Compound Viewed As Composition (i.e., Wherein Atoms Or Molecules In A Chemical Formula Are Not Present As Whole Small Integer Values Or Cannot Be Multiplied By A Single-digit Factor To Yield Integer Values) Patents (Class 252/519.1)
  • Publication number: 20130022873
    Abstract: A method of growing electrochemically active materials in situ within a dispersed conductive matrix to yield nanocomposite cathodes or anodes for electrochemical devices, such as lithium-ion batteries. The method involves an in situ formation of a precursor of the electrochemically active materials within the dispersed conductive matrix followed by a chemical reaction to subsequently produce the nanocomposite cathodes or anodes, wherein: the electrochemically active materials comprise nanocrystalline or microcrystalline electrochemically active metal oxides, metal phosphates or other electrochemically active materials; the dispersed conductive matrix forms an interconnected percolation network of electrically conductive filaments or particles, such as carbon nanotubes; and the nanocomposite cathodes or anodes comprise a homogeneous distribution of the electrochemically active materials within the dispersed conductive matrix.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jon Fold von Bulow, Hong-Li Zhang, Daniel E. Morse
  • Patent number: 8357858
    Abstract: An electrically conductive, thermosetting elastomeric composition is provided. The composition may comprise: an initially substantially non-electrically conductive, thermosetting base polymer; a particulate filler comprising electrically conductive particles; and an electrically conductive polymer additive. The non-electrically conductive, thermosetting base polymer, the particulate filler and the electrically conductive polymer additive are mixed substantially macroscopically homogeneously.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: January 22, 2013
    Assignee: Simon Fraser University
    Inventors: Ajit Khosla, Bonnie Lynne Gray
  • Publication number: 20130009111
    Abstract: Disclosed is an oxide for a semiconductor layer of a thin film transistor, which, when used in a thin film transistor that includes an oxide semiconductor in the semiconductor layer, imparts good switching characteristics and stress resistance to the transistor. Specifically disclosed is an oxide for a semiconductor layer of a thin film transistor, which is used for a semiconductor layer of a thin film transistor and contains at least one element selected from the group consisting of In, Ga and Zn and at least one element selected from the group X consisting of Al, Si, Ni, Ge, Sn, Hf, Ta and W.
    Type: Application
    Filed: April 7, 2011
    Publication date: January 10, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinya Morita, Toshihiro Kugiyama, Takeaki Maeda, Satoshi Yasuno, Yasuaki Terao, Aya Miki
  • Publication number: 20130009116
    Abstract: Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxCo4-aSb12-zQz, where Q is at least one selected from the group consisting of O, S, Se and Te, 0<x?0.5, 0<a?1 and 0?z?4.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Cheol-Hee PARK, Tae-Hoon KIM
  • Publication number: 20130001481
    Abstract: Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxCo4-aSb12-z-bQz, where Q is at least one selected from the group consisting of O, S, Se and Te; 0<x?0.5; 0?a?1; 0<b?3; and 0<z?4.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Cheol-Hee Park, Tae-Hoon Kim
  • Publication number: 20120326673
    Abstract: A method for making a composite of cobalt oxide is disclosed. An aluminum nitrate solution is provided. Lithium cobalt oxide particles are introduced into the aluminum nitrate solution. The lithium cobalt oxide particles are mixed with the aluminum nitrate solution to form a mixture. A phosphate solution is added into the mixture to react with the aluminum nitrate solution and form an aluminum phosphate layer on surfaces of the lithium cobalt oxide particles. The lithium cobalt oxide particles with the aluminum phosphate layer formed on the surfaces thereof are heat treated to form a lithium cobalt oxide composite. The lithium cobalt oxide composite is electrochemical lithium-deintercalated at a voltage of Vx, wherein 4.5V<Vx?5V to form a cobalt oxide. The present disclosure also relates to a cobalt oxide and a composite of cobalt oxide.
