Additional Diverse Metal Containing Patents (Class 252/520.21)
  • Publication number: 20120273737
    Abstract: [Problem to be solved] There can be provided a lithium secondary battery which, when used as a positive electrode active material for lithium secondary batteries, is particularly excellent in cycle characteristics and rate characteristics and low in direct current (DC) resistance and in which the swelling resulting from the generation of gas accompanying the reaction with a nonaqueous electrolyte solution is suppressed. There is also provided a positive electrode active material for lithium secondary batteries in which the positive electrode active material can be industrially advantageously produced. [Solution] The positive electrode active material for lithium secondary batteries according to the present invention includes a lithium-transition metal composite oxide containing from 0.20 to 2.
    Type: Application
    Filed: October 4, 2010
    Publication date: November 1, 2012
    Applicant: NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventor: Yoshihide Ooishi
  • Publication number: 20120276683
    Abstract: A new, more economical method for preparing titania pastes for use in more efficient dye-sensitized solar cells is disclosed. The titania pastes are prepared by mixing titania nanoparticles with a titania sol including a titanium precursor. The disclosed method enables the control of titania nanoparticle concentration and morphology in the titania paste and is economical due to the relatively low reaction temperatures. The performances of dye-sensitized solar cells prepared using the disclosed titania pastes are also disclosed.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 1, 2012
    Inventor: MOHAMMAD-REZA MOHAMMADI
  • Publication number: 20120267580
    Abstract: Provided herein are electroactive agglomerated particles, which comprise nanoparticles of a first electroactive material and nanoparticles of a second electroactive materials, and processes of preparation thereof.
    Type: Application
    Filed: May 13, 2012
    Publication date: October 25, 2012
    Applicant: AMERICAN LITHIUM ENERGY CORP.
    Inventors: Jiang Fan, Robert M. Spotnitz
  • Publication number: 20120270109
    Abstract: Amorphous or partially amorphous nanoscale ion storage materials are provided. For example, lithium transition metal phosphate storage compounds are nanoscale and amorphous or partially amorphous in an as-prepared state, or become amorphous or partially amorphous upon electrochemical intercalation or de-intercalation by lithium. These nanoscale ion storage materials are useful for producing devices such as high energy and high power storage batteries.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 25, 2012
    Applicant: A123 SYSTEMS, INC.
    Inventors: Yet-Ming CHIANG, Anthony E. PULLEN, Nonglak MEETHONG
  • Patent number: 8287767
    Abstract: Amorphous polymers with chromogenic pendant groups are provided. The amorphous polymers can be used to make elastomeric films and coatings that can be incorporated into laminates and used to make articles such as architectural and vehicular glazing, and in applications such as eyewear, displays and signage.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 16, 2012
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Simona Percec, Susan H. Tilford
  • Publication number: 20120247525
    Abstract: Tungsten-titanium-phosphate materials and methods of making and using the same.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventors: Bruce Gardiner Aitken, Lisa Anne Moore
  • Publication number: 20120251885
    Abstract: The present invention is generally directed to the field of lithium-ion batteries. It is more specifically directed to electrode materials used in lithium ion batteries, electrodes including the materials, devices incorporating the electrodes and related methods of manufacture. In a composition aspect of the present invention, a composition comprising at least 50 mg of Li4Ti5O12 or doped Li4Ti5O12 is provided. The Li4Ti5O12 or doped Li4Ti5O12 is made using a thermal spray process, and is greater than 95% spinel crystal form. The BET surface area of the Li4Ti5O12 or doped Li4Ti5O12 is greater than 1 m2/g.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 4, 2012
    Applicant: Blue Juice, Inc.
