Etching Or Brightening Compositions Patents (Class 252/79.1)
  • Publication number: 20140335763
    Abstract: The present invention provides a polishing composition for a magnetic disk substrate that can reduce scratches and surface roughness of a polished substrate without impairing the productivity, and a method for manufacturing a magnetic disk substrate using the polishing composition. The polishing composition for a magnetic disk substrate includes colloidal silica having a ?CV value of 0 to 10% and water.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 13, 2014
    Inventors: Yoshiaki OSHIMA, Takeshi HAMAGUCHI, Kanji SATO, Norihito YAMAGUCHI, Haruhiko DOI
  • Publication number: 20140332713
    Abstract: An etching method having the step of: applying an etching liquid to a substrate, the etching liquid containing: a fluorine ion, a nitrogen-containing compound having at least 2 of nitrogen-containing structural units, and water, the etching liquid having a pH of being adjusted to 5 or less; and etching a titanium compound in the substrate.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Applicant: FUJIFILM Corporation
    Inventors: Atsushi MIZUTANI, Hisamitsu TOMEBA, Kazutaka TAKAHASHI, Tadashi INABA
  • Patent number: 8883034
    Abstract: The invention provides a polishing composition comprising (a) silica, (b) one or more compounds that increases the removal rate of silicon, (c) one or more tetraalkylammonium salts, and (d) water, wherein the polishing composition has a pH of about 7 to about 11. The invention further provides a method of polishing a substrate with the polishing composition.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 11, 2014
    Inventors: Brian Reiss, John Clark, Lamon Jones, Jeffrey Gilliland, Michael White
  • Patent number: 8883031
    Abstract: The CMP polishing liquid containing a medium and silica particles as an abrasive grain dispersed into the medium. The silica particles have a silanol group density of 5.0/nm2 or less and the biaxial average primary particle diameter when arbitrary 20 silica particles are selected from an image obtained by scanning electron microscope observation is 25 to 55 nm. The association degree of the silica particles is 1.1 or more. The CMP polishing liquid has the high barrier film polishing speed, the favorable abrasive grain dispersion stability, and the high interlayer dielectric polishing speed. The CMP polishing liquid can provide a method of producing semiconductor substrates or the like, that have excellent microfabrication, thin film formation, dimension accuracy, electric property and high reliability with low cost.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: November 11, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Mamiko Kanamaru, Tomokazu Shimada, Takashi Shinoda
  • Patent number: 8883652
    Abstract: A silicon etching liquid characterized by anisotropically dissolving monocrystalline silicon therein by using an aqueous solution containing a quaternary ammonium hydroxide and an aminoguanidine salt and an etching method of silicon using the instant etching liquid are an etching liquid and an etching method enabling one to perform processing at a high etching rate in etching processing of silicon, particularly in etching processing of silicon in a manufacturing process of MEMS parts or semiconductor devices.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuyoshi Yaguchi, Ryuji Sotoaka
  • Publication number: 20140326696
    Abstract: Disclosed is a microetching solution, a replenishment solution added to said microetching solution and a method for production of a wiring board using said microetching solution. The microetching solution for copper consists of an aqueous solution containing a cupric ion, an organic acid, a halide ion, a polymer and a nonionic surfactant. The polymer is a water-soluble polymer including a polyamine chain and/or a cationic group and having a weight average molecular weight of 1000 or more. In the microetching solution of the present invention, a value of AB is 2000 to 9000 and a value of A/D is 500 to 9000, where a concentration of the halide ion is A % by weight, a concentration of the polymer is B % by weight and a concentration of the nonionic surfactant is D % by weight. Using this microetching solution, adhesion to a resin or the like can be uniformly maintained even with a low etching amount.