    Type: Application
    Filed: October 26, 2011
    Publication date: December 27, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: JIAN-JUN LI, XIANG-MING HE, LI WANG, DAN WANG, XIAN-KUN HUANG, CHANG-YIN JIANG
  • Publication number: 20120326099
    Abstract: The present invention provides a positive electrode active material for lithium ion battery which attains a lithium ion battery having high safety. The positive electrode active material has a layer structure for a lithium ion battery, in which the positive electrode active material is represented by the following composition formula: Lix(NiyM1-y)Oz (wherein M represents Mn and Co, x is 0.9 to 1.2, y is 0.8±0.025, and z is 1.8 to 2.4), and ?T=T41?T44, that is a difference between a first exothermic peak temperature T44 (° C.) of a first lithium ion battery and a first exothermic peak temperature T41 (° C.) of a second lithium ion battery, both are obtained by a differential scanning calorimetry (DSC) carried out at temperature increase rate of 5° C./min, when a lithium ion battery using a positive electrode mixture prepared with the positive electrode active material, a binder, and a conductive material in weight ratio of 91%, 4.2%, and 4.8%, respectively is charged to 4.
    Type: Application
    Filed: March 3, 2011
    Publication date: December 27, 2012
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventor: Hirohito Satoh
  • Publication number: 20120329686
    Abstract: A lubricating and shock absorbing materials are described, which are based on nanoparticles having the formula A1-x-Bx-chalcogenide. Processes for their manufacture are also described.
    Type: Application
    Filed: March 10, 2011
    Publication date: December 27, 2012
    Inventors: Reshef Tenne, Francis Leonard Deepak, Hagai Cohen, Sidney R. Cohen, Rita Rosentsveig, Lena Yadgarov
  • Publication number: 20120326098
    Abstract: The present invention provides a positive electrode active material for lithium ion battery which attains a lithium ion battery having high safety. The positive electrode active material for lithium ion battery has a layer structure represented by the compositional formula: Lix(NiyM1-y)Oz (wherein M represents Mn and Co, x denotes a number of 0.9 to 1.2, y denotes a number of 0.6 to 0.65, and z denotes a number of 1.8 to 2.4). When a lithium ion battery using a positive electrode mix produced by the positive electrode active material, a binder, and a conductive material in a ratio by weight of 91%, 4.2%, and 4.8%, respectively, is charged to 4.3V, and then an electrolytic solution prepared by dissolving 1 M—LiPF6 in a mixture solvent of ethylene carbonate (EC)-dimethyl carbonate (DMC) (volume ratio 1:1) is used based on 1.0 mg of the positive electrode mix to measure the obtained lithium ion battery by differential scanning calorimetry (DSC) performed at a temperature rise rate of 5° C.
    Type: Application
    Filed: March 3, 2011
    Publication date: December 27, 2012
    Applicant: JX Nippon Mining & Metals Corporation
    Inventor: Hirohito Satoh
  • Publication number: 20120305861
    Abstract: The invention relates to a chemical compound of the formula NibM1cM2d(O)x(OH)y, wherein M1 denotes at least one element from the group consisting of Fe, Co, Mg, Zn, Cu and/or mixtures thereof, M2 denotes at least one element from the group consisting of Mn, Al, B, Ca, Cr and/or mixtures thereof, wherein b?0.8, c?0.5, d?0.5, and x is a number between 0.1 and 0.8, y is a number between 1.2 and 1.9, and x+y=2. A process for the preparation thereof, and the use thereof as a precursor for the preparation of cathode material for secondary lithium batteries are described.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 6, 2012
    Applicant: TODA KOGYO EUROPE GMBH
    Inventors: Sven ALBRECHT, Michael KRUFT, Stefan MALCUS
  • Publication number: 20120301673
    Abstract: One oxide film of the present invention is a film of an oxide (which can contain incidental impurities) containing one transition element selected from the group consisting of niobium (Nb) and tantalum (Ta) and copper (Cu). The oxide film is an aggregate of microcrystals, an amorphous form including microcrystals or an amorphous form, which shows no clear diffraction peak in an XRD analysis and has p-type conductivity as shown in the chart of FIG. 5 showing the results of XRD (X-ray diffraction) analyses of a first oxide film and a second oxide film. According to this oxide film, p-type conductivity higher than that of a conventional oxide film is obtained. This oxide film is an aggregate of microcrystals, an amorphous form containing microcrystals or an amorphous form, is consequently easily formed on a large substrate, and is therefore suitable also for industrial production.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 29, 2012
