positive material comprises more than two basic crystalline structures of Liz—CoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2 and Li2MnO3. Further, a method for preparing the positive material by high-temperature fusion is provided. The positive material has the compacted density of 3.9-4.3 g/cm3, the capacity of 145 mAh/g or more when the discharging rate is 0.5-1C and the capacity retention rate of more than 90% after 300 cycles. The positive material prepared by high-temperature fusion has high volume energy density, excellent electrochemical performance, and improved safety and is manufactured economically. Further, a lithium ion secondary battery comprising the positive material is provided.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: September 16, 2014
    Assignees: Shenzhen Zhenhua New Material Co., Ltd., Guizhou Zhenhua New Material Co., Ltd.
    Inventors: Qianxin Xiang, Xiaolian Zhao
  • Patent number: 8821767
    Abstract: A cathode active material is provided by which excellent charge and discharge properties in a high-current range can be obtained when used in non-aqueous electrolyte secondary batteries. The cathode active material consists of a mixed metal fluoride represented by the general formula Fe(1-x)MxF3. M is a metal element selected from the group consisting of Y, Mn, Cu, Zn, and Cr. x is 0.01?x?0.15.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: September 2, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kaoru Omichi, Yuji Isogai, Yuki Ito
  • Patent number: 8821766
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2-x-yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: September 2, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20140234752
    Abstract: A composite metal oxide represented by the formula Ma1?xMbxMcO4+x/2, wherein Ma is at least one element selected from alkaline earth metals, Mb is at least one element selected from lanthanoids, Mc is at least one element selected from Mo and W, and x is from about 0.1 to about 0.5.
    Type: Application
    Filed: July 22, 2013
    Publication date: August 21, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hee-jung PARK, Chan KWAK, Sung-jin AHN, Doh-won JUNG
  • Patent number: 8801974
    Abstract: A method for making a composite of cobalt oxide is disclosed. An aluminum nitrate solution is provided. Lithium cobalt oxide particles are introduced into the aluminum nitrate solution. The lithium cobalt oxide particles are mixed with the aluminum nitrate solution to form a mixture. A phosphate solution is added into the mixture to react with the aluminum nitrate solution and form an aluminum phosphate layer on surfaces of the lithium cobalt oxide particles. The lithium cobalt oxide particles with the aluminum phosphate layer formed on the surfaces thereof are heat treated to form a lithium cobalt oxide composite. The lithium cobalt oxide composite is electrochemical lithium-deintercalated at a voltage of Vx, wherein 4.5V<Vx?5V to form a cobalt oxide. The present disclosure also relates to a cobalt oxide and a composite of cobalt oxide.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: August 12, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jian-Jun Li, Xiang-Ming He, Li Wang, Dan Wang, Xian-Kun Huang, Chang-Yin Jiang
  • Patent number: 8784700
    Abstract: A sputtering target containing oxides of indium (In), gallium (Ga) and zinc (Zn), which includes a compound shown by ZnGa2O4 and a compound shown by InGaZnO4.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: July 22, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kazuyoshi Inoue, Koki Yano, Futoshi Utsuno
  • Patent number: 8771555
    Abstract: An ink composition for forming a chalcogenide semiconductor film and a method for forming the same are disclosed. The ink composition includes a solvent, a plurality of metal chalcogenide nanoparticles and at least one selected from the group consisted of metal ions and metal complex ions. The metal ions and/or complex ions are distributed on the surface of the metal chalcogenide nanoparticles and adapted to disperse the metal chalcogenide nanoparticles in the solvent. The metals of the metal chalcogenide nanoparticles, the metal ions and the metal complex ions are selected from a group consisted of group I, group II, group III and group IV elements of periodic table and include all metal elements of a chalcogenide semiconductor material.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 8, 2014
    Assignee: Neo Solar Power Corp.
    Inventors: Yueh-Chun Liao, Feng-Yu Yang, Ching Ting
  • Patent number: 8765028
    Abstract: Provided are a composition for an oxide semiconductor, a method of preparing the composition, methods of forming an oxide semiconductor thin film and an electronic device using the composition. The composition for an oxide semiconductor includes a tin compound, a zinc compound, and a low electronegativity metal compound containing a metal with an electronegativity lower than zinc.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: July 1, 2014
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Hyun Jae Kim, You Seung Rim, Dong Lim Kim
  • Publication number: 20140167033
    Abstract: An oxide sintered body includes indium oxide and gallium solid-solved therein, the oxide sintered body having an atomic ratio “Ga/(Ga+In)” of 0.001 to 0.12, containing indium and gallium in an amount of 80 atom % or more based on total metal atoms, and having an In2O3 bixbyite structure.