    Type: Application
    Filed: June 25, 2013
    Publication date: November 6, 2014
    Inventors: Masayo Kurii, Kiyoto Tai, Mami Nakamura, Yuki Ogino
  • Publication number: 20140329184
    Abstract: A method for the stabilization of an aqueous choline hydroxide solution includes, optionally adding a first stabilizer of a dithionite salt and/or a dialkylhydroxylamine to an aqueous solution containing reactants that will produce an aqueous choline hydroxide solution; and after the aqueous choline hydroxide solution is formed, adding a second stabilizer which comprises a dialkylhydroxylamine to the aqueous choline hydroxide solution. The stabilized choline hydroxide solution may include choline hydroxide, water, and a dialkylhydroxylamine and optionally a dithionite salt as a stabilizer present in an amount of from about 50 ppm to less than about 5000 ppm by weight relative to the total weight of the stabilized choline hydroxide solution.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 6, 2014
    Applicant: TAMINCO
    Inventors: Kristof Moonen, Michael David Gernon
  • Patent number: 8877082
    Abstract: Disclosed is a processing method which can achieve a high processing rate, and is capable of making a surface smooth. In order to achieve this an SiC substrate is arranged in a potassium hydroxide solution containing hydrogen peroxide, and ultraviolent radiation is irradiated on the surface of the SiC substrate. An SiO2 layer is formed on the surface of the SiC substrate due to the irradiation of ultraviolet radiation, and this SiO2 layer is chemically removed by means of the potassium hydroxide solution, and also removed by a synthetic quartz surface plate.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: November 4, 2014
    Assignee: National University Corporation Kumamoto University
    Inventors: Akihisa Kubota, Mutsumi Touge
  • Patent number: 8877088
    Abstract: The invention relates to formulations with anti-graffiti-scrawling, self-cleaning, anti-incrustation and/or nonstick properties. The formulations are made from synthetic and natural polymers and in a system that may be either mono- or bi-component. In addition, the invention also relates to the application of said formulations to objects, monuments, constructions and means of transport, imparting protection thereto. Further, the present invention relates to processes for preparing said formulations.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 4, 2014
    Assignee: Roma Comercial Quimica Ltda.
    Inventors: Francisco Rodrigues de Lira, Hildebrando Lucas Santos
  • Publication number: 20140322913
    Abstract: A polishing composition of the present invention is to be used for polishing an object including a portion containing a high-mobility material and a portion containing a silicon material. The polishing composition comprises an oxidizing agent and abrasive grains having an average primary particle diameter of 40 nm or less. The polishing composition preferably further contains a hydrolysis-suppressing compound that bonds to a surface OH group of the portion containing a silicon material of the object to function to suppress hydrolysis of the portion containing a silicon material. Alternatively, a polishing composition of the present invention contains abrasive grains, an oxidizing agent, and a hydrolysis-suppressing compound. The polishing composition preferably has a neutral pH.
    Type: Application
    Filed: November 21, 2012
    Publication date: October 30, 2014
    Inventors: Shuugo Yokota, Yasuyuki Yamato, Satoru Yarita, Tomohiko Akatsuka, Shuichi Tamada
  • Publication number: 20140319411
    Abstract: There is provided a polishing liquid composition that can effectively reduce LPDs having a size of 50 nm or less on a wafer surface in polishing of semiconductor wafers. A semiconductor wafer polishing liquid composition including: water; silica particles; an alkaline compound; a water-soluble polymer compound; and polyethylene glycol, wherein the semiconductor wafer polishing liquid composition satisfies conditions (a) to (c): (a) a shape factor SF1 of the silica particles is 1.00 to 1.20, (b) a mean primary particle diameter of the silica particles that is obtained by a nitrogen adsorption method is 5 nm to 100 nm, and a coefficient of particle diameter variation CV value obtained from image analysis of the transmission electron microscope image is in a range of 0% to 15%, and (c) the polyethylene glycol has a number average molecular weight of 200 to 15,000.