    Applicant: Ryukoku University
    Inventors: Seiji Yamazoe, Takahiro Wada
  • Patent number: 8304099
    Abstract: A transparent heat shielding material, a fabrication method thereof and a transparent heat shielding structure are provided. The transparent heat shielding material is represented by MxWO3-yAy, wherein M is at least one element of alkali metal, W is tungsten, O is oxygen, A is halogen, 0<x?1, and 0<y?0.5. The transparent heat shielding material MxWO3-yAy is formed from tungsten oxide with at least one alkali metal cation and halogen anion co-doping into. The transparent heat shielding structure includes one or more layers of a transparent heat shielding film, wherein the transparent heat shielding film includes the material MxWO3-yAy.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: November 6, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Pao-Tang Chung, Sung-Jeng Jong, Jer-Young Chern, Yih-Her Chang, Huai-Kuang Fu
  • Publication number: 20120270109
    Abstract: Amorphous or partially amorphous nanoscale ion storage materials are provided. For example, lithium transition metal phosphate storage compounds are nanoscale and amorphous or partially amorphous in an as-prepared state, or become amorphous or partially amorphous upon electrochemical intercalation or de-intercalation by lithium. These nanoscale ion storage materials are useful for producing devices such as high energy and high power storage batteries.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 25, 2012
    Applicant: A123 SYSTEMS, INC.
    Inventors: Yet-Ming CHIANG, Anthony E. PULLEN, Nonglak MEETHONG
  • Patent number: 8282855
    Abstract: The composite positive active material of a lithium battery is composed of a main active material containing lithium and a sheathing active material containing lithium, whose particle diameter is far smaller than that of the main active material. A pulp containing these two active materials is sprayed and dried to form a mixed powder. The composite positive active material is obtained by means of sintering the mixed powder.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: October 9, 2012
    Assignee: Vista Advance Technology Co., Ltd.
    Inventor: Yu-Ta Tu
  • Patent number: 8278658
    Abstract: An device according to the present invention comprises: graphene; and a metal electrode, the metal electrode and the graphene being electrically connected, the following relationship of Eq. (1) being satisfied: coth ? ( r GP r C ? S ) < 1.3 , Eq . ? ( 1 ) where rGP (in units of ?/?m2) denotes the electrical resistance of a graphene layer per unit area, rC (in units of ??m2) denotes the contact resistance per unit area between the graphene layer and a metal electrode, and S denotes the contact area (in units of ?m2) between the graphene layer and the metal electrode.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 2, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Okai, Motoyuki Hirooka
  • Publication number: 20120244432
    Abstract: Provided are a mixed cathode active material including layered structure lithium manganese oxide expressed as Chemical Formula 1 and a second cathode active material having a plateau voltage profile in a range of 2.5 V to 3.3 V, and a lithium secondary battery including the mixed cathode active material. The mixed cathode active material and the lithium secondary battery including the same may have improved safety and simultaneously, may be used in an operating device requiring the foregoing battery by widening a state of charge (SOC) range able to maintain power more than a required value by allowing the second cathode active material to complement low power in a low SOC range.
    Type: Application
    Filed: May 9, 2012
    Publication date: September 27, 2012
    Inventors: Jung Hwan Park, Song Taek Oh, Geun Chang Chung, Min Hee Lee, Juichi Arai
  • Publication number: 20120244354
    Abstract: A niobium suboxide powder comprising niobium suboxide particles having a bulk nitrogen content of between 500 to 20,000 ppm. The nitrogen is distributed in the bulk of the powder particles. The nitrogen at least partly is present in the form of at least one of Nb2N crystals or niobium oxynitride crystals.