    Inventors: DOUGLAS ELLSWORTH, KENT REDWINE
  • Patent number: 8273480
    Abstract: A negative active material for a rechargeable lithium battery, a method of preparing the negative active material, and a rechargeable lithium battery including the negative active material. The negative active material for a rechargeable lithium battery includes lithium titanium oxide (Li4Ti5O12) having a tap density of about 1.2 g/cc to 2.2 g/cc. The lithium titanium oxide is prepared by a mechano-chemical treatment and a heat treatment at a low temperature of about 650° C. to 775° C. According to the present invention, lithium titanium oxide having high crystallinity and tap density can be prepared through a simple and low-cost solid-phase method, e.g., a mechano-chemical treatment, and thus an electrode with excellent electrochemical reactivity and high energy density per volume can be fabricated.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: September 25, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Sik Kim, Eui-Hwan Song, Kyeu-Yoon Sheem, Yong-Chul Park, Jin-Kyu Hong, Man-Seok Han, Tae-Keun Kim
  • Publication number: 20120217454
    Abstract: A method for forming an electrically conductive oxide film (1) on a substrate (2), the method comprising the steps of, bringing the substrate (2) into a reaction space, forming a preliminary deposit on a deposition surface of the substrate (2) and treating the deposition surface with a chemical. The step of forming the preliminary deposit on the deposition surface of the substrate (2) comprises forming a preliminary deposit of transition metal oxide on the deposition surface and subsequently purging the reaction space. The step of treating the deposition surface with a chemical comprises treating the deposition surface with an organometallic chemical and subsequently purging the reaction space, to form oxide comprising oxygen, first metal and transition metal. The steps of forming the preliminary deposit and treating the deposition surface being alternately repeated such that a film (1) of electrically conductive oxide is formed on the substrate (2).
    Type: Application
    Filed: November 2, 2010
    Publication date: August 30, 2012
    Applicant: Beneq Oy
    Inventor: Jarmo Maula
  • Publication number: 20120217615
    Abstract: A grain boundary-insulated semiconductor ceramic contains a SrTiO3-based compound as a main component, and a diffusing agent containing a grain boundary insulating agent and a glass component. The grain boundary insulating agent is composed of a material free of lead, the glass component mainly contains a SiO2—X2O-MO—TiO2-based glass material that does not contain boron or lead and in which X represents an alkali metal, and M represents at least one of barium, strontium, and calcium, and the content of the glass component is 3 to 15 parts by weight relative to 100 parts by weight of the grain boundary insulating agent. A component base is composed of the grain boundary-insulated semiconductor ceramic.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 30, 2012
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Tsutomu Tatekawa
  • Patent number: 8227083
    Abstract: Titanium dioxide and an electro-conductive titanium oxide which each includes particles having a large major-axis length in a large proportion and comprises columnar particles having a satisfactory particle size distribution. A titanium compound, an alkali metal compound, and an oxyphosphorus compound are heated/fired in the presence of titanium dioxide nucleus crystals having an aspect ratio of 2 or higher to grow the titanium dioxide nucleus crystals. Subsequently, a titanium compound, an alkali metal compound, and an oxyphosphorus compound are further added and heated/fired in the presence of the grown titanium dioxide nucleus crystals. Thus, titanium dioxide is produced which comprises columnar particles having a weight-average major-axis length of 7.0-15.0 ?m and in which particles having a major-axis length of 10 ?m or longer account for 15 wt. % or more of all the particles. A solution of a tin compound and a solution of compounds of antimony, phosphorus, etc.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: July 24, 2012
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Kaoru Isobe, Katsuichi Chiba, Takanori Sakamoto
  • Patent number: 8197719
    Abstract: Provided herein are electroactive agglomerated particles, which comprise nanoparticles of a first electroactive material and nanoparticles of a second electroactive materials, and processes of preparation thereof.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 12, 2012
    Assignee: American Lithium Energy Corp.
    Inventors: Jiang Fan, Robert M. Spotnitz
  • Publication number: 20120135291
    Abstract: A method for preparing a mixture of a powder of an electrode active compound and of a powder of an electron conducting compound, wherein the following successive steps are performed: a liquid medium is prepared containing the powder of the electrode active compound and the powder of the electron conducting compound; the liquid medium containing the powder of the electrode active compound and the powder of the electron conducting compound is subjected to the action of high energy ultrasonic waves; the liquid medium is removed; the mixture of the powder of the electrode active compound and of the powder of the electron conducting compound is collected. The thereby obtained mixture. An electrode comprising said mixture as an electrochemically active material. A cell comprising at least such an electrode, and an accumulator or battery comprising one or more of these cells.
    Type: Application
    Filed: February 9, 2010
    Publication date: May 31, 2012
    Applicant: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Sébastien Patoux, Carole Bourbon, Lise Daniel
  • Publication number: 20120134914
    Abstract: Disclosed is a cathode active material and a method to produce the same at low cost. The cathode powder comprises modified LiCoO2, and possibly a second phase which is LiM?O2 where M? is Mn, Ni, Co with a stoichiometric ratio Ni:Mn?1. The modified LiCoO2 is Ni and Mn bearing and has regions of low and high manganese content, where regions with high manganese content are located in islands on the surface. The cathode material has high cycling stability, a very high rate performance and good high temperature storage properties.
