Switching Speed Enhancement Means Patents (Class 257/130)
  • Patent number: 10193322
    Abstract: A circuit including a source, a load, and an isolation circuit for controllably isolating the load from the source. The isolation circuit is disposed between the source and the load. The isolation circuit includes at least one insulated-gate bipolar transistor (IGBT) and at least one gate turn-off thyristor (GTO) in parallel with the insulated-gate bipolar transistor. When no fault condition exists, the GTO is configured to be ON to couple the load to the source. When a fault condition exists, the at least one IGBT is configured to turn ON. After the at least one IGBT turns ON, the at least one GTO is configured to turn OFF. After a predetermined amount of time, reflecting the post fabrication alteration to the GTO's minority carrier lifetime (e.g. electron irradiation), after the at least one GTO turns OFF, the at least one IGBT is configured to turn OFF.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: January 29, 2019
    Assignee: Silicon Power Corporation
    Inventors: John E. Waldron, Kenneth Brandmier, James K. Azotea
  • Patent number: 10134985
    Abstract: Non-crystalline silicon non-volatile resistive switching devices include a metal electrode, a non-crystalline silicon layer and a planar doped silicon electrode. An electrical signal applied to the metal electrode drives metal ions from the metal electrode into the non-crystalline silicon layer to form a conducting filament from the metal electrode to the planar doped silicon electrode to alter a resistance of the non-crystalline silicon layer. Another electrical signal applied to the metal electrode removes at least some of the metal ions forming the conducting filament from the non-crystalline silicon layer to further alter the resistance of the non-crystalline silicon layer.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: November 20, 2018
    Assignee: The Regents of the University of Michigan
    Inventors: Wei Lu, Sung Hyun Jo
  • Patent number: 9772301
    Abstract: The present invention relates to a sensor including a core-shell nanostructure, and more particularly, to a sensor including: a base material; a sensing part including a core-shell nanostructure that has a core including a first metal oxide and a shell including a second metal oxide formed on the core; and two electrode layers spaced from each other on the sensing part.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: September 26, 2017
    Assignee: INHA-INDUSTRY PARTNERSHIP INSTITUTE
    Inventors: Sang Sub Kim, Sun-Woo Choi, Akash Katoch
  • Patent number: 9419213
    Abstract: An RF switch is provided with a direct heating method. The RF switch is comprised of two RF electrodes disposed on opposing sides of a phase change element. Depending on the state of the phase change material, the RF electrodes form a conductive path through the phase change material for an RF signal. To control the state of the phase change material, the RF switch further includes a heater formed from two heater electrodes. The two heater electrodes are configured to draw a current through the phase change element in a direction transverse to the conductive path.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 16, 2016
    Assignee: The Regents Of The University Of Michigan
    Inventors: Mina Raieszadeh, Yonghyun Shim, Muzhi Wang
  • Patent number: 9006797
    Abstract: A micro-electro-mechanical system (MEMS), methods of forming the MEMS and design structures are provided. The method includes forming a coplanar waveguide (CPW) comprising a signal electrode and a pair of electrodes on a substrate. The method includes forming a first sacrificial material over the CPW, and a wiring layer over the first sacrificial material and above the CPW. The method includes forming a second sacrificial material layer over the wiring layer, and forming insulator material about the first sacrificial material and the second sacrificial material. The method includes forming at least one vent hole in the insulator material to expose portions of the second sacrificial material, and removing the first and second sacrificial material through the vent hole to form a cavity structure about the wiring layer and which exposes the signal line and pair of electrodes below the wiring layer. The vent hole is sealed with sealing material.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Qizhi Liu, Anthony K. Stamper
  • Patent number: 8901601
    Abstract: A vertical power component including a silicon substrate of a first conductivity type and, on the side of a lower surface supporting a single electrode, a well of the second conductivity type, in which the component periphery includes, on the lower surface side, a peripheral trench at least partially filled with a passivation and, between the well and the trench, a porous silicon insulating ring.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: December 2, 2014
    Assignees: STMicroelectronics (Tours) SAS, Universite Francois Rabelais UFR Sciences et Techniques
    Inventors: Samuel Menard, Yannick Hague, Gaƫl Gautier
  • Patent number: 8853711
    Abstract: A semiconductor light emitting device includes a structural body, a first electrode layer, an intermediate layer and a second electrode layer. The structural body includes a first semiconductor layer of first conductivity type, a second semiconductor layer of second conductivity type, and a light emitting layer between the first and second semiconductor layers. The first electrode layer is on a side of the second semiconductor layer opposite to the first semiconductor layer; the first electrode layer includes a metal portion and plural opening portions piercing the metal portion along a direction from the first semiconductor layer toward the second semiconductor layer, having an equivalent circular diameter not less than 10 nanometers and not more than 5 micrometers. The intermediate layer is between the first and second semiconductor layers in ohmic contact with the second semiconductor layer. The second electrode layer is electrically connected to the first semiconductor layer.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: October 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Koji Asakawa, Ryota Kitagawa, Takanobu Kamakura, Shinji Nunotani, Eishi Tsutsumi, Masaaki Ogawa