    Type: Application
    Filed: May 9, 2012
    Publication date: September 27, 2012
    Applicant: H.C. STARCK GMBH
    Inventors: CHRISTOPH SCHNITTER, Holger Brumm, Christine Rawohl, Colin McCracken
  • Patent number: 8268198
    Abstract: Provided is a precursor for the preparation of a lithium transition metal oxide that is used for the preparation of a lithium transition metal oxide as a cathode active material for a lithium secondary battery, through a reaction with a lithium-containing compound, wherein the precursor contains two or more transition metals, and sulfate ion (SO4)-containing salt ions derived from a transition metal salt for the preparation of the precursor have a content of 0.1 to 0.7% by weight, based on the total weight of the precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: September 18, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Ho Suk Shin, Sung kyun Chang, Hong-Kyu Park, Sinyoung Park, Youngsun Choi, Seung Tae Hong, Hyo-shik Kil
  • Publication number: 20120225250
    Abstract: The invention provides a process for producing a transparent conducting film, which film comprises a doped zinc oxide wherein the dopant comprises Si, which process comprises: disposing a composition which is a liquid composition or a gel composition onto a substrate, wherein the composition comprises Zn and Si; and heating said substrate. The invention further provides transparent conducting films obtainable by the process of the invention, including transparent conducting films which comprise a doped zinc oxide wherein the dopant comprises Si, and wherein the film covers a surface area equal to or greater than 0.01 m2. The invention also provides a coated substrate, which substrate comprises a surface, which surface is coated with a transparent conducting film, wherein the film comprises a doped zinc oxide wherein the dopant comprises Si, and wherein the area of said surface which is coated with said film is equal to or greater than 0.01 m2.
    Type: Application
    Filed: September 2, 2010
    Publication date: September 6, 2012
    Inventors: Vladimir L. Kuznetsov, Peter P. Edwards
  • Publication number: 20120211355
    Abstract: Disclosed are a transparent conductive composition including a material of the following formula, a target, a transparent conductive thin film using the target, and a method for fabricating the same. The disclosed transparent conductive composition and transparent conductive thin film have superior conductivity (low resistivity) and high light transmittance. Especially, they may be usefully applied for the flexible electronic devices, which may be called the core of the future display industry, because they have low resistivity of not greater than 10?3 ?·cm and a high light transmittance of at least 90% even when deposition is carried out at room temperature. AlxZn1-xO In the above formula, x is within the range of 0.04?x?0.063.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 23, 2012
    Applicant: Korea Institute of Science & Technology
    Inventors: Ji Won CHOI, Seok Jin Yoon, Won Kook Choi, Jin Sang Kim, Chong Yun Kang, Ho Won Jang, Keun Jung
  • Publication number: 20120181488
    Abstract: The invention relates to a liquid-phase method for producing metal oxide-containing layers from nonaqueous solution. In said method, an anhydrous composition containing i) at least one metal oxo-alkoxide of generic formula MxOy(OR)z[O(R?O)cH]aXb[R?OH]d, where M=In, Ga, Sn, and/or Zn, x=3-25, y=1-10, z=3-50, a=0-25, b=0-20, c=0-1, d=0-25, R, R?, R?=organic group, X?F, Cl, Br, I, and ii) at least one solvent is applied to a substrate, is optionally dried, and is converted into a metal oxide-containing layer. The invention also relates to the layers that can be produced using the method of the invention and to the use thereof.
    Type: Application
    Filed: August 13, 2010
    Publication date: July 19, 2012
    Applicant: Evonik Degussa GmbH
    Inventors: Juergen Steiger, Duy Vu Pham, Heiko Thiem, Alexey Merkulov, Arne Hoppe
  • Publication number: 20120183850
    Abstract: Disclosed are: a positive electrode mixture which provides a nonaqueous electrolyte secondary battery that is capable of exhibiting high output at high current rate; and a positive electrode. Specifically disclosed is a positive electrode mixture which contains a positive electrode active material powder, a conductive agent, a binder and a solvent. The positive electrode active material powder is composed of particles having an average particle diameter of 0.05-1 ?m (inclusive) and has a tap density of 0.8-3.0 g/cm3. The amount of the conductive agent relative to 100 parts by weight of the positive electrode active material powder is 0.5-20 parts by weight; the amount of the binder relative to 100 parts by weight of the positive electrode active material powder is 0.5-10 parts by weight; and the amount of the solvent relative to 100 parts by weight of the positive electrode active material powder is 10-120 parts by weight. The positive electrode mixture has a viscosity of 1,000-25,000 mPa·s.