    Type: Application
    Filed: November 20, 2013
    Publication date: June 19, 2014
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Futoshi UTSUNO, Kazuyoshi INOUE, Hirokazu KAWASHIMA, Masashi KASAMI, Koki YANO, Kota TERAI
  • Publication number: 20140158951
    Abstract: [Object] Provided are: a Zn—Si—O-based oxide sintered body, which suppresses abnormal discharge and so forth when used as a sputtering target, or suppresses a splash phenomenon when used as a tablet for vapor deposition; a method for producing the Zn—Si—O-based oxide sintered body; and the like. [Solution] The Zn—Si—O-based oxide sintered body contains zinc oxide as a main component and Si, and is characterized in that a Si content is 0.1 to 10 atomic % with an atomic ratio of Si/(Zn+Si), the Si element is contained in a wurtzite-type zinc oxide phase to form a solid solution, and the oxide sintered body does not contain a SiO2 phase and zinc silicate (Zn2SiO4) as a spinel-type composite oxide phase.
    Type: Application
    Filed: July 3, 2012
    Publication date: June 12, 2014
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yasunori Yamanobe, Kentaro Sogabe, Makoto Ozawa
  • Publication number: 20140152936
    Abstract: According to example embodiments, a semiconductor material may include zinc, nitrogen, and fluorine. The semiconductor material may further include oxygen. The semiconductor material may include a compound. For example, the semiconductor material may include zinc fluorooxynitride. The semiconductor material may include zinc oxynitride containing fluorine. The semiconductor material may include zinc fluoronitride. The semiconductor material may be applied as a channel material of a thin film transistor (TFT).
    Type: Application
    Filed: November 29, 2013
    Publication date: June 5, 2014
    Applicants: SAMSUNG DISPLAY CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-sang KIM, Sun-jae KIM, Hyun-suk KIM, Myung-kwan RYU, Joon-seok PARK, Seok-jun SEO, Jong-baek SEON, Kyoung-seok SON
  • Publication number: 20140144476
    Abstract: The present invention relates to a thermoelectric material comprising a zinc- and tin-based oxide doped with a metal selected from Ta and Nb. The invention also relates to a thermoelectric device comprising such a thermoelectric material, and its use for waste heat recovery.
    Type: Application
    Filed: October 3, 2011
    Publication date: May 29, 2014
    Applicant: Corning Incorporated
    Inventor: Micaela Nazaraly
  • Patent number: 8722250
    Abstract: A cathode active material including: a lithium metal oxide core represented by Formula 1 below; and an oxide coating layer formed on the lithium metal oxide core: Li[LixMeyMz]O2+d.??<Formula 1> In Formula 1: x+y+z=1 (0<x<0.33 and 0<z<0.1); 0?d?0.1; Me includes at least one metal selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr, and B; and M includes at least one metal selected from the group consisting of Mo, W, Ir, Ni, and Mg.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: May 13, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-sik Park, Won-chang Choi, Dong-min Im
  • Patent number: 8709301
    Abstract: A Ni—, Co—, and Mn— multi-element doped positive electrode material for lithium ion batteries and its preparation method are provided. The method for preparing said material consists of: first forming a Ni—, Co—, and Mn— multi-element doped intermediate compound by coprecipitation or chemical synthesis; mixing said multi-element intermediate compound with lithium salt and pre-processing the resulting mixture; adding polyvinyl alcohol into the mixture and mixing uniformly, then pressing the resulting mixture into blocks, and calcining these at 800˜930° C.; cooling outside the furnace, crushing and passing through a 400-mesh sieve; calcining the resulting powder at 700˜800° C., cooling outside the furnace and crushing to obtain the product. The positive electrode material obtained by the method described is in the form of non-agglomerated monocrystal particles, with a particle diameter of 0 5˜30 ?m, the chemical formula LiNixCoyMnzM(1-x-y-z)O2, a compacted density of up to 3.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 29, 2014
    Assignee: Chengdu Jingyuan New Materials Technology Co., Ltd.
