Free Metal Or Alloy Containing Patents (Class 252/62.55)
  • Patent number: 9263174
    Abstract: Disclosed herein is a sintered cobalt ferrite composite material comprising of nano and micron sized powders of cobalt ferrite with high magnetostriction. The present invention further discloses preparation of nano and micron sized powders of cobalt ferrite, in particular, the auto combustion process using glycine as fuel for preparing nano sized cobalt ferrite powders.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: February 16, 2016
    Assignee: Council of Scientific and Industrial Research
    Inventors: Alias Joy Pattayil, Mohaideen Kamal Khaja
  • Patent number: 9153368
    Abstract: A composite iron-based powder suitable for soft magnetic applications such as inductor cores. Also, a method for producing a soft magnetic component and the component produced by the method.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: October 6, 2015
    Assignee: HOGANAS AB (PUBL)
    Inventors: Zhou Ye, Hanna Staffansson
  • Patent number: 9136049
    Abstract: This invention relates to Mn—Al magnetic powders of a high coercive force which are obtained from Mn—Al alloy vaporized by plasma arc discharging, and a manufacturing method thereof. The Mn—Al magnetic powders are produced by discharging a plasma arc to a compact which is formed by compacting a blend containing 20-60% by weight of Mn powder and 40-80% by weight of Al powder, collecting nanoscale Mn—Al particles after cooling the vaporized blend, and heat-treating the particles. According to the present invention, the Mn—Al magnetic powders of light weight and enhanced corrosion resistance are produced at a low cost.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: September 15, 2015
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Jung-Goo Lee, Chul-Jin Choi
  • Patent number: 9053955
    Abstract: A nitride semiconductor device includes a dislocation control layer on a substrate, and a nitride semiconductor layer on the dislocation control layer. The dislocation control layer includes a nanocomposite of a first nanoparticle made of a first material and at least one second nanoparticle made of a second material.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: June 9, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Moon-sang Lee, Sung-soo Park, Dae-ho Yoon
  • Publication number: 20150147680
    Abstract: The present invention relates to highly functional composite nanoparticles including a support body formed of nanoparticles and first phase nanoparticles which are condensed on the surfaces of the support body particles after being evaporated through a physical vapor deposition process, and to a method for producing same. According to the present invention, a physical vapor deposition process is used instead of a wet process so as to produce eco-friendly composite nanoparticles that do not emit hazardous chemicals while having high economic feasibility and process reproducibility.
    Type: Application
    Filed: March 26, 2013
    Publication date: May 28, 2015
    Inventors: Han-Shin Choi, Hye-Sook Joo, Chul-Woong Han
  • Publication number: 20150144832
    Abstract: A crystalline ferromagnetic material based upon nanoscale cobalt carbide particles and a method of manufacturing the material via a polyol reaction are disclosed. The crystalline ferromagnetic cobalt carbide nanoparticles are useful for high performance permanent magnet applications. The processes are extendable to other carbide phases. Fe- and FeCo-carbides are realizable by using as precursor salts Fe-, Co-, and mixtures of Fe- and Co-salts, such as acetates, nitrates, chlorides, bromides, citrates, and sulfates. The materials include mixtures and/or admixtures of cobalt carbides, as both Co2C and Co3C phases. Mixtures may be a collection of independent particles of Co2C and Co3C or a collection of particles which consist of an intimate combination of Co2C and Co3C phases within individual particles. The relative proportions of these two phases and the morphology of each phase contribute to their permanent magnet properties, particularly at room temperature to over 400 K.
    Type: Application
    Filed: February 5, 2015
    Publication date: May 28, 2015
    Inventor: Vincent G. Harris
  • Publication number: 20150144831
    Abstract: Biogenic activated carbon compositions disclosed herein comprise at least 55 wt % carbon, some of which may be present as graphene, and have high surface areas, such as Iodine Numbers of greater than 2000. Some embodiments provide biogenic activated carbon that is responsive to a magnetic field. A continuous process for producing biogenic activated carbon comprises countercurrently contacting, by mechanical means, a feedstock with a vapor stream comprising an activation agent including water and/or carbon dioxide; removing vapor from the reaction zone; recycling at least some of the separated vapor stream, or a thermally treated form thereof, to an inlet of the reaction zone(s) and/or to the feedstock; and recovering solids from the reaction zone(s) as biogenic activated carbon. Methods of using the biogenic activated carbon are disclosed.