    Type: Application
    Filed: December 1, 2011
    Publication date: May 31, 2012
    Inventors: Jens Martin Paulsen, Hyunjoo JE, Maxime Blangero
  • Patent number: 8187506
    Abstract: A barium titanate-based semiconductor ceramic composition which can be used for PTC thermistors for temperature sensors and which has characteristics, including a linear characteristic, advantageous for such PTC thermistors and a barium titanate-based semiconductor ceramic device. The barium titanate-based semiconductor ceramic composition is represented by the formula (Ba(1-v-w)MevSrw)TixO3+ySiO2, wherein Me is at least one of Er, Sm, Ce, and La, 0.001?v?0.005, 0.42?w?0.49, 0.99?x?1.03, and 0.002?y?0.030.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: May 29, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoichi Kawase, Syunsuke Okuda, Yuichi Hirata, Yasuhiro Nabika
  • Publication number: 20120129015
    Abstract: According to one embodiment, an active material for batteries includes monoclinic ?-type titanium composite oxide containing at least one element selected from the group consisting of V, Nb, Ta, Al, Ga, and In, the at least one element being contained in an amount of 0.03 wt % or more and 3 wt % or less.
    Type: Application
    Filed: November 25, 2011
    Publication date: May 24, 2012
    Inventors: Hiroki Inagaki, Keigo Hoshina, Yasuhiro Harada, Yuki Otani, Norio Takami
  • Publication number: 20120104326
    Abstract: An anode includes an anode active material including a lithium titanium oxide, a binder, and 0 to about 2 parts by weight of a carbon-based conductive agent based on 100 parts by weight of the lithium titanium oxide.
    Type: Application
    Filed: July 13, 2011
    Publication date: May 3, 2012
    Inventors: Min-sang Song, Kyu-sung Park, Gue-sung Kim, Soo-an Song, Jae-hyung Kim, Ji-yong Eom, Seung-goo Baek
  • Publication number: 20120080649
    Abstract: A process for preparing transition metal particles with a gradient in composition from the core of the particle to the outer layers. In particular, the process involves contacting a first transition metal solution with a second transition metal solution to form a transition metal source solution under specific process conditions. The transition metal particles with desired composition gradients are precipitated from the transition metal source solution. The transition metal particles may be combined with metals such as lithium to form cathode active metal oxides.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Inventors: Gary M. Koenig, JR., Ilias Belharouak, Khalil Amine, Haixia Deng
  • Patent number: 8142749
    Abstract: Additions of substitutional transition metal elements are made to improve the densifiability of titanium diboride while eliminating or minimizing the presence of deleterious grain boundary phases in the resultant bulk titanium diboride articles.
    Type: Grant
    Filed: October 4, 2009
    Date of Patent: March 27, 2012
    Assignee: Kennametal Inc.
    Inventors: Sean E. Landwehr, Russell L. Yeckley
  • Publication number: 20120064401
    Abstract: The present disclosure discloses a titanium system composite comprising a lithium titanium composite oxide and a lithium compound cladding the lithium titanium composite oxide. The present disclosure further discloses a preparation method of the titanium system composite and an electrode material for batteries or capacitors comprising a titanium system composite.