    Type: Application
    Filed: November 16, 2011
    Publication date: October 30, 2014
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiroaki Sakaida, Fumiaki Araki, Yoshiyuki Kashima
  • Publication number: 20140312266
    Abstract: Disclosed are a polishing slurry used in a polishing process of tungsten and a method of polishing using the same. The slurry includes an abrasive for performing polishing and an oxidation promoting agent for promoting the formation of an oxide. The abrasive includes titanium oxide particles.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 23, 2014
    Inventors: Jea Gun Park, Gon Sub Lee, Jin Hyung Park, Jae Hyung Lim, Jong Young Cho, Hee Sub Hwang, Hao Cui
  • Publication number: 20140315386
    Abstract: Solid metal compound coated colloidal particles are made through a process by coating metal compounds onto colloidal particle surfaces. More specifically, metal compound precursors react with the base solution to form solid metal compounds. The solid metal compounds are deposited onto the colloidal particle surfaces through bonding. Excess ions are removed by ultrafiltration to obtain the stable metal compound coated colloidal particle solutions. Chemical mechanical polishing (CMP) polishing compositions using the metal compound coated colloidal particles prepared by the process as the solid state catalyst, or as both catalyst and abrasive, provide uniform removal profiles across the whole wafer.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 23, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Hongjun Zhou, Xiaobo Shi, James A. Schlueter, Jo-Ann T. Schwartz
  • Publication number: 20140312265
    Abstract: A chemical solution that removes undesired metal hard mask yet remains selective to the device wiring metallurgy and dielectric materials. The present invention decreases aspect ratio by selective removal of the metal hard mask before the metallization of the receiving structures without adverse damage to any existing metal or dielectric materials required to define the semiconductor device, e.g. copper metallurgy or device dielectric. Thus, an improved aspect ratio for metal fill without introducing any excessive trapezoidal cross-sectional character to the defined metal receiving structures of the device will result.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shyng-Tsong Chen, John A. Fitzsimmons, David L. Rath, Muthumanickam Sankarapandian, Oscar van der Straten
  • Publication number: 20140312264
    Abstract: A colloidal sol and a method of making colloidal sol that is capable of controlling the resulting particle size and more specifically, using a potassium hydroxide process to obtain a colloidal sol having a single peak of average particle sizes.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 23, 2014
    Inventors: Kenneth Warnshuis, George Haag, Peter Rau, Keith Hirsch
  • Patent number: 8865013
    Abstract: A method for chemical mechanical polishing of a substrate comprising tungsten using a nonselective chemical mechanical polishing composition.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: October 21, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Jerry Lee, Raymond L. Lavoie, Jr., Guangyun Zhang
  • Patent number: 8865017
    Abstract: A method of texturing a surface of a crystalline silicon substrate is provided. The method includes immersing a crystalline silicon substrate into an aqueous alkaline etchant solution to form a pyramid shaped textured surface, with (111) faces exposed, on the crystalline silicon substrate. The aqueous alkaline etchant solution employed in the method of the present disclosure includes an alkaline component and a nanoparticle slurry component. Specifically, the aqueous alkaline etchant solution of the present disclosure includes 0.5 weight percent to 5 weight percent of an alkaline component and from 0.1 weight percent to 5 weight percent of a nanoparticle slurry on a dry basis.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mahadevaiyer Krishnan, Jun Liu, Satyavolu S. Papa Rao, George G. Totir
  • Publication number: 20140306146
    Abstract: The present invention is an etching gas comprising an unsaturated fluorohydrocarbon represented by CxHyFz (wherein x=3, 4, or 5, y+z?2x, and y>z) and a method comprising selectively etching a silicon nitride film relative to a silicon oxide film or a silicon film using the etching gas. According to the present invention, a silicon nitride film stacked on a silicon oxide film or a silicon film can be highly selectively etched.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 16, 2014
    Applicant: ZEON CORPORATION
    Inventors: Azumi Ito, Atsuyo Yamazaki
  • Publication number: 20140308814
    Abstract: In one aspect, a substrate chemical mechanical polishing (CMP) method for copper-layered substrates is disclosed. The CMP method includes providing a substrate having a surface of copper, and pre-treating the surface containing copper with a first composition containing a carrier liquid, a corrosion inhibitor, and an oxidizer in a pre-treatment phase, and thereafter, polishing the surface with a slurry composition in a main polishing phase. CMP systems and compositions for CMP are provided, as are numerous other aspects.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 16, 2014
    Applicant: Applied Materials, Inc
    Inventors: David Maxwell Gage, You Wang, Zhihong Wang, Wen-chiang Tu
  • Publication number: 20140305901
    Abstract: The present invention relates to an additive mixture comprising a polyacrylate salt, an acid ester, and a defoamer agent. A polishing composition and a polishing method used for polishing a glass substrate are also provided.