    Type: Application
    Filed: September 24, 2010
    Publication date: July 19, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takitaro Yamaguchi, Jun-ichi Kageura
  • Publication number: 20120177921
    Abstract: A process for preparing transition metal carbonates with a mean particle diameter in the range from 6 to 19 ?m (D50), which comprises combining, in a stirred vessel, at least one solution of at least one transition metal salt with at least one solution of at least one alkali metal carbonate or alkali metal hydrogencarbonate to prepare an aqueous suspension of transition metal carbonate, and, in at least one further compartment, continuously introducing a mechanical power in the range from 50 to 10 000 W/l in a proportion of the suspension in each case, based on the proportion of the suspension, and then recycling the proportion into the stirred vessel.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 12, 2012
    Applicant: BASF SE
    Inventors: Martin SCHULZ-DOBRICK, Simon SCHRÖDLE
  • Patent number: 8206616
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 26, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8197719
    Abstract: Provided herein are electroactive agglomerated particles, which comprise nanoparticles of a first electroactive material and nanoparticles of a second electroactive materials, and processes of preparation thereof.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 12, 2012
    Assignee: American Lithium Energy Corp.
    Inventors: Jiang Fan, Robert M. Spotnitz
  • Patent number: 8192715
    Abstract: The present invention provides a lithium-containing composite oxide for a positive electrode for a lithium secondary battery, which has a large volume capacity density and high safety, and excellent durability for charge and discharge cycles and charge and discharge rate property, and its production method. The lithium-containing composite oxide is represented by the general formula LipNxMyOzFa (where N is at least one element selected from the group consisting of Co, Mn and Ni, M is at least one element selected from the group consisting of Al, Sn, alkaline earth metal elements and transition metal elements other than Co, Mn and Ni, 0.9?p?1.2, 0.965?x<2.00, 0<y?0.035, 1.9?z?4.2, and 0?a?0.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: June 5, 2012
    Assignee: AGC Seimi Chemical Co., Ltd.
    Inventors: Takeshi Kawasato, Kazushige Horichi, Megumi Uchida, Takuya Mihara, Naoshi Saito
  • Publication number: 20120135291
    Abstract: A method for preparing a mixture of a powder of an electrode active compound and of a powder of an electron conducting compound, wherein the following successive steps are performed: a liquid medium is prepared containing the powder of the electrode active compound and the powder of the electron conducting compound; the liquid medium containing the powder of the electrode active compound and the powder of the electron conducting compound is subjected to the action of high energy ultrasonic waves; the liquid medium is removed; the mixture of the powder of the electrode active compound and of the powder of the electron conducting compound is collected. The thereby obtained mixture. An electrode comprising said mixture as an electrochemically active material. A cell comprising at least such an electrode, and an accumulator or battery comprising one or more of these cells.
    Type: Application
    Filed: February 9, 2010
    Publication date: May 31, 2012
    Applicant: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Sébastien Patoux, Carole Bourbon, Lise Daniel
  • Publication number: 20120134914
    Abstract: Disclosed is a cathode active material and a method to produce the same at low cost. The cathode powder comprises modified LiCoO2, and possibly a second phase which is LiM?O2 where M? is Mn, Ni, Co with a stoichiometric ratio Ni:Mn?1. The modified LiCoO2 is Ni and Mn bearing and has regions of low and high manganese content, where regions with high manganese content are located in islands on the surface. The cathode material has high cycling stability, a very high rate performance and good high temperature storage properties.