    Type: Application
    Filed: May 7, 2013
    Publication date: May 28, 2015
    Inventors: James A. Mennell, Daniel J. Despen
  • Patent number: 9040158
    Abstract: A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe3O4—SiO2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: May 26, 2015
    Assignee: UChicago Argonne LLC
    Inventors: Yugang Sun, Yongxing Hu
  • Patent number: 9039920
    Abstract: There are provided a permanent magnet and a manufacturing method thereof enabling carbon content contained in magnet particles to be reduced in advance before sintering even when wet milling is employed. Coarsely-milled magnet powder is further milled by a bead mill in a solvent together with an organometallic compound expressed with a structural formula of M-(OR)X (M represents V, Mo, Zr, Ta Ti W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the magnet powder. Thereafter, a compact body of compacted magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius to perform hydrogen calcination process. Thereafter, through sintering process, a permanent magnet 1 is formed.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 26, 2015
    Assignee: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20150137024
    Abstract: A metal-carbon nanotube composite is provided which includes a carbon nanotube, a magnetic material, and a metal and in which the carbon nanotube is bound to the magnetic material through a binding intervenor and the carbon nanotube is dispersed in the metal by binding the magnetic material to the metal. A preparing method of a metal-carbon nanotube composite is provided, the method including: a step of binding a carbon nanotube to a magnetic material through a binding intervenor; and a step of dispersing the carbon nanotube in a metal by binding the magnetic material to the metal.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 21, 2015
    Applicants: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY, JC CORP.
    Inventors: Donghyun LEE, Seungyong SON, Doo Kyoo KIM, Ki Chull SHIN
  • Publication number: 20150129794
    Abstract: In a manufacturing method of a soft magnetic member, a material powder that includes ferrous particles and an organic layer formed on a surface of each of the ferrous particles is prepared. The organic layer contains at least one element selected from the group consisting of Si, Mg, Ti, and V. The material powder is compacted to form a green compact, and the green compact is induction-heated with a frequency of 100 kHz or higher to form an insulation layer made of an oxide containing the element on the surface of each of the ferrous particles.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 14, 2015
    Inventors: Eiichi KOBAYASHI, Kunihiro KODAMA, Masashi TOTOKAWA, Satoshi TAKEUCHI
  • Patent number: 9028705
    Abstract: A capsule having a solid core, a primary shell of liquid encapsulating the solid core and a secondary shell of particles encapsulating the primary shell. The primary and secondary shells are generally repulsive to each other. Also provided is a process for the manufacture of capsules and a process for the manufacture of a magnetic body.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 12, 2015
    Assignee: Magnequench Limited
    Inventors: Zhao Wei, Han Zhisan, David Miller
  • Publication number: 20150123025
    Abstract: What is described is the use of alcohols, alcoholamines, diols, polyols or mixtures thereof in heat carrier media or as heat carrier media which are in contact with magnetocaloric materials.
    Type: Application
    Filed: December 18, 2014
    Publication date: May 7, 2015
    Inventors: Fabian Seeler, Georg Degen
  • Patent number: 9023230
    Abstract: The present invention relates facile method to synthesize magnetic PNCs with highly dispersed and narrow size distributed NPs. The PNCs have highly thermal stability and unique electrical and dielectric properties.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 5, 2015
    Assignees: Lamar University, A Component of the Texas State University System, An Agency of the State of Texas, Texas State University San Marcos, A Component of the Texas State University System, An Agency of the State of Texas
    Inventors: Luyi Sun, Zhanhu Guo, Jiahua Zhu, Suying Wei
  • Publication number: 20150115193
    Abstract: The present invention related to ferromagnetic nano-metal powders and more particularly, to ferromagnetic nano-metal powders for increasing packing density by decreasing the porosity between micro-sized soft magnetic metal powders. According to an embodiment of the present invention, the ferromagnetic nano-metal powder allows high packing density and high magnetic property at a high frequency to fill the pores inevitably generated during the manufacturing process of an inductor using the soft magnetic metal powders.