    Type: Application
    Filed: May 19, 2010
    Publication date: March 15, 2012
    Inventors: Guogang Liu, Wenfeng Jiang, Fuzhong Pan, Yu Xia, Honggu Pan
  • Publication number: 20120043513
    Abstract: A conductive sintered oxide including: a first crystal phase represented by RE14Al2O9 and a second crystal phase having a perovskite structure represented by (RE21-cSLc)(AlxM1y)O3. RE1 is a first element group consisting of Yb and/or Lu and at least one element selected from Group IIIA elements excluding Yb, Lu and La. RE2 is a second element group consisting of at least one element selected from Group IIIA elements excluding La and including at least one of the elements constituting the first element group RE1. SL is an element group consisting of at least one of Sr, Ca and Mg and which includes Sr as a main element, and M1 is an element group consisting of at least one element selected from Groups IVA, VA, VIA, VIIA and VIII excluding Cr. The coefficient c is in the range of 0.18<c<0.50, and the coefficients x and y are in the range of 0.95?x+y?1.1.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 23, 2012
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Hiroshi WATANABE, Yasuyuki OKIMURA, Shinji BAN, Takeshi MITSUOKA
  • Publication number: 20120001132
    Abstract: A novel cathode material for a rechargeable battery has the chemical formula Li1.18Co0.3Mn0.33Ni0.17Ti0.02O2, and is made by mixing the starting soluble salts in distilled water, mixing the insoluble salts slowly with vigorous stirring at a temperature of 150° Celsius, heating the resulting gel at 600 degrees Celsius for four hours, crushing the dried material into a fine powder, and heating at higher temperatures in the range of 800 to 900 degrees Celsius, wherein the time for calcination is limited to a maximum 8-12 hours.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 5, 2012
    Inventor: Surajit Sengupta
  • Publication number: 20120003537
    Abstract: A positive electrode active substance comprising a lithium-containing metal oxide represented by the following general formula (1): LiFe1-xMxP1-ySiyO4??(1) wherein M represents an element selected from group III to group XIV; 0<x<1; and 0<y<1, having a volume of a unit lattice of 291.4 to 300.0 ?3 or 285.0 to 291.0 ?3, and having a half value width of a diffraction peak of a (011) surface of 0.30° or more.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 5, 2012
    Applicant: SHARP KABUSHIKI KAISA
    Inventors: Koji Ohira, Motoaki Nishijima, Toshitsugu Sueki, Shougo Esaki, Isao Tanaka, Yukinori Koyama, Katsuhisa Tanaka, Koji Fujita, Shunsuke Murai
  • Publication number: 20110291147
    Abstract: A composition and method for formation of ohmic contacts on a semiconductor structure are provided. The composition includes a TiAlxNy material at least partially contiguous with the semiconductor structure. The TiAlxNy material can be TiAl3. The composition can include an aluminum material, the aluminum material being contiguous to at least part of the TiAlxNy material, such that the TiAlxNy material is between the aluminum material and the semiconductor structure. The method includes annealing the composition to form an ohmic contact on the semiconductor structure.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Inventors: Yongjun Jeff Hu, John Mark Meldrim, Shanming Mou, Everett Allen McTeer
  • Publication number: 20110262757
    Abstract: A coated article includes a pyrolytic applied transparent electrically conductive oxide film of niobium doped titanium oxide. The article can be made by using a coating mixture having a niobium precursor and a titanium precursor. The coating mixture is directed toward a heated substrate to decompose the coating mixture and to deposit a transparent electrically conductive niobium doped titanium oxide film on the surface of the heated substrate. In one embodiment of the invention, the method is practiced using a vaporized coating mixture including a vaporized niobium precursor; a vaporized titanium precursor, and a carrier gas to deposit a niobium doped titanium oxide film having a sheet resistance greater than 1.2 and an index of refraction of 2.3 or greater. The chemical formula for the niobium doped titanium oxide is Nb:TiOX where X is in the range of 1.8-2.1.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 27, 2011
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Songwei Lu, James W. McCamy, James J. Finley
  • Patent number: 8043716
    Abstract: Disclosed herein is a gradient thin film, formed on a substrate by simultaneously depositing different materials on the substrate using a plurality of thin film deposition apparatuses provided in a vacuum chamber, wherein the gradient thin film is formed such that the composition thereof is continuously changed depending on the thickness thereof by deposition control plates provided in the path through which the different materials move to the substrate. The gradient thin film is advantageous in that the thin film is formed by simultaneously depositing different materials using various deposition apparatuses, so that the composition thereof is continuously changed depending on the thickness thereof, with the result that the physical properties of a thin film are easily controlled and the number of deposition processes is decreased, and thus processing time and manufacturing costs are decreased, thereby improving economic efficiency.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: October 25, 2011
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Ho Sup Kim, Sang Soo Oh, Tae Hyung Kim, Dong Woo Ha, Kyu Jung Song, Hong Soo Ha, Rock Kil Ko, Nam Jin Lee
  • Publication number: 20110215280
    Abstract: Composite particles that include an electrochemically active metal phase, an insulating phase, and a conducting phase are provided that are useful active materials in negative electrodes for lithium-ion electrochemical cells. The electrochemically active phase includes silicon. Lithium-ion electrochemical cells are provided that include the provided composite composite particles as active materials in negative electrodes as well as methods of making the provided composite particles.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 8, 2011
    Inventors: Mark N. Obrovac, Marc Flodquist
  • Publication number: 20110212382
    Abstract: Dielectric compositions that include compound of the formula [(M?)1?x(A?)x][(M?)1?y?z,(B?)y(C?)z]O3??(VO)? and protonated dielectric compositions that include a protonated dielectric compound within the formula [(M?)1?x(A?)x](M?)1?y?z(B?)y(C?)z]O3??+h(Vo)?(H*)2h are disclosed. Composite materials that employ one or more of these dielectric compounds together with an electrolyte also are disclosed. Composite material that employs one or more of these dielectric compounds together with an electrochemally active material also are disclosed.