    Type: Application
    Filed: November 9, 2011
    Publication date: October 16, 2014
    Applicant: RHODIA OPERATIONS
    Inventors: Qiang Gong, Aimin Huang
  • Publication number: 20140308616
    Abstract: The present invention is primarily related to the composition of an aqueous etchant containing a precursor of oxidant and patterning methods for conductive circuits, in which the chemical structure of the precursor contains chlorine and can produce oxidants through various reactions. And, the patterned conductive circuits can be used for electronic devices, including printed electronics, sensors, displays, organic light emitting diodes (OLED), touch panels, electronic circuit boards, electrodes, electroluminescent (EL) films, antennas, and solar cells.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 16, 2014
    Applicant: Polychem UV/EB International Corp.
    Inventors: Yung-Shu YANG, Chun-Chieh HAN
  • Patent number: 8858819
    Abstract: The titled method affords low dishing levels in the polished substrate while simultaneously affording high metal removal rates. The method utilizes an associated polishing composition. Components in the composition include a poly(alkyleneimine) such as polyethyleneimine, an abrasive, an acid, and an oxidizing agent, such as a per-compound.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: October 14, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rachel Dianne McConnell, Ann Marie Hurst, Xiaobo Shi
  • Patent number: 8859429
    Abstract: A polishing agent for copper polishing, comprising (A) an inorganic acid with divalent or greater valence, (B) an amino acid, (C) a protective film-forming agent, (D) an abrasive, (E) an oxidizing agent and (F) water, wherein the content of the component (A) is at least 0.08 mol/kg, the content of the component (B) is at least 0.20 mol/kg, the content of the component (C) is at least 0.02 mol/kg, and either or both of the following conditions (i) and (ii) are satisfied. (i): The proportion of the content of the component (A) with respect to the content of the component (C) is 2.00 or greater. (ii): It further comprises (G) at least one kind selected from among organic acids and their acid anhydrides.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: October 14, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Patent number: 8859428
    Abstract: Methods for removing, reducing or treating the trace metal contaminants and the smaller fine sized cerium oxide particles from cerium oxide particles, cerium oxide slurry or chemical mechanical polishing (CMP) compositions for Shallow Trench Isolation (STI) process are applied. The treated chemical mechanical polishing (CMP) compositions, or the CMP polishing compositions prepared by using the treated cerium oxide particles or the treated cerium oxide slurry are used to polish substrate that contains at lease a surface comprising silicon dioxide film for STI (Shallow trench isolation) processing and applications. The reduced nano-sized particle related defects have been observed due to the reduced trace metal ion contaminants and reduced very smaller fine cerium oxide particles in the Shallow Trench Isolation (STI) CMP polishing.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xiaobo Shi, John Edward Quincy Hughes, Hongjun Zhou, Daniel Hernandez Castillo, II, Jae Ouk Choo, James Allen Schlueter, Jo-Ann Theresa Schwartz, Laura Ledenbach, Steve Charles Winchester, Saifi Usmani, John Anthony Marsella, Martin Kamau Ngigi Mungai
  • Publication number: 20140302683
    Abstract: The invention is directed to providing a dry etching agent having little effect on the global environment but having the required performance. Provided is a dry etching agent containing, each at a specific vol %: (A) a fluorine-containing unsaturated hydrocarbon represented by the formula CaFbHc (in the formula, a, b and c are each positive integers and satisfy the correlations of 2?a?5, c<b?1, 2a+2>b+c and b?a+c, excluding the case where a=3, b=4 or c=2); (B) at least one kind of gas selected from the group consisting of O2, O3, CO, CO2, COCl2, COF2, F2, NF3, Cl2, Br2, I2, and YFn (where Y is Cl, Br or I and n is an integer of 1 to 5); and (C) at least one kind of gas selected from the group consisting of N2, He, Ar, Ne, Xe, and Kr.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 9, 2014
    Applicant: Central Glass Company, Limited
    Inventors: Akiou Kikuchi, Tomonori Umezaki, Yasuo Hibino, Isamu Mori, Satoru Okamoto
  • Patent number: 8852451