    Type: Application
    Filed: March 27, 2014
    Publication date: April 30, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Yeong KIM, Sung-Yong AN, Hak-Kwan KIM, Jung-Wook SEO
  • Publication number: 20150118407
    Abstract: A soft magnetic material comprises a plurality of iron-containing particles and an insulating layer on the iron-containing particles, the insulating layer comprising an oxide. The soft magnetic material is an aggregate of permeable micro-domains separated by insulation boundaries.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 30, 2015
    Inventors: Martin Hosek, Sripati Sah, Jayaraman Krishnasamy
  • Patent number: 9017570
    Abstract: Disclosed is a hybrid filler for an electromagnetic shielding composite material and a method of manufacturing the hybrid filler, by which electromagnetic shielding and absorbing capabilities are improved and heat generated by electromagnetic absorption is effectively removed. The hybrid filler for an electromagnetic shielding composite material includes an expandable graphite (EG) having a plurality of pores, and magnetic particles integrated with a carbon nanotube (CNT) on outer surfaces thereof in a mixed manner, wherein the magnetic particles are inserted into the pores of the EG.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 28, 2015
    Assignee: Hyundai Motor Company
    Inventors: Jin Woo Kwak, Kyong Hwa Song, Han Saem Lee, Byung Sam Choi
  • Publication number: 20150108391
    Abstract: Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized.
    Type: Application
    Filed: January 28, 2013
    Publication date: April 23, 2015
    Applicants: M-I L.L.C., William Marsh Rice University
    Inventors: James M. Tour, Bostjan Genorio, Wei Lu, Brandi Katherine Price-Hoelscher
  • Publication number: 20150108392
    Abstract: In magnetic parts such as inductors and antennas using magnetic metal powder, the complex component of a magnetic permeability, which represents a loss in a GHz band, has been high. A magnetic part formed from a soft magnetic metal powder including iron as a main component can reduce a loss factor in a kHz to GHz band. The soft magnetic metal powder has an average particle diameter of 100 nm or less, an axial ratio (=major axis length/minor axis length) of 1.5 or more, a coercive force (Hc) of 39.8 to 198.9 kA/m (500 to 2500 Oe), and a saturation magnetization of 100 Am2/kg or more.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 23, 2015
    Applicant: DOWA Electronics Material Co., Ltd.
    Inventors: Masahiro Gotoh, Takayuki Yoshida, Kazumasa Ikari
  • Publication number: 20150105262
    Abstract: The invention provides the Magnetoelectric Effect Material consisted of a single isotope, the alloy of isotopes, or the compound of isotopes. The invention applies enrichment and purification to increase the isotope abundance, to create the density of nuclear exciton by irradiation, and therefore increase the magnetoelectric effect of the crystal of single isotope, the alloy crystal of isotopes and the compound crystal of isotopes. The invention provides the manufacturing method including the selection rules of isotopes, the fabrication processes and the structure of composite materials. The invention belongs to the area of the nuclear science and the improvement of material character. The invention using the transition of entangled multiple photons to achieve the delocalized nuclear exciton. The mix of selected isotopes adjusts the decay lifetime of nuclear exciton and the irradiation efficiency to generate the nuclear exciton.