    Type: Application
    Filed: October 7, 2010
    Publication date: September 1, 2011
    Applicants: The Penn State Research Foundation, Recapping, Inc.
    Inventors: Clive A. Randall, Leslie E. Cross, Aram Yang, Niall J. Donnelly, Ramakrishnan Rajagopalan, Amanda Lou Baker
  • Patent number: 8003255
    Abstract: A nonaqueous electrolyte battery is provided and includes: a negative electrode including a lithium titanium composite oxide showing an X-ray diffraction pattern in which each of main peak intensities of rutile TiO2, anatase TiO2 and Li2TiO3 is 5 or less with respect to a main peak intensity of ramsdellite lithium titanate of 100; a positive electrode; and a nonaqueous electrolyte.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: August 23, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroki Inagaki, Yasuhiro Harada, Norio Takami
  • Patent number: 7993547
    Abstract: It is intended to provide a semiconductor ceramic composition in which a part of Ba in BaTiO3 is substituted with Bi—Na, which is capable of restraining the evaporation of Bi in the calcination step, is capable of restraining the compositional deviation of Bi—Na thereby suppressing the formation of different phases, is capable of further reducing the resistivity at room temperature, and is capable of restraining the fluctuation of the Curie temperature; and to provide a production process of the same.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 9, 2011
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Kazuya Toji
  • Publication number: 20110180198
    Abstract: A purpose of the present invention is to provide a conductive paste which is capable to prevent the structural defect and to provide a method for producing electronic components including an internal electrode layer formed by the conductive paste. A conductive paste comprises metallic particles, solvent, rein, a first inhibitor, a second inhibitor and a third inhibitor, wherein sintering start temperatures of the first inhibitor, the second inhibitor and the third inhibitor are higher than a sintering start temperature of the metallic particles, when an average particle size of the first inhibitor is defined as “a”, an average particle size of the second inhibitor is defined as “b”, an average particle size of the third inhibitor is defined as “c”, “a”, “b” and “c” fulfill a predetermined relation.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 28, 2011
    Inventors: Sanshiro AMAN, Satoshi Takagi, Yuki Kamada
  • Patent number: 7964118
    Abstract: The present invention provides an olivine-type positive electrode active material that is an inexpensive and very safe positive electrode active material that also exhibits excellent battery properties even at high energy densities. The present invention also provides a method of producing this olivine-type positive electrode active material and a nonaqueous electrolyte battery that has a positive electrode that contains this olivine-type positive electrode active material. The present invention relates to a positive electrode active material that comprises an olivine-type lithium manganese phosphate compound represented by the following general formula (1) LixMnyMaPO4??(1) (in the formula, 0<x<2, 0<y<1, 0<a<1, and M is at least one metal element selected from the group consisting of Co, Ni, Fe, Zn, Cu, Ti, Sn, Zr, V, and Al) and that has a particle diameter of 10 to 500 nm.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: June 21, 2011
    Assignees: Kanto Denka Kogyo Co., Ltd., Kyushu University, National University Corp.
    Inventors: Shinji Iizuka, Osamu Omae, Kumiko Sueto, Takeshi Shimada, Shigeto Okada, Tomoko Iwanaga, Tomoyuki Shiratsuchi, Jun-ichi Yamaki
  • Patent number: 7964117
    Abstract: The present invention includes an electrochemical redox active material. The electrochemical redox active material includes a cocrystalline metallic compound having a general formula AxMO4-yXOy.M?O, where A is at least one metallic element selected from a group consisting of alkali metals, M and M? may be identical or different and independently of one another at least one selected from a group consisting of transition metals and semimetals, X is P or As, 0.9?x?1.1, and 0<y<4.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 21, 2011
    Assignee: Advanced Lithium Electrochemistry Co., Ltd.