    Type: Application
    Filed: December 1, 2011
    Publication date: May 31, 2012
    Inventors: Jens Martin Paulsen, Hyunjoo JE, Maxime Blangero
  • Patent number: 8189636
    Abstract: Detecting electrical overstress events in electronic circuitry such as optical emitters. In one example embodiment, a laser includes an active area and a contact region in electrical communication with the active area. A portion of the contact region is configured to manifest a change in a visual attribute of the portion in response to exposure of the portion to an electrical overstress event.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 29, 2012
    Assignee: Finisar Corporation
    Inventor: David Todd Mathes
  • Patent number: 8182721
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 22, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8182720
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 22, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Patent number: 8178009
    Abstract: There is provided a slurry for a secondary battery electrode and an electrode for a secondary battery that produce satisfactory charge-discharge characteristics for secondary batteries, as well as a secondary battery that exhibits satisfactory charge-discharge characteristics. The invention provides a slurry for a secondary battery electrode comprising an electrode active material and an ambient temperature molten salt composed of a cation component and an anion component, an electrode for a secondary battery wherein an electrode active material layer is formed by coating the slurry for a secondary battery electrode onto a current collector, a process for production of an electrode for a secondary battery whereby the slurry for a secondary battery electrode is coated onto a current collector metal foil to form a coated film, and a secondary battery comprising a positive electrode and/or negative electrode fabricated using the electrode for a secondary battery, and an electrolyte.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 15, 2012
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventor: Tsuyoshi Watanabe
  • Publication number: 20120115034
    Abstract: A compound having a high reduction resistance and being capable of sufficiently performing a function as an electronic conductive additive when added to a positive electrode active material as an electronic conductive additive is provided. In a method for producing a cobalt cerium compound including a step of depositing a hydroxide containing cobalt and cerium in an aqueous solution containing cobalt ions and cerium ions by changing the pH of the aqueous solution and thereafter performing a treatment of oxidizing the hydroxide, the ratio of the cerium ions contained in the aqueous solution containing the cobalt ions and the cerium ions is set to be more than 5% by atom and 70% by atom or less with respect to the sum of the cobalt ions and the cerium ions before the hydroxide is deposited.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 10, 2012
    Inventors: Masanori Morishita, Tadashi Kakeya, Seijiro Ochiai, Aki Nakashima, Yoshiteru Kawabe, Tetsuo Sakai
  • Patent number: 8173051
    Abstract: There are disclosed insulated ultrafine powder comprising electroconductive ultrafine powder which is in the form of sphere, spheroid or acicular each having a minor axis in the range of 1 to 100 nm and an insulating film applied thereto; a process for producing the same which is capable of covering the surfaces of the insulated ultrafine powder with the insulating film having a thickness in the range of 0.3 to 100 nm without causing any clearance or vacancy; and a resin composite material which uses the same. A high dielectric constant of the material is assured by adding a small amount of insulated ultrafine powder wherein an insulating film is applied to the electroconductive ultrafine powder, while maintaining the processability and moldability that are the characteristics inherent in a resin material.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 8, 2012
    Assignee: Mitsubishi Gas Chemical Co., Inc.
    Inventors: Takahiro Matsumoto, Toshiaki Yamada, Hirotaka Tsuruya
  • Patent number: 8168329
    Abstract: A composition for use in an electrochemical redox reaction is described. The composition may comprise a material represented by a general formula MyXO4 or AxMyXO4, where each of A (where present), M, and X independently represents at least one element, O represents oxygen, and each of x (where present) and y represent a number, and an oxide of at least one of various elements, wherein the material and the oxide are cocrystailine, and/or wherein a volume of a crystalline structural unit of the composition may be different than a volume of a crystalline structural unit of the material alone. An electrode comprising such a composition is also described, as is an electrochemical cell comprising such an electrode. A process of preparing a composition for use in an electrochemical redox reaction is also described.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 1, 2012
    Assignee: Advanced Lithium Electrochemistry Co., Ltd.
    Inventors: Ben-Jie Liaw, Wen-Ren Liu, Sheng-Shih Chang
  • Patent number: 8168089
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 1, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20120097888
    Abstract: The object of this invention is to provide columnar zinc oxide particles that are free from breaking or collapsing of a form when they are incorporated into, and mixed with, a resin and that can impart sufficient thermal conductivity or electrical conductivity. This invention provides zinc oxide particles represented by the following formula (1), ZnMn+xO1+nx/2-aH2O??(1) wherein Mn+ is a trivalent or tetravalent metal, x and “a” satisfy 0.002<x<0.05 and 0.05?a<0.5, respectively, and having a columnar particle content of 80% or more.
    Type: Application
    Filed: April 21, 2010
    Publication date: April 26, 2012
    Applicant: KYOWA CHEMICAL INDUSTRY CO., LTD.