    Type: Application
    Filed: February 3, 2012
    Publication date: April 16, 2015
    Inventor: Yao Cheng
  • Patent number: 9005374
    Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of decreasing an activity level of a calcined body activated by a calcination process. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, desiccated magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, the powdery calcined body calcined through the calcination process in hydrogen is held for several hours in vacuum atmosphere at 200 through 600 degrees Celsius for a dehydrogenation process.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 14, 2015
    Assignee: Nitto Denko Corporation
    Inventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
  • Publication number: 20150083960
    Abstract: A magnetic body constituted by magnetic grains bonded together via oxide film, which magnetic grains contain a Fe—Si-M soft magnetic alloy (where M is a metal element more easily oxidized than Fe) that contains sulfur atoms (S). The magnetic body preferably contains 0.004 to 0.012 percent by weight of S, 1.5 to 7.5 percent by weight of Si, and 2 to 8 percent by weight of metal M.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 26, 2015
    Inventors: Atsushi TANADA, Kiyoshi TANAKA
  • Publication number: 20150069285
    Abstract: The invention is directed to the production of metal-carbon containing bodies, which process comprises impregnating cellulose, cellulose-like or carbohydrate bodies with an aqueous solution of at least one metal compound, followed by heating the impregnated bodies in an inert and substantially oxygen-free atmosphere, thereby reducing at least part of the at least one metal compound to the corresponding metal or metal alloy.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 12, 2015
    Applicant: BASF Corporation
    Inventors: Jacobus Hoekstra, John Wilhelm Geus, Leonardus Wijnand Jenneskens, Dirk van de Kleut, Edward Jan Vlietstra
  • Patent number: 8968590
    Abstract: A composition of a crystalline ferromagnetic material based upon nanoscale cobalt carbide particles and to a method of manufacturing the ferromagnetic material of the invention via a polyol reaction are disclosed. The crystalline ferromagnetic cobalt carbide nanoparticles of the invention are useful for high performance permanent magnet applications. The processes according to the invention are extendable to other carbide phases, for example to Fe-, FeCo-carbides. Fe- and FeCo-carbides are realizable by using as precursor salts Fe-, Co-, and mixtures of Fe- and Co-salts, such as acetates, nitrates, chlorides, bromides, citrates, and sulfates, among others. The materials according to the invention include mixtures and/or admixtures of cobalt carbides, as both Co2C and Co3C phases. Mixtures may take the form of a collection of independent particles of Co2C and Co3C or as a collection of particles which consist of an intimate combination of Co2C and Co3C phases within individual particles.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: March 3, 2015
    Assignee: Northeastern University
    Inventor: Vincent G. Harris
  • Publication number: 20150034856
    Abstract: At least one elongated core, made of at least one first magnetizable and/or magnetic material, and a shell, surrounding the core and made of at least one second magnetocrystalline anisotropic material, form a nanoparticle. A plurality of such nanoparticles are used in making a permanent magnet. A motor or a generator includes at least one such permanent magnet.
    Type: Application
    Filed: February 11, 2013
    Publication date: February 5, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Gotthard Rieger
  • Publication number: 20150033763
    Abstract: A composite material for magnetic refrigeration is provided. The composite material for magnetic refrigeration includes a magnetocaloric effect material having a magnetocaloric effect; and a heat conductive material dispersed in the magnetocaloric effect material. The heat conductive material is at least one selected from the group consisting of a carbon nanotube and a carbon nanofiber.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 5, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akiko SAITO, Norihiro TOMIMATSU, Tadahiko KOBAYASHI, Shiori KAJI, Ryosuke YAGI
  • Publication number: 20150037818
    Abstract: Magnetic-optical iron oxide-gold core-shell nanoparticles are disclosed. Methods for making and using the nanoparticles are also disclosed.
    Type: Application
    Filed: July 1, 2014
    Publication date: February 5, 2015
    Applicant: UNIVERSITY OF MEMPHIS RESEARCH FOUNDATION
    Inventors: Xiaohua Huang, Saheel Bhana
  • Patent number: 8945417
    Abstract: What is described is the use of alcohols, alcoholamines, diols, polyols or mixtures thereof in heat carrier media or as heat carrier media which are in contact with magnetocaloric materials.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: February 3, 2015
    Assignee: BASF SE
    Inventors: Fabian Seeler, Georg Degen
  • Patent number: 8945393
    Abstract: Method for oil removal. The method includes adding a magnetizable material, with or without appropriately selected surfactants, of order micron (having no net magnetization) or nanometer size to magnetize the oil or water phase by either making a ferrofluid, magnetorheological fluid, a magnetic Pickering emulsion (oil in water or water in oil emulsion), or any other process to magnetize either oil or water phases. The magnetized fluid is separated from the non-magnetic phase using novel or existing magnetic separation techniques or by permanent magnets or electromagnets thereby separating oil and water phases. The magnetized particles are separated from the magnetized phase using novel or existing magnetic separation techniques to recover and reuse the particles. The two magnetic separation steps can be repeated to further increase recovery efficiency of the liquid phases and the magnetizable particles reused in this continuous process.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 3, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Markus Zahn, T. Alan Hatton, Shahriar Rohinton Khushrushahi