  • Publication number: 20140197449
    Abstract: Provided is a semiconductor rectifier device. The semiconductor rectifier device may include a substrate doped with a first conductive type, a second electrode provided on a bottom surface of the substrate, an active region and a field region defined on the substrate, a gate provided in the active region, a gate insulating film provided between the gate and the substrate, body regions provided on the substrate adjacent to first and second sides of the gate, facing each other, and doped with a second conductive type dopant different from the first conductive type, and a second conductive type plug region formed on the substrate adjacent to third and fourth sides of the gate, connecting the first and second sides.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Kunsik PARK, Kyoung IL NA, JIN-GUN KOO, Jin Ho LEE, Jong II WON
  • Patent number: 8766232
    Abstract: According to a method of fabricating the semiconductor memory device, a contact plug can be protected while mold openings are formed. A semiconductor memory device may include a mold dielectric layer on an entire surface of a substrate, the substrate including a first region and a second region. A contact plug may be provided in a contact hole formed through the mold dielectric layer in the first region. A variable resistor may be provided in a mold opening formed through the mold dielectric layer in the second region. An upper surface of the contact plug may be at a level equal to or lower than an upper surface of the mold dielectric layer.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sukhun Choi, Boun Yoon, Kevin Ahn, Doo-Sung Yun
  • Patent number: 8598620
    Abstract: A modified MOSFET structure comprises an integrated field effect rectifier connected between the source and drain of the MOSFET to shunt current during switching of the MOSFET. The integrated FER provides faster switching of the MOSFET due to the absence of injected carriers during switching while also decreasing the level of EMI relative to discrete solutions. The integrated structure of the MOSFET and FER can be fabricated using N-, multi-epitaxial and supertrench technologies, including 0.25 ?m technology. Self-aligned processing can be used.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: December 3, 2013
    Assignee: STMicroelectronics N.V.
    Inventors: Alexei Ankoudinov, Vladimir Rodov, Richard Cordell
  • Patent number: 8564098
    Abstract: Disclosed is a method for controlling the recombination rate in the base region of a bipolar semiconductor component, and a bipolar semiconductor component.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 22, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Franz Hirler, Frank Pfirsch, Hans-Joachim Schulze
  • Patent number: 8525223
    Abstract: A SiC semiconductor device includes: a SiC substrate including a first or second conductive type layer and a first conductive type drift layer and including a principal surface having an offset direction; a trench disposed on the drift layer and having a longitudinal direction; and a gate electrode disposed in the trench via a gate insulation film. A sidewall of the trench provides a channel formation surface. The vertical semiconductor device flows current along with the channel formation surface of the trench according to a gate voltage applied to the gate electrode. The offset direction of the SiC substrate is perpendicular to the longitudinal direction of the trench.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 3, 2013
    Assignees: DENSO CORPORATION, Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Watanabe, Shinichiro Miyahara, Masahiro Sugimoto, Hidefumi Takaya, Yukihiko Watanabe, Narumasa Soejima, Tsuyoshi Ishikawa
  • Patent number: 8440997
    Abstract: A 1D nanowire photodetector device includes a nanowire that is individually contacted by electrodes for applying a longitudinal electric field which drives the photocurrent. An intrinsic radial electric field to inhibits photo-carrier recombination, thus enhancing the photocurrent response. Circuits of 1D nanowire include groups of photodetectors addressed by their individual 1D nanowire electrode contacts. Placement of 1D nanostructures is accomplished with registration onto a substrate. A substrate is patterned with a material, e.g., photoresist, and trenches are formed in the patterning material at predetermined locations for the placement of 1D nanostructures. The 1D nanostructures are aligned in a liquid suspension, and then transferred into the trenches from the liquid suspension. Removal of the patterning material places the 1D nanostructures in predetermined, registered positions on the substrate.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of California
    Inventors: Deli Wang, Cesare Soci, Yu-Hwa Lo, Arthur Zhang, David Aplin, Lingquan Wang, Shadi Dayeh, Xin Yu Bao
  • Patent number: 8421118
    Abstract: A rectifier building block has four electrodes: source, drain, gate and probe. The main current flows between the source and drain electrodes. The gate voltage controls the conductivity of a narrow channel under a MOS gate and can switch the RBB between OFF and ON states. Used in pairs, the RBB can be configured as a three terminal half-bridge rectifier which exhibits better than ideal diode performance, similar to synchronous rectifiers but without the need for control circuits. N-type and P-type pairs can be configured as a full bridge rectifier. Other combinations are possible to create a variety of devices.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: April 16, 2013
    Assignee: STMicroelectronics N.V.