    Abstract: The present invention relates to a silicon etching solution which is used for selectively etching a dummy gate made of silicon in a process for producing a transistor including a laminate formed of at least a high dielectric material film and a metal gate containing hafnium, zirconium, titanium, tantalum or tungsten by the method of removing the dummy gate made of silicon to replace the dummy gate with the metal gate and which includes 0.1 to 40% by weight of at least one alkali compound selected from the group consisting of ammonia, a diamine and a polyamine represented by the general formula (1), 0.01 to 40% by weight of at least one polyhydric alcohol selected from the group consisting of specific polyhydric alcohols and a non-reducing sugar, and 40 to 99.89% by weight of water, and a process for producing a transistor using the silicon etching solution.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kenji Shimada, Hiroshi Matsunaga
  • Patent number: 8853082
    Abstract: An object of the present invention is to provide a polishing liquid for CMP with which polishing scratches can be reduced and a sufficiently high polishing rate can be obtained in a CMP step for an ILD film, aggregation of an abrasive grain is difficult to occur, and high flatness is obtained, and provide a polishing method using the same. The polishing liquid for CMP according to the present invention is a polishing liquid for CMP containing an abrasive grain, an additive, and water, wherein the abrasive grain comprises a cerium-based particle, and the additive comprises a 4-pyrone-based compound and at least one of a nonionic surfactant or a cationic surfactant: [wherein X11, X12, and X13 each independently represent a hydrogen atom or a monovalent substituent].
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: October 7, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masayuki Hanano, Eiichi Satou, Munehiro Oota, Kanshi Chinone
  • Patent number: 8845915
    Abstract: A polishing agent which comprises a composition containing an inorganic acid, an amino acid, a protective film-forming agent, an abrasive, an oxidizing agent, an organic acid and water, adjusted to a pH of 1.5-4, wherein the amount of potassium hydroxide required to raise the pH of the composition without the organic acid to 4 is at least 0.10 mol with respect to 1 kg of the composition without the organic acid, and the organic acid contains at least two carboxyl groups, wherein the logarithm of the inverse of the first acid dissociation constant (pKa1) is no greater than 3.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: September 30, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Patent number: 8846533
    Abstract: A cleaning solution of the present invention contains a sodium ion, a potassium ion, an iron ion, an ammonium salt of a sulfuric ester represented by General Formula (1), and water, and each content of the sodium ion, the potassium ion, and the iron ion is 1 ppb to 500 ppb. ROSO3—(X)+ (1) where R is an alkyl group with a carbon number of 8-22 or an alkenyl group with a carbon number of 8-22, and (X)+ is an ammonium ion.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: September 30, 2014
    Assignee: Kao Corporation
    Inventor: Youichi Ishibashi
  • Patent number: 8841215
    Abstract: Afforded are a polishing agent, and a compound semiconductor manufacturing method and semiconductor device manufacturing method utilizing the agent, whereby the surface quality of compound semiconductor substrates can be favorably maintained, and high polishing rates can be sustained as well. The polishing agent is a polishing agent for Ga?In(1-?)As?P(1-?) (0???1; 0???1) compound semiconductors, and includes an alkali metal carbonate, an alkali metal organic salt, a chlorine-based oxidizer, and an alkali metal phosphate, wherein the sum of the concentrations of the alkali metal carbonate and the alkali metal organic salt is between 0.01 mol/L and 0.02 mol/L, inclusive. The compound semiconductor manufacturing method comprises a step of preparing a Ga?In(1-?)As?P(1-?) (0???1; 0???1) compound semiconductor, and a step of polishing the face of the compound semiconductor utilizing an aforedescribed polishing agent.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 23, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Masashi Futamura, Takayuki Nishiura
  • Patent number: 8840798
    Abstract: A slurry composition for chemical mechanical polishing, including 0.1% to 20% by weight of an aminosilane-surface treated polishing agent; 0.001% to 5% by weight of an additive selected from amino acids, amino acid derivatives, salts thereof, and combinations thereof; 0.0001% to 0.5% by weight of a corrosion inhibitor; and 0.01% to 5% by weight of an oxidizing agent, with the balance being a solvent, is provided. The slurry composition for chemical mechanical polishing has a conspicuously high polishing rate for silicon oxide films, is capable of selectively preventing the removal of silicon nitride films, does not cause an imbalance in polishing, gives an excellent degree of planarization, has excellent stability over time and dispersion stability, causes less generation of particles and scratches, and produces very satisfactory polished surfaces of barrier metal films and oxide films.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 23, 2014
    Assignee: Soulbrain Co., Ltd.