  • Patent number: 8945503
    Abstract: A method of forming CuFeS2 chalcopyrite nanoparticles. The method includes, in the presence of one or more ligands, reacting an iron-containing compound, a copper-containing compound and a sulfur-containing compound to form CuFeS2 chalcopyrite nanoparticles; and wherein at least one of the ligands forms a coordination complex with copper, and at least one of the ligands forms a coordination complex with iron. Also a method of forming metal-doped CuFeS2 chalcopyrite nanoparticles such as Zn-doped CuFeS2 chalcopyrite nanoparticles. Also, a CuFeS2 chalcopyrite nanoparticle layer on a substrate. Also, a composition of matter including Zn-doped CuFeS2 chalcopyrite nanoparticles. Also, a Zn-doped CuFeS2 chalcopyrite nanoparticle layer on a substrate.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: February 3, 2015
    Assignees: International Business Machines Corporation, King Abdulaziz City for Science and Technology
    Inventors: Xin Ai, Abdulaziz Bagabas, Mohammed Bahattab, John D. Bass, Robert D. Miller, John Campbell Scott, Qing Song
  • Publication number: 20150022309
    Abstract: A magnetic metal-containing resin that includes 70 to 88 mass % of a magnetic metal powder and 5.0 mass % or more of an oxide, and the oxide is 2.8 ?m or more in average particle size. The magnetic metal-containing resin preferably includes 10 mass % or more of the oxide.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventor: Hiroshi Marusawa
  • Publication number: 20150024236
    Abstract: A soft magnetic exchange-coupled composite structure, and a high-frequency device component, an antenna module, and a magnetoresistive device including the soft magnetic exchange-coupled composite structure, include a ferrite crystal grain as a main phase and a soft magnetic metal thin film bound to the ferrite crystal grain by interfacial bonding on an atomic scale. A region of the soft magnetic metal thin film adjacent to an interface with the ferrite crystal grain includes a crystalline soft magnetic metal.
    Type: Application
    Filed: January 2, 2014
    Publication date: January 22, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-min KANG, Kyung-han AHN, Young-jae KANG, Sang-mock LEE
  • Publication number: 20150021512
    Abstract: A soft magnetic powder core which can have a high electrical resistivity, a high magnetic flux density and a high strength easily, and the soft magnetic powder core can be used in various electromagnetic components such as a motor, an actuator, a generator and a reactor. The soft magnetic powder core in which the glass portion is scattered among the soft magnetic particles, the soft magnetic particle having the core particle with iron as the main component and the insulating coating layer containing P, O and Fe. Further, the junction portion with iron oxide as the main component is formed between the soft magnetic particle and the glass portion.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 22, 2015
    Inventors: Takeshi Takahashi, Seigo Tokoro, Seiichi Kikuchi, Kenichi Nishikawa
  • Publication number: 20150014573
    Abstract: Thermally annealed superparamagnetic core shell nanoparticles of an iron-cobalt alloy core and a silicon dioxide shell having high magnetic saturation are provided. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul ROWE, Sean Evan SULLIVAN, Daisuke OKAMOTO
  • Publication number: 20150015359
    Abstract: Disclosed herein are a soft magnetic composite including an insulating layer formed along an inter-particle boundary of a soft magnetic core metal powder, a method for preparing the same, and electronic components including the same as a core material. The soft magnetic composite according to the present invention may include the insulating layer formed along the inter-particle boundary of the soft magnetic core metal particles, such that damage to a coating film caused by a molding of the existing soft magnetic powder having the insulation coating film formed therein may be prevented, whereby an eddy current loss may be minimized.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 15, 2015
    Inventors: Hak Kwan KIM, Sang Kyun KWON, Sung Jae LEE, Sung Yong AN
  • Publication number: 20150011014
    Abstract: Disclosed is a process for enhancing the sensitivity of magnetic detection of molecules of interest. The process comprises creating amorphous magnetic metal nanoparticles from a bulk target material comprising at least one magnetic transition metal selected from the group consisting of Ni, Co, and Fe and at least one glass former selected from the group consisting of P, B and Si through the use of a pulsed laser ablation method. The produced amorphous magnetic metal nanoparticles have a large magnetic moment and a large magnetic permeability especially compared to crystalline nanoparticles. One use of the present nanoparticles is in a magnetic immunoassay method.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Inventors: Kevin Hagedorn, Andrius Marcinkevicus
  • Patent number: 8926868
    Abstract: A superconducting article comprises a substrate, a buffer layer overlying the substrate, and a high-temperature superconducting (HTS) layer overlying the buffer layer. The HTS layer includes a plurality of nanorods. A method of forming a superconducting article comprises providing a substrate, depositing a buffer layer overlying the substrate; forming a nanodot array overlying the buffer layer; depositing an array of nanorods nucleated on the nanodot array; and depositing a high-temperature superconducting (HTS) layer around the array of nanorods and overlying the buffer layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 6, 2015
    Assignees: University of Houston System, Superpower, Inc.