    Inventors: Jiaxiang Wang, Kaiping Wu, Xiaobing You, Pin Xu, Yu Wang, Yun Lu, Rulan Liao
  • Patent number: 8709298
    Abstract: A compound of the general formula (I) AaMbPcOd??(I) in which the variables are each defined as follows: M is at least one transition metal selected from Co, Ni, Mn, Fe and Cr, A is Li or LixNa1-x where x is in the range from 0.2 to 1.0, a is in the range from 3.5 to 4.5, b is in the range from 0.8 to 1.2, c is in the range from 1.8 to 2.2 and d is in the range from 7.2 to 8.8.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: April 29, 2014
    Assignee: BASF SE
    Inventors: Martin Schulz-Dobrick, Hartmut Hibst, Jordan Keith Lampert, Robert Glaum, Helmut Ehrenberg, Katharina Gerber, Markus Herklotz, Frieder Scheiba
  • Patent number: 8709302
    Abstract: The present invention discloses a high compact density nickel-cobalt-manganese multi-element lithium ion battery cathode material with dopants and methods of its preparation. A preparation method of this battery cathode material is as follows: (A) preparing a nickel-cobalt-manganese multi-element intermediate with dopants by co-precipitation or chemical synthesis; (B) preparing a mixture by mixing said multi-element intermediate with a lithium salt; (C) pre-treating the said mixture, then adding into it polyvinyl alcohol and mixing uniformly; (D) pressing the resulting material into lumps, calcining the lumps at 800˜950° C., cooling after its removal from the furnace, crushing, passing through a 400 mesh sieve; (E) calcining the resulting power at 700˜800° C., cooling after its removal from the furnace, crushing and sieving to obtain a product. The lithium battery cathode material obtained using the above-described method has the formula LiNixCoyMnzM(1-x-y-z)O2.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: April 29, 2014
    Assignee: Chengdu Jingyuan New Materials Technology Co., Ltd.
    Inventors: Jiaxiang Wang, Kaiping Wu, Xiaobing You, Pin Xu, Yu Wang, Yun Lu, Rulan Liao
  • Publication number: 20140110639
    Abstract: A negative-electrode active material characterized by containing a silicon oxide represented by a general formula SiOx (0<x<2) and a silicate compound represented by a composition formula MaSibOc-m(OH)-n(H20), and a method for the production of a negative-electrode active material which includes a mixing step of mixing a silicon oxide that is represented by a general formula SiOy (0<y<2) and a metal oxide, and a heat treatment step of performing a heat treatment on the mixture that is obtained in the mixing step in a non-oxidizing atmosphere and in which the negative absolute value of the standard Gibbs energy of the oxidation reaction of the metal oxide at the heating temperature in the heat treatment step is smaller than the negative absolute value of the standard Gibbs energy of the oxidation reaction of Si at the heating temperature in the heat treatment step.
    Type: Application
    Filed: June 19, 2012
    Publication date: April 24, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hideyuki Yamamura
  • Publication number: 20140103268
    Abstract: A sputtering target including indium (In), tin (Sn) and zinc (Zn) and an oxide including one or more elements X selected from the following group X, the atomic ratio of the elements satisfying the following formulas (1) to (4): Group X: Mg, Si, Al, Sc, Ti, Y, Zr, Hf, Ta, La, Nd, Sm 0.10?In/(In+Sn+Zn)?0.85??(1) 0.01?Sn/(In+Sn+Zn)?0.40??(2) 0.10?Zn/(In+Sn+Zn)?0.70??(3) 0.70?In/(In+X)?0.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 17, 2014
    Inventors: Masayuki Itose, Mami Nishimura, Misa Sunagawa, Masashi Kasami, Koki Yano
  • Patent number: 8679374
    Abstract: Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxMyCo4-m-aAmSb12-n-z-bXnQz, where M is at least one selected from the group consisting of Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, A is at least one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir and Pt, X is at least one selected from the group consisting of Si, Ga, Ge and Sn, Q is at least one selected from the group consisting of O, S, Se and Te, 0<x<1, 0?y<1, 0?m?1, 0?a?1, 0?n<9, 0?z?4, 0?b?3 and 0<n+z+b.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Cheol-Hee Park, Tae-Hoon Kim
  • Patent number: 8673171
    Abstract: Disclosed is a cathode for secondary batteries comprising a compound having a transition metal layer containing lithium as at least one compound selected from the following formula 1: (1?x)Li(LiyM1-y-zMaz)O2-bAb*xLi3PO4 (1) wherein M is an element stable for a six-coordination structure, which is at least one selected from transition metals that belong to first and second period elements; Ma is a metal or non-metal element stable for a six-coordination structure; A is at least one selected from the group consisting of halogen, sulfur, chalcogenide compounds and nitrogen; 0<x<0.1; 0<y<0.3; 0?z<0.2; and 0?b<0.1.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Kyun Chang, Jinhyung Lim, DongHun Lee, Hong Kyu Park, Su-Min Park