    Inventors: Alexei Ankoudinov, Vladimir Rodov
  • Patent number: 8395185
    Abstract: A switching element comprising: an insulative substrate; a first electrode and a second electrode provided on one surface of the insulative substrate; and an interelectrode gap which is provided between the first electrode and the second electrode, and which has a gap on the order of nanometers in which switching phenomenon of resistance occurs by applying predetermined voltage between the first electrode and the second electrode, wherein the one surface of the insulative substrate contains nitrogen.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 12, 2013
    Assignees: Funai Electric Advanced Applied Technology Research Institute Inc., National Institute of Advanced Industrial Science and Technology, Funai Electric Co., Ltd.
    Inventors: Shigeo Furuta, Yuichiro Masuda, Tsuyoshi Takahashi, Masatoshi Ono, Yasuhisa Naitoh, Masayo Horikawa, Tetsuo Shimizu
  • Patent number: 8390124
    Abstract: Provided is a semiconductor device including a substrate, and a first wiring layer, a second wiring layer, and a switch via formed on the substrate. The first wiring layer has first wiring formed therein and the second wiring layer has second wiring formed therein. The switch via connects the first wiring and the second wiring. The switch via includes at least at its bottom a switch element including a resistance change layer. A resistance value of the resistance change layer changes according to a history of an electric field applied thereto.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Naoya Inoue, Yoshihiro Hayashi, Kishou Kaneko
  • Patent number: 8357952
    Abstract: A power semiconductor structure with a field effect rectifier having a drain region, a body region, a source region, a gate channel, and a current channel is provided. The body region is substantially located above the drain region. The source region is located in the body region. The gate channel is located in the body region and adjacent to a gate structure. The current channel is located in the body region and is extended from the source region downward to the drain region. The current channel is adjacent to a conductive structure coupled to the source region.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 22, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventor: Kao-Way Tu
  • Patent number: 8242537
    Abstract: An IGBT with a fast reverse recovery time rectifier includes an N-type drift epitaxial layer, a gate, a gate insulating layer, a P-type doped base region, an N-type doped source region, a P-type doped contact region, and a P-type lightly doped region. The P-type doped base region is disposed in the N-type drift epitaxial layer, and the P-type doped contact region is disposed in the N-type drift epitaxial layer. The P-type lightly doped region is disposed between the P-type contact doped region and the N-type drift epitaxial layer, and is in contact with the N-type drift epitaxial layer.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: August 14, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Jen-Hao Yeh, Ho-Tai Chen
  • Patent number: 8203171
    Abstract: A graphene-based memristor includes a first electrode, a defective graphene layer adjacent the first electrode, a memristive material that includes a number of ions adjacent the defective graphene layer, a second electrode adjacent the memristive material, and a voltage source that generates an electric field between the first and the second electrodes. Under the influence of the electric field, ions in the memristive material form an ion conducting channel between the second electrode and the defective graphene layer.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 19, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Joshua Yang, Feng Miao, Wei Wu, Shih-Yuan Wang, R. Stanley Williams
  • Patent number: 8148748
    Abstract: An Adjustable Field Effect Rectifier uses aspects of MOSFET structure together with an adjustment pocket or region to result in a device that functions reliably and efficiently at high voltages without significant negative resistance, while also permitting fast recovery and operation at high frequency without large electromagnetic interference.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: April 3, 2012
    Assignee: STMicroelectronics N.V.