    Inventor: Harumi Takabatake
  • Patent number: 8163198
    Abstract: A process for producing a lithium-containing composite oxide having a large volume capacity density, high safety, excellent durability for charge/discharge cycles, and excellent low temperature characteristics. An oxide of general formula LipNxMyOzFa (wherein N is at least one of Co, Mn or Ni, M is at least one of Al, an alkali earth metal element, a transition metal element other than N, 0.9?p?1.2, 0.97?x?1.00, 0?y?0.03, 1.9?z?2.2, x+y=1 and 0?a?0.02) can be produced.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: April 24, 2012
    Assignee: AGC Seimi Chemical Co., Ltd.
    Inventors: Naoshi Saito, Takeshi Kawasato, Tokumitsu Kato, Kazushige Horichi
  • Patent number: 8153301
    Abstract: Provided are compositions useful as cathodes for lithium-ion batteries. The compositions include lithium mixed metal oxides of the formula, Li[LixNiyMnz]O2, wherein x+y+z=1, 0<x<0.20, 0.28?y?0.75, and 0.25?z?0.49, said composition characterized as being in the form of a single phase. Also provided are electrodes that include the provided compositions as well as battery packs and electronic devices that include the provided electrodes.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: April 10, 2012
    Assignee: 3M Innovative Properties Company
    Inventor: Junwei Jiang
  • Patent number: 8153032
    Abstract: Transition metal hydroxide and oxide, method of producing the same, and cathode material containing the same are disclosed. One method includes coupling an alkaline solution to a transition metal salt solution under an inert gas atmosphere, whereby the alkaline solution includes an additive. A transition metal oxide may be prepared by heating the transition metal hydroxide under an oxygen gas atmosphere. Cathode materials for lithium-ion batteries may be prepared incorporating the transition metal hydroxide and oxide embodiments disclosed herein.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: April 10, 2012
    Assignee: BYD Company Limited
    Inventors: WenQiang Xia, ChaQing Xu, ZhanFeng Jiang
  • Publication number: 20120082883
    Abstract: An electrode mixture comprising a lithium nickel manganese composite metal oxide having an average particle diameter of 1 ?m or less, an electrically conductive material and an overcharge inhibition material. The electrode mixture in which the overcharge inhibition material is an aromatic compound. The electrode mixture in which the overcharge inhibition material is one or more members selected from the group consisting of an aramid, a polyether, a polysulfone and a polyethersulfone. An electrode comprising the electrode mixture. A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode capable of being doped and dedoped with lithium ions, a separator and a nonaqueous electrolytic solution, wherein the positive electrode is the electrode described above.
    Type: Application
    Filed: May 26, 2010
    Publication date: April 5, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takitaro Yamaguchi, Jun-ichi Kageura
  • Publication number: 20120082902
    Abstract: Disclosed are open-framework solids that possess superior ion-transport properties pertinent to the electrochemical performance of next-generation electrode materials for battery devices. Disclosed compounds including compositions and architectures relevant to electrical energy storage device applications have been developed through integrated solid-state and soft (solution) chemistry studies. The solids can adopt a general formula of AxMy(XO4)z, where A=mono- or divalent electropositive cations (e.g., Li+), M—trivalent transition metal cations (e.g., Fe3+, Mn3+), and X=Si, P, As, or V. Also disclosed are oxo analogs of these materials having the general formulae AaMbOc(PO4)d (a?b), and more specifically, AnMnO3x(PO4)n?2x, where A=mono- or divalent electropositive cations (e.g., Li+), M is either Fe or Mn, and x is between 0 and n/2.
    Type: Application
    Filed: February 12, 2010
    Publication date: April 5, 2012
    Inventors: Shiou-Jyh Hwu, Gregory A. Becht
  • Patent number: 8137841
    Abstract: Compositions useful for cathodes in lithium-ion batteries are described. In some examples, an electrochemical cell includes an electrode, the electrode comprising a composition including the elements of Li, Fe, and F, where the composition includes a first phase including a disordered trirutile structure. Cathodes including such a composition may exhibit reversible reactivity with lithium. In some examples, this reaction takes place via an intercalation mechanism.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: March 20, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Jeffrey R. Dahn, Peng Liao
  • Publication number: 20120064411
    Abstract: A positive active material, a method of preparing the same, and a lithium secondary battery including the positive active material.