  • Publication number: 20140054517
    Abstract: A cathode active material is provided by which excellent charge and discharge properties in a high-current range can be obtained when used in non-aqueous electrolyte secondary batteries. The cathode active material consists of a mixed metal fluoride represented by the general formula Fe(1?x)MxF3. M is a metal element selected from the group consisting of Y, Mn, Cu, Zn, and Cr. x is 0.01?x?0.15.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 27, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kaoru Omichi, Yuji Isogai, Yuki Ito
  • Patent number: 8658314
    Abstract: A cathode thin film for a lithium secondary cell, which uses a cathode active material substituting Sn for Mn in lithium manganese oxide, has a high discharge capacity and an improved cycle property.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: February 25, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Ji-Won Choi, Seok-Jin Yoon, Dong Wook Shin
  • Patent number: 8658064
    Abstract: Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxMyCo4-m-aAmSb12-n-zXnTez, where M is at least one selected from the group consisting of Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; A is at least one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir and Pt; X is at least one selected from the group consisting of Si, Ga, Ge and Sn; 0<x<1; 0<y<1; 0?m?1; 0?n<9; 0<z?2 and 0<a?1.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Cheol-Hee Park, Tae-Hoon Kim
  • Patent number: 8658063
    Abstract: Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxMyCo4-m-aAmSb12-n-z-bXnTez, where M is at least one selected from the group consisting of Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; A is at least one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir and Pt; X is at least one selected from the group consisting of Si, Ga, Ge and Sn; 0<x<1; 0<y<1; 0?m?1; 0?n<9; 0<z?2; 0?a?1; 0<b?3; and 0<n+z+b<12.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Cheol-Hee Park, Tae-Hoon Kim
  • Publication number: 20140038039
    Abstract: In an aspect, a positive active material for a rechargeable lithium battery that includes a lithium composite oxide including a Fe-containing compound phase and a Li-containing compound phase, a method of preparing the same, and a rechargeable lithium battery including the same are provided.
    Type: Application
    Filed: April 18, 2013
    Publication date: February 6, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Ji-Hyun Kim, Yong-Chan You, Han-Eol Park
  • Patent number: 8636926
    Abstract: Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxMyCo4-mAmSb12-n-zXnTez, where M is at least one selected from the group consisting of Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Pd, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, A is at least one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir and Pt, X is at least one selected from the group consisting of Si, Ga, Ge and Sn, 0<x<1, 0<y<1, 0?m?1, 0?n<9 and 0<z?2.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 28, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Cheol-Hee Park, Tae-Hoon Kim
  • Patent number: 8636925
    Abstract: Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxCo4Sb12-n-zQ?nTez, where Q? is at least one selected from the group consisting of O, S and Se, 0<x?0.5, 0<n?2 and 0<z?2.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 28, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Cheol-Hee Park, Tae-Hoon Kim
  • Publication number: 20140020744
    Abstract: A device includes a back contact, an absorber layer coupled to the back contact, a buffer layer coupled to the absorber layer; and an amorphous transparent conductive layer coupled to the buffer layer, wherein the amorphous transparent conductive phase is characterized by, as a function of composition, i) a range of band gaps and ii) a range of work functions.
    Type: Application
    Filed: January 3, 2013
    Publication date: January 23, 2014
    Inventors: Peter Hersh, Maikel van Hest, David Ginley, John Perkins, Vincent Bollinger
  • Patent number: 8632694
    Abstract: Disclosed is a cathode active material for secondary batteries comprising, a compound having a transition metal layer containing lithium as at least one compound selected from the following Formula 1: Li(Li3x±yM1?yPx)O2+z (1) wherein M is an element stable for a six-coordination structure, which is at least one selected from transition metals that belong to the first and second period elements; 0<x<0.1; 0<y<0.3; ?4x<z?4x; and 3x>y is satisfied in a case of 3x?y.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 21, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Kyun Chang, DongHun Lee, HoSuk Shin, Hong Kyu Park, JiEun Lee