    Inventors: Deok-Su Han, Hwan-Chul Kim, Seok-Joo Kim, Hyu-Bum Park
  • Publication number: 20140263167
    Abstract: Provided is a polishing composition to be used for polishing an object including a conductor layer and an electrically conductive material layer that is in contact with the conductor layer. In a state in which the positive electrode and the negative electrode of an electrometer are connected to the electrically conductive material layer and the conductor layer, respectively, in the polishing composition at ordinary temperature, the current flowing from the positive electrode to the negative electrode has a positive value or is zero when the electrically conductive material layer and the conductor layer are polished. The polishing composition preferably contains a nitrogen atom-containing compound, a sulfur atom-containing compound, or a phosphorus atom-containing compound as an additive to control the value of the current to positive or zero.
    Type: Application
    Filed: November 8, 2012
    Publication date: September 18, 2014
    Applicant: FUJIMI INCORPORATED
    Inventors: Yoshihiro Kachi, Tomoe Tanaka, Takahiro Umeda
  • Publication number: 20140273458
    Abstract: Chemical mechanical polishing (CMP) compositions for polishing tungsten or tungsten-containing substrates comprise an abrasive, at least one solid catalyst, a chemical additive selected from the groups consisting of piperazine derivatives, salts of cyanate, and combinations thereof; and a liquid carrier. Systems and processes use the aqueous formulations for polishing tungsten or tungsten-containing substrates.
    Type: Application
    Filed: December 27, 2013
    Publication date: September 18, 2014
    Applicant: Air Products And Chemicals, Inc.
    Inventors: Xiaobo Shi, Hongjun Zhou, Blake J. Lew, James Allen Schlueter, Jo-Ann Theresa Schwartz
  • Publication number: 20140264152
    Abstract: In the manufacture of integrated circuits, reactive compositions that include a reactive etchant species and an oxygen-containing species can provide selective removal of target material and can reduce contamination of gas delivery lines.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Aaron R. Wilson, Mark Kiehlbauch
  • Publication number: 20140263170
    Abstract: Described herein are compositions, kits and methods for polishing sapphire surfaces using compositions having colloidal aluminosilicate particles in an aqueous acidic solution. In some aspects, the methods for polishing a sapphire surface may include abrading a sapphire surface with a rotating polishing pad and a polishing composition. The polishing composition may include an amount of a colloidal aluminosilicate and may have a pH of about 2.0 to about 7.0.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: ECOLAB USA INC.