    Inventors: Ben-Jie Liaw, Yu-Fang Chen, Wen-Ren Liu, Sheng-Shih Chang
  • Publication number: 20110091794
    Abstract: A fuel electrode material including a metal oxide having a perovskite type crystalline structure and represented by Formula 1: A1-xA?xB1-yB?yO3??Formula 1 wherein A and A? are different from each other and A and A? each independently include at least one element selected from the group consisting of strontium (Sr), yttrium (Y), samarium (Sm), lanthanum (La), and calcium (Ca); B includes at least one element selected from the group consisting of titanium (Ti), manganese (Mn), cobalt (Co), iron (Fe), and nickel (Ni); B? is different from B and includes at least one transition metal; x is about 0.001 to about 0.08; and y is about 0.001 to about 0.5.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 21, 2011
    Applicants: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD., INHA-INDUSTRY PARTNERSHIP INSTITUTE
    Inventors: Sang-mock LEE, Chan KWAK, Hae-jin HWANG, Jong-seol YOON, Jun LEE
  • Publication number: 20110070441
    Abstract: Provided are a zirconia sintered body that has excellent mechanical characteristics, as well as semiconductivity that can allow static electricity to escape at an appropriate rate, and a manufacturing method that can manufacture the same at lower cost than in the past. The zirconia sintered body is made of 66-90 parts by weight of zirconia that contains a stabilizer, and a total of 10-34 parts by weight of iron, chromium and titanium oxides. Of the iron, chromium and titanium oxides, the proportion of iron oxide is 70-99.5 wt %, the proportion of chromium oxide is 0.4-20 wt % and the proportion of titanium oxide is 0.1-10 wt %. The combined proportion of tetragonal and cubic crystals in the zirconia crystal phase is 90% or more and the mean crystal grain size of the zirconia is 0.3-0.5 ?m. The mean crystal grain size of the iron, chromium and titanium oxides is 0.5-2.0 ?m. It has excellent mechanical characteristics, as well as semiconductivity.
    Type: Application
    Filed: February 6, 2009
    Publication date: March 24, 2011
    Applicant: KYOCERA CORPORATION
    Inventors: Shunji Mikaki, Kunihide Shikata
  • Patent number: 7910027
    Abstract: It is intended to provide a semiconductor ceramic composition capable of shifting the Curie temperature to a positive direction as well as of obtaining an excellent jump characteristic while suppressing an increase in room temperature resistivity to a minimum value. There is provided a semiconductor ceramic composition in which a portion of Ba of BaTiO3 is substituted by Bi—Na, the semiconductor ceramic composition being obtained by sintering a mixed calcined powder of a BT calcined powder containing (BaR)TiO3 or Ba(TiM)O3 (wherein each of R and M is a semiconductive dopant), wherein a part of BaCO3 and TiO2 are remained therein; and a BNT calcined powder containing a (BiNa)TiO3 powder.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: March 22, 2011
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Kazuya Toji
  • Patent number: 7906239
    Abstract: A cathode active material capable of improving chemical stability, a method for producing the same, and a nonaqueous electrolyte secondary battery using the same which has high capacity and good charge-discharge cycling characteristics is provided. The cathode has a cathode active material. The cathode active material includes a coating layer formed on at least a part of the composite oxide particle, the coating layer including an oxide including lithium and an oxide including a coating element of nickel, or nickel and manganese, and a surface layer formed on at least a part of the coating layer and containing molybdenum.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: March 15, 2011
    Assignee: Sony Corporation
    Inventors: Haruo Watanabe, Kenji Ogisu, Tomoyo Ooyama, Masanori Soma
  • Patent number: 7901597
    Abstract: The present invention provides a transparent conductive film having high conductivity and a production method therefor. The present invention further provides a sintered body for forming the transparent conductive film and a production method therefor. The transparent conductive film comprises Ga, Ti, and O. The sintered body comprises Ga, Ti, and O. The method for producing a sintered body comprises the steps of: (a) mixing a titanium-containing powder and a gallium-containing powder; and (b) compacting and sintering the obtained mixture.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: March 8, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Akira Hasegawa
  • Publication number: 20110048538
    Abstract: A suspension or solution for an organic optoelectronic device is disclosed. The composition of the suspension or solution includes at least one kind of micro/nano transition metal oxide and a solvent. The composition of the suspension or solution can selectively include at least one kind of transition metal oxide ions or a precursor of transition metal oxide. Moreover, the method of making and applications of the suspension or solution are also disclosed.