    Inventors: Alexei Ankoudinov, Vladimir Rodov
  • Publication number: 20110278642
    Abstract: A power semiconductor structure with a field effect rectifier having a drain region, a body region, a source region, a gate channel, and a current channel is provided. The body region is substantially located above the drain region. The source region is located in the body region. The gate channel is located in the body region and adjacent to a gate structure. The current channel is located in the body region and is extended from the source region downward to the drain region. The current channel is adjacent to a conductive structure coupled to the source region.
    Type: Application
    Filed: April 7, 2011
    Publication date: November 17, 2011
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventor: KAO-WAY TU
  • Patent number: 7968907
    Abstract: An over-voltage protection thyristor has reduced junction capacitance making it suitable for use in high bandwidth applications. The reduced capacitance is achieved through the introduction of a deep base region. The deep base region has a graded doping concentration which reduces with depth into the substrate. The thyristor is useful for protecting sensitive electrical equipment from transient surges.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: June 28, 2011
    Assignee: Pan Jit Americas, Inc.
    Inventors: George Templeton, James Washburn
  • Publication number: 20100213503
    Abstract: A bidirectional switch includes a plurality of unit cells 11 including a first ohmic electrode 15, a first gate electrode 17, a second gate electrode 18, and a second ohmic electrode 16. The first gate electrodes 15 are electrically connected via a first interconnection 31 to a first gate electrode pad 43. The second gate electrodes 18 are electrically connected via a second interconnection 32 to a second gate electrode pad 44. A unit cell 11 including a first gate electrode 17 having the shortest interconnect distance from the first gate electrode pad 43 includes a second gate electrode 18 having the shortest interconnect distance from the second gate electrode pad 44.
    Type: Application
    Filed: July 10, 2009
    Publication date: August 26, 2010
    Inventors: Manabu Yanagihara, Kazushi Nakazawa, Tatsuo Morita, Yasuhiro Uemoto
  • Patent number: 7755389
    Abstract: Reconfigurable electronic structures and circuits using programmable, non-volatile memory elements. The programmable, non-volatile memory elements may perform the functions of storage and/or a switch to produce components such as crossbars, multiplexers, look-up tables (LUTs) and other logic circuits used in programmable logic structures (e.g., (FPGAs)). The programmable, non-volatile memory elements comprise one or more structures based on Phase Change Memory, Programmable Metallization, Carbon Nano-Electromechanical (CNT-NEM), or Metal Nano-Electromechanical device technologies.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 13, 2010
    Assignee: Agate Logic, Inc.
    Inventors: Colin Neal Murphy, Narbeh Derhacobian, Louis Charles Kordus, II, Antonietta Oliva, Vei-Han Chan, Thomas E. Stewart, Jr.
  • Patent number: 7737465
    Abstract: The present invention provides a semiconductor apparatus for improving a switching speed and a withstand voltage, and a manufacturing method of the semiconductor apparatus.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 15, 2010
    Assignee: Panasonic Corporation
    Inventor: Ryo Yoshii
  • Patent number: 7642538
    Abstract: A switching element for ON/OFF switching includes a pair of electrodes provided on a substrate separately from each other, a phase change film contacting the electrodes and having its resistance varied in accordance with the history of heating, and a heating mechanism for heating the phase change film.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: January 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinobu Fujita, Keiko Abe
  • Patent number: 7511532
    Abstract: Reconfigurable electronic structures and circuits using programmable, non-volatile memory elements. The programmable, non-volatile memory elements may perform the functions of storage and/or a switch to produce components such as crossbars, multiplexers, look-up tables (LUTs) and other logic circuits used in programmable logic structures (e.g., (FPGAs)). The programmable, non-volatile memory elements comprise one or more structures based on Phase Change Memory, Programmable Metallization, Carbon Nano-Electromechanical (CNT-NEM), or Metal Nano-Electromechanical device technologies.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: March 31, 2009
    Assignee: Cswitch Corp.
    Inventors: Narbeh Derharcobian, Louis Charles Kordus, II