    Inventors: Kim Marie Long, Michael A. Kamrath, Sean McCue
  • Publication number: 20140273467
    Abstract: Polycrystalline silicon (poly-Si) can be thoroughly removed without significant effect on adjacent oxides by an aqueous solution of ammonium hydroxide with smaller concentrations of hydrogen peroxide than are normally used in ammonia-peroxide mixture (APM) formulations used for cleaning. The etching selectivity of poly-Si relative to oxides can be widely tuned by varying the hydrogen-peroxide concentration. Compared to other formulations used to remove poly-Si dummy gates in logic-node fabrication, such as TMAH, these aqueous solutions are less hazardous to workers and the environment.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventor: Gregory Nowling
  • Publication number: 20140263184
    Abstract: Disclosed are a polishing composition and method of polishing a substrate. The composition has low-load (e.g., up to about 0.1 wt. %) of abrasive particles. The polishing composition also contains water and at least one anionic surfactant. In some embodiments, the abrasive particles are alpha alumina particles (e.g., coated with organic polymer). The polishing composition can be used, e.g., to polish a substrate of weak strength such as an organic polymer. An agent for oxidizing at least one of silicon and organic polymer is included in the composition in some embodiments.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Lin Fu, Steven Grumbine
  • Publication number: 20140264151
    Abstract: An aqueous cleaning composition for post copper chemical mechanical planarization is provided. The composition comprises an organic base, a copper etchant, an organic ligand, a corrosion inhibitor, and water, wherein the organic base is in a concentration of at least about 200 ppm, the copper etchant is in a concentration of at least about 200 ppm, the organic ligand is in a concentration of at least about 50 ppm, and the corrosion inhibitor is in a concentration of at least about 10 ppm. When used in the post copper chemical mechanical planarization cleaning procedure, the aqueous cleaning composition can effectively remove the residual contaminants from the wafer surface and reduce the defect counts on the wafer surface, while simultaneously, impart the wafers with a better surface roughness.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventor: Cheng-Yuan KO
  • Publication number: 20140264155
    Abstract: Methods and formulations for the selective etching of etch stop layers deposited above metal-based semiconductor layers used in the manufacture of TFT-based display devices are presented. The formulations are based on an alkaline solution. Methods and formulations for the selective etching of molybdenum-based and/or copper-based source/drain electrode layers deposited above metal-based semiconductor layers used in the manufacture of TFT-based display devices are presented. The formulations are based on an alkaline solution.
    Type: Application
    Filed: December 18, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular Inc.
    Inventors: Jeroen Van Duren, Zhi-Wen Wen Sun
  • Publication number: 20140263185
    Abstract: The present invention provides an etching solution for silver or silver alloy comprising one at least ammonium compound represented by the formula (1), (2) or (3) below and an oxidant:
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: Inktec Co., Ltd.
    Inventors: Kwang Choon Chung, Hyun-Nam Cho, Young-Kwan Seo
  • Publication number: 20140251950
    Abstract: A polishing composition of the present invention is used for polishing an object containing a phase-change alloy and is characterized by containing ammonium ions (NH4+). The polishing composition may further contain abrasive grains, such as colloidal silica.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 11, 2014
    Applicant: FUJIMI INCORPORATED
    Inventors: Yukinobu Yoshizki, Yoshihiro Izawa
  • Patent number: 8828266
    Abstract: A CMP slurry composition includes metal oxide particles, a diisocyanate compound, and deionized water. The CMP slurry composition is capable of selectively controlling polishing speed of a wafer surface having a convex portion and a concave portion, such that primary polishing and secondary polishing can be performed rapidly while stopping polishing of the nitride layer upon the secondary polishing.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Cheil Industries Inc.
    Inventors: Hyun Soo Roh, Dong Jin Kim, Yong Soon Park, Yong Kuk Kim, Young Chul Jung
  • Patent number: 8828258
    Abstract: A method for surface treatment of a stainless steel separator for a fuel cell comprises preparing a stainless steel sheet containing nickel, chrome and iron, and having a passive film on a surface of the stainless steel sheet, and dipping the stainless steel sheet into a mixed etching solution of nitric acid (HNO3) and sulfuric acid (H2SO4) at a temperature of 50-70° C. for 30 seconds to 30 minutes to selectively lower an amount of Fe in the passive film formed on the surface of the stainless steel sheet.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: September 9, 2014
    Assignee: Hyundai Hysco
    Inventors: Yoo Taek Jeon, Yeon Soo Jeong
  • Patent number: 8828872