    Inventors: Venkat Selvamanickam, Goran Majkic, Maxim Martchevskii
  • Patent number: 8920670
    Abstract: A magnetic material of an embodiment includes: first magnetic particles that contain at least one magnetic metal selected from the group including Fe, Co, and Ni, are 1 ?m or greater in particle size, and are 5 to 50 ?m in average particle size; second magnetic particles that contain at least one magnetic metal selected from the group including Fe, Co, and Ni, are smaller than 1 ?m in particle size, and are 5 to 50 nm in average particle size; and an intermediate phase that exists between the first magnetic particles and the second magnetic particles.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Harada, Tomohiro Suetsuna, Toshihide Takahashi, Seiichi Suenaga
  • Publication number: 20140375413
    Abstract: Disclosed herein is a metal magnetic powder, and the metal magnetic powder according to the exemplary embodiment of the present invention includes a soft magnetic core particle and a multilayer coating film covering the core particle and having a multilayer structure, the multilayer coating film including an oxide film formed by heat treating the core particle and an insulation film formed by coating a coating particle with respect to the core particle.
    Type: Application
    Filed: October 8, 2013
    Publication date: December 25, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hak Kwan Kim, Sung Yong An, Sung Jae Lee, Jung Wook Seo
  • Publication number: 20140375403
    Abstract: Thermally annealed superparamagnetic core shell nanoparticles of an iron-cobalt ternary alloy core and a silicon dioxide shell having high magnetic saturation are provided. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul ROWE
  • Publication number: 20140368304
    Abstract: Provided is a powder for a magnetic core (1), including a soft magnetic metal powder (2); and an insulating coating film (3) covering a surface of the soft magnetic metal powder (2), in which the insulating coating film (3) is formed of an aggregate of crystals (4) obtained by cleaving a layered oxide. The crystals (4) are obtained by, for example, cleaving a swellable smectite-group mineral, which is one kind of swellable layered clay mineral as the layered oxide.
    Type: Application
    Filed: February 4, 2013
    Publication date: December 18, 2014
    Applicant: NTN CORPORATION
    Inventors: Hikaru Araki, Norikazu Muneda, Eiichirou Shimazu
  • Publication number: 20140353540
    Abstract: Illustrative embodiments of an anisotropic conductive adhesive (ACA) configured to be cured after being subjected to a magnetic field are disclosed. In at least one illustrative embodiment, the ACA may comprise a binder and a plurality of particles suspended in the binder. Each of the plurality of particles may comprise a ferromagnetic material coated with a layer of electrically conductive material and with a moisture barrier, such that the electrically conducting material forms electrically conductive and isolated parallel paths when the ACA is cured after being subjected to the magnetic field.
    Type: Application
    Filed: October 15, 2013
    Publication date: December 4, 2014
    Applicant: SUNRAY SCIENTIFIC, LLC
    Inventor: S. Kumar Khanna
  • Publication number: 20140349099
    Abstract: A molded rare-earth magnet which simultaneously satisfies increased film thickness, high density, and improved magnetic properties (in particular, coercive force, residual magnetic flux density, and tight adhesion) has a rare-earth magnet phase that contains as a main component a nitride which contains Sm and Fe, in which the molded rare-earth magnet has a density of 80% or higher of the theoretical density of a molded magnet constituted of the rare-earth magnet phase, and has a structure in which particles of Zn and/or Mn have been dispersed in the molded magnet.