    Type: Application
    Filed: October 6, 2009
    Publication date: March 3, 2011
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: JING-SHUN HUANG, CHING-FUH LIN
  • Publication number: 20110052994
    Abstract: A negative electrode active material according to one embodiment includes a titanium oxide compound having a crystal structure of monoclinic system titanium dioxide. The titanium oxide compound is modified by at least one kind of ion selected from the group consisting of an alkali metal cation, an alkali earth metal cation, a transition metal cation, a sulfide ion, a sulfuric acid ion and a chloride ion.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 3, 2011
    Inventors: Yasuhiro HARADA, Norio Takami, Hiroki Inagaki, Keigo Hoshina, Yuki Otani
  • Publication number: 20110049443
    Abstract: The present application relates to a process for the preparation of compounds of general formula (I) Lia-bM1bFe1-cM2cPd-eM3eOx (I), wherein M1, M2, M3, a, b, c, d, e and x: M1: Na, K, Rb and/or Cs, M2: Mn, Mg, Ca, Ti, Co, Ni, Cr, V, M3: Si, S, a: 0.8-1.9, b: 0-0.3, c: 0-0.9, d: 0.8-1.9, e: 0-0.5, x: 1.
    Type: Application
    Filed: April 16, 2009
    Publication date: March 3, 2011
    Applicant: BASF SE
    Inventors: Hartmut Hibst, Brian Roberts, Jordan Keith Lampert, Kirill Bramnik
  • Publication number: 20110042628
    Abstract: The present invention relates to lithium cells, accumulators and batteries, and more particularly an active material for the negative electrode of rechargeable batteries. It concerns more particularly a material comprising a phase having a general formula Li2+v?4cCcTi3-wFexMyM?zO7?, in which M and M? are metal ions of groups of 2 to 15 having an ionic radius between 0.5 and 0.8 ? in an octahedral oxygen environment, v, w, x, y, z and ? being associated by the relationships: 2?=?v+4w?3x-ny-n?z, with n and n? the respective formal degrees of oxidation of M and M?; ?0.5?v?+0.5; y+z>0; x+y+z=w; and 0<w?0.3; characterized in that at least part of the lithium is substituted by carbon according to the relationship 0<c?(2+v)/4. The material has improved mass and volume capacities that may reach 190 Ah/kg, while preserving the previously acquired advantages, notably: a small loss of capacity at the first cycle, of 2 to 10 Ah/kg; excellent cyclability; low polarization of 30 to 70 mV in C/15 régime.
    Type: Application
    Filed: November 19, 2008
    Publication date: February 24, 2011
    Inventors: Stéphane Levasseur, Cécile Tessier, Josette Olivier-Fourcade, Laure Monconduit, Costana Ionica-Bousquet, Claire Villevieille, Michèle Van Thournout
  • Patent number: 7893001
    Abstract: The invention intends to provide, in BaTiO3 semiconductor porcelain composition, a semiconductor porcelain composition that, without using Pb, can shift the Curie temperature to a positive direction and can significantly reduce the resistivity at room temperature. According to the invention, when Ba is partially substituted by an A1 element (at least one kind of Na, K and Li) and an A2 element (Bi) and Ba is further substituted by a specific amount of a Q element, or when Ba is partially substituted by an A1 element (at least one kind of Na, K and Li) and an A2 element (Bi) and Ti is partially substituted by a specific amount of an M element, the optimal valence control can be applied and whereby the resistivity at room temperature can be significantly reduced. Accordingly, it is optimal for applications in a PTC thermistor, a PTC heater, a PTC switch, a temperature detector and the like, and particularly preferably in an automobile heater.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: February 22, 2011
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Kei Matsumoto, Koichi Terao, Kazuya Toji, Kazuhiro Nishikawa
  • Patent number: 7879265
    Abstract: It is an object of the present invention to provide an active material for lithium ion battery capable of producing a lithium ion battery having an excellent high rate charge and discharge performance and a lithium ion battery having an excellent high rate charge and discharge performance. The present invention provides an active material for lithium ion battery represented by a composition formula: Li[Li(1-x)/3AlxTi(5-2x)/3]O4 (??x<1) lithium titanate is substituted with Al, and a lithium ion battery using this active material as a negative electrode active material.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: February 1, 2011
    Assignee: GS Yuasa Corporation
    Inventors: Daisuke Endo, Tokuo Inamasu, Toshiyuki Nukuda, Yoshihiro Katayama
  • Publication number: 20110008676
    Abstract: The disclosure of the present application provides various compositions, and methods for preparing the same, which may be useful, for example, to prepare one or more anodes of the present disclosure. Such anodes may be useful, for example, to prepare one or more batteries which themselves, for example, may be useful in connection with a vehicle as referenced herein. In at least one embodiment of an anode of the present disclosure, the anode comprises lithium-based compound having the formula Li4?Ti5-yMyO12-zXz, wherein M comprises a dopant material selected from the group consisting of molybdenum, tungsten, zirconium, and hafnium, wherein X comprises a chalcogen selected from the group consisting of sulfur, selenium, and tellurium, wherein 0<y?1, and wherein 0<z?2y.
    Type: Application
    Filed: March 4, 2009
    Publication date: January 13, 2011
    Inventors: M. Neal Golovin, Taison Tan
  • Patent number: 7867935
    Abstract: A highly heat-resistant fluororesin, such as tetrafluoroethylene resin or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, is filled with 0.5 to 1 weight % of a non-black insulating pigment that has a heat resistance such that discoloration does not occur when the fluororesin is baked. Green insulating pigment whose main component is a TiO2—CoO—NiO—ZnO system or a ZnO—CoO system, or blue insulating pigment whose main component is a CoO—Al2O3 system or a CoO—Al2O3—Cr2O3 system is used singly or in a combination, as the non-black insulating pigment. A highly arc-resistant insulator is provided that secures an insulating capacity and at the same time that secures an excellent ability to prevent both interior and exterior deterioration of the insulator and that avoids color heterogeneity and localized discoloration.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: January 11, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Hirano, Norimitsu Kato
  • Publication number: 20100316918
    Abstract: In various aspects, provided are substantially single phase ceramic membranes, gas separation devices based thereon, and methods of making the membranes. In various embodiments, the membranes and devices can be used for hydrogen production, such as in a fuel-cell.
    Type: Application
    Filed: April 9, 2007
    Publication date: December 16, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Shriram Ramanathan, Annamalai Karthikeyan
  • Publication number: 20100316909
    Abstract: The invention relates to materials for use as electrodes in an alkali-ion secondary (rechargeable) battery, particularly a lithium-ion battery. The invention provides transition-metal compounds having the ordered-olivine, a modified olivine, or the rhombohedral NASICON structure and the polyanion (PO4)3? as at least one constituent for use as electrode material for alkali-ion rechargeable batteries.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 16, 2010
    Inventors: Michel Armand, John B. Goodenough, Akshaya K. Padhi, Kirakodu S. Nanjundaswamy, Christian Masquelier
  • Publication number: 20100310935
    Abstract: The invention relates to materials for use as electrodes in an alkali-ion secondary (rechargeable) battery, particularly a lithium-ion battery. The invention provides transition-metal compounds having the ordered-olivine, a modified olivine, or the rhombohedral NASICON structure and the polyanion (PO4)3? as at least one constituent for use as electrode material for alkali-ion rechargeable batteries.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 9, 2010
    Inventors: Michel B. Armand, John B. Goodenough, Akshaya K. Padhi, Kirakadu S. Nanjundaswamy, Christian Masquelier
  • Publication number: 20100301284
    Abstract: An active material, an electrode, and a battery which exhibit high safety in overcharging tests, and methods of manufacturing them are provided. The active material comprises a first metal oxide particle 1 and a second metal oxide particle group 2 attached to a surface of the first metal oxide particle 1. The second metal oxide is at least one selected from the group consisting of zirconia, silica, and tin oxide. The first metal oxide particle 1 contains fluorine atoms from its surface to deepest part.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Applicant: TDK CORPORATION
    Inventors: Hisashi SUZUKI, Masayoshi Hirano