    Abstract: The invention relates to a method for etching a structure (1) including at least one material (4) to be etched, said method consisting in: selecting at least one chemical species that can react with the material (4) to be etched; selecting at least one soluble compound that can release this chemical species; producing a solution (11) containing the compound and a powder of particles or solid grains (13) in suspension; placing the material to be etched in the presence of the solution; and producing high-frequency ultrasounds in the solution, at at least one frequency, capable of generating active cavitation bubbles such that the chemical species is generated and reacts with the material to be etched, thereby producing a soluble compound or a precipitate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 9, 2014
    Assignees: Institut Polytechnique de Grenoble, Universite Joseph Fourier
    Inventors: Francis Baillet, Nicolas Gondrexon
  • Patent number: 8828255
    Abstract: The invention relates to a method for etching a structure (1) including at least one material (4) to be etched, said method consisting in: selecting at least one chemical species that can react with the material (4) to be etched; selecting at least one soluble compound that can release this chemical species; producing a solution (11) containing said compound; placing the structure (1) in a position such that the surface of the material to be etched is in the presence of the solution and additional bubbles of a gas; and producing high-frequency ultrasounds in the solution, at at least one frequency, capable of generating reactive cavitation bubbles such that the chemical species is generated in the presence of these additional bubbles and reacts with the material to be etched, thereby producing a soluble compound or a precipitate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: September 9, 2014
    Assignees: Institut Polytechnique de Grenoble, Universite Joseph Fourier
    Inventors: Francis Baillet, Nicolas Gondrexon
  • Publication number: 20140248776
    Abstract: Disclosed is a polishing composition that contains at least abrasive grains, an oxidizing agent having a redox potential equal to or greater than 1.8 V at a pH for application of polishing, and water. The abrasive grains are preferably composed of at least one substance selected from among silicon oxide, aluminum oxide, cerium oxide, zirconium oxide, titanium oxide, manganese oxide, silicon carbide, and silicon nitride. The oxidizing agent is preferably composed of at least one substance selected from among sodium persulfate, potassium persulfate, and ammonium persulfate. The polishing composition preferably has a pH equal to or less than 3.
    Type: Application
    Filed: August 3, 2012
    Publication date: September 4, 2014
    Inventors: Hiroshi Asano, Hitoshi Morinaga, Kazusei Tamai
  • Publication number: 20140248781
    Abstract: A composition is provided that is effective for removing post etch treatment (PET) polymeric films and photoresist from semiconductor substrates. The composition exhibits excellent polymer film removal capability while maintaining compatibility with copper and low-? dielectrics and contains water, ethylene glycol, a glycol ether solvent, morpholinopropylamine and a corrosion inhibiting compound and optionally one or more metal ion chelating agent, one or more other polar organic solvent, one or more tertiary amine, one or more aluminum corrosion inhibition agent, and one or more surfactant.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 4, 2014
    Applicant: Avantor Performance Materials, Inc.
    Inventors: William R. Gemmill, Glenn Westwood
  • Publication number: 20140248823
    Abstract: The invention provides a chemical-mechanical polishing composition containing (a) abrasive particles, (b) a polymer, and (c) water, wherein (i) the polymer possesses an overall charge, (ii) the abrasive particles have a zeta potential Za measured in the absence of the polymer and the abrasive particles have a zeta potential Zb measured in the presence of the polymer, wherein the zeta potential Za is a numerical value that is the same sign as the overall charge of the polymer, and (iii) |zeta potential Zb|>|zeta potential Za|. The invention also provides a method of polishing a substrate with the polishing composition.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: CABOT MICROELECTRONICS CORPORATION
    Inventors: Hon Wu Lau, Haresh Siriwardane
  • Patent number: 8821215
    Abstract: The invention provides a polishing composition containing a pyrrolidone polymer, an aminophosphonic acid, a tetraalkylammonium salt, and water, wherein the composition has a pH of about 7 to about 11.7. The invention further provides a method of using such a polishing composition to polish a substrate, especially a substrate containing silicon.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 2, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventor: Nevin Naguib Sant
  • Patent number: 8821750
    Abstract: The present invention relates to a metal polishing slurry containing abrasive grains, a metal-oxide-dissolving agent, and water, wherein the abrasive grains contain two or more abrasive grain species different from each other in average secondary particle diameter. Using the metal polishing slurry of the present invention, a metal polishing slurry can be obtained which gives a large polishing rate of an interlayer dielectric layer, and is high in the flatness of the polished surface. This metal polishing slurry can provide suitable method for a semiconductor device which is excellent in being made finer and thinner and in dimension precision and in electric characteristics, is high in reliability, and can attain a decrease in costs.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: September 2, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Jin Amanokura, Takafumi Sakurada, Sou Anzai, Takashi Shinoda, Shigeru Nobe