    Type: Application
    Filed: November 27, 2012
    Publication date: November 27, 2014
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Yoshio Kawashita, Kazuhiko Takashima, Yoshitaka Uehara, Toshikazu Nanbu, Kiyohiro Uramoto
  • Publication number: 20140346388
    Abstract: The invention relates to a method for producing a magnetic material, said magnetic material consisting of a starting material that comprises a rare earth metal (SE) and at least one transition metal. The method has the following steps: —hydrogenating the starting material, —disproportioning the starting material, —desorption, and —recombination. A magnetic field is applied during at least one step such that a textured magnetic material is obtained and the formation of a texture is promoted in the magnetic material.
    Type: Application
    Filed: June 20, 2012
    Publication date: November 27, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Konrad Güth, Oliver Gutfleisch
  • Publication number: 20140319406
    Abstract: A magnetic material is disclosed, which includes magnetic particles containing at least one magnetic metal selected from the group including Fe, Co and Ni, and at least one non-magnetic metal selected from Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare earth elements, Ba and Sr; a first coating layer of a first oxide that covers at least a portion of the magnetic particles; oxide particles of a second oxide that is present between the magnetic particles and constitutes an eutectic reaction system with the first oxide; and an oxide phase that is present between the magnetic particles and has an eutectic structure of the first oxide and the second oxide.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro Suetsuna, Seiichi Suenaga, Toshihide Takahashi, Tomoko Eguchi, Koichi Harada, Yasuyuki Hotta
  • Publication number: 20140312523
    Abstract: A thick magnet film contains a rare earth magnet phase represented by formula R-M-X, where R contains at least one of Nd and Sm, M contains at least one of Fe and Co, and X contains at least one of N and B. The thick magnet film has a density of equal to or more than 80% but less than 95% of the theoretical density when R contains Nd as a main component and has the density of equal to or more than 80% but less than 97% of the theoretical density when R contains Sm as a main component. The magnet can achieve an increase in thickness when formed into a film, an increase in density and an improvement in magnetic properties such as residual magnetic flux density.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 23, 2014
    Inventors: Yoshio Kawashita, Kazuhiko Takashima, Toshikazu Nanbu
  • Publication number: 20140306144
    Abstract: A process for producing a magnetron sputtering target includes: mixing and dispersing an oxide powder and a magnetic metal powder, the magnetic metal powder containing a ferromagnetic metal element, to obtain a magnetic powder mixture; mixing and dispersing an oxide powder and each of a plurality of non-magnetic metal powders, the plurality of non-magnetic metal powders containing the ferromagnetic metal element, the plurality of non-magnetic metal powders containing a different constituent element from each other or containing constituent elements at different ratios from each other, to obtain a plurality of non-magnetic powder mixtures; and mixing and dispersing the magnetic powder mixture and the plurality of non-magnetic powder mixtures to obtain a powder mixture for pressure sintering.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO
  • Publication number: 20140299810
    Abstract: A permanent magnet may include a Fe16N2 phase constitution.
    Type: Application
    Filed: August 17, 2012
    Publication date: October 9, 2014
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Jian-Ping Wang, Shihai He, Yanfeng Jiang
  • Publication number: 20140295410
    Abstract: Disclosed are a conjugate of a metal nanoparticle including a magnetic core and at least one light emitting material linked to the metal nanoparticle through a linker, wherein the linker has an affinity for a biological material and has changed structure after contacting a biological material, a biosensor including the conjugate, and a method of measuring a concentration of specific biological material in a biological sample using the conjugate or the biosensor.
    Type: Application
    Filed: February 19, 2014
    Publication date: October 2, 2014
    Inventors: Shin Ae JUN, Dae ha Seo, Eun Joo JANG, Young-Wook Jun
  • Patent number: 8845957
    Abstract: A method for producing a magnetizable metal shaped body comprising a ferromagnetic starting material that is present in powder and in particulate form, using the following steps: (a) first compaction of the starting material (S3) such that adjoining particles become bonded to each other by means of positive adhesion and/or integral bonding in sections along the peripheral surfaces thereof and while forming hollow spaces, (b) creating an electrically isolating surface coating on the peripheral surfaces of the particles in regions outside the joining sections (S4), and (c) second compaction of the particles (S5) provided with the surface coating, such that the hollow spaces are reduced in size or eliminated.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 30, 2014
    Assignees: ETO Magnetic GmbH, Kennametal Europe GmbH
    Inventors: Paul Guempel, Stefan Glaeser, Beat Hofer