    Type: Application
    Filed: August 2, 2011
    Publication date: March 15, 2012
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Hyun-Deok LEE, Yong-Chul Park, Mi-Ran Song, Na-Leum Yoo, Jin-Hyoung Seo, Min-Ju Kim, Gyeong-Jae Heo, Jae-Dong Byun, Sun-Youn Ryou
  • Patent number: 8128904
    Abstract: A process for preparing a multielement oxide composition comprising the element iron in oxidic form, in which the source of the elemental constituent of iron used is an aqueous iron nitrate solution whose preparation comprises the melting of a solid hydrate of iron nitrate.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: March 6, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Raichle, Holger Borchert, Klaus Joachim Müller-Engel, Ulrich Cremer
  • Publication number: 20120052401
    Abstract: The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula LixM1?yNbyNb2O7, wherein 0?x?3, 0?y?1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula LixM1?yNbyNb2O7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula LixM1?yNbyNb2O7. Furthermore, the disclosure relates to methods of forming the above.
    Type: Application
    Filed: July 29, 2011
    Publication date: March 1, 2012
    Inventors: John B. Goodenough, Jian-Tao Han
  • Publication number: 20120049134
    Abstract: The invention describes a powderous oxide material (MxM?y)Cu2+a O2+b for the production of targets for p-type transparent conductive thin films, wherein ?0.2?a?0.2, ?0.2?b?0.2 and either —M? is Sr and M is either one or both of Ba and bivalent Cu, with x>0, y>0 and x+y=1 ±0.2; or —M is bivalent Cu, x=1 ±0.2, and y=0.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 1, 2012
    Inventors: Guido Huyberechts, Griet Dress, Daan Goedeme, Michael Nolan, Simon D. Elliott
  • Publication number: 20120037857
    Abstract: This invention relates to material compositions, a manufacturing method for these materials and a manufacturing method for ceramic bodies, to be used as targets in physical vapour deposition techniques of p-type transparent conductive films. There is disclosed a method for manufacturing a pelletized oxide material Mx Sr1?xCu2-+aO2+b, wherein ?0.2?a?0.2, ?0.2?b?0.2, and M is either one or more of the group of bivalent elements consisting of Ba, Ra, Mg, Be, Mn, Zn, Pb, Fe, Cu, Co, Ni, Sn, Pd, Cd, Hg, Ca, Ti, V, Cr; with 0?x?0.2; comprising the steps of: —providing a precursor mixture having a given grain size distribution, and comprising stoichiometric quantities of Cu2O, Sr(OH)2.8H2O, and, when 0?x?0.2, M-hydroxide, —intimately mixing said precursor mixture so as to obtain a homogeneous mixture, and —sintering said homogeneous mixture at a temperature above 850° C. The oxide material Sr Cu2+aO2+b has a residual carbon content of less than 400 ppm, and a target having a density of at least 5.
    Type: Application
    Filed: November 30, 2009
    Publication date: February 16, 2012
    Inventors: Guido Huyberechts, Griet Drees, Daan Goedeme
  • Publication number: 20120037858
    Abstract: Disclosed is an anode active material including: a crystalline phase comprising Si and a Si-metal alloy; and an amorphous phase comprising Si and a Si-metal alloy, wherein the metal of the Si-metal alloy of the crystalline phase is the same as or different from the metal of the Si-metal alloy of the amorphous phase.
    Type: Application
    Filed: December 30, 2009
    Publication date: February 16, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Ki Tae Kim, Je Young Kim, Dong Sub Jung, Seung Tae Hong, Young Sun Choi
  • Publication number: 20120024333
    Abstract: A thermoelectric material has a microstructure deformed by cryogenic impact. When the cryogenic impact is applied to the thermoelectric material, defects are induced in the thermoelectric material, and such defects increase phonon scattering, which results in enhanced figure of merit.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-mock LEE, Kyu-hyoung LEE, Sung-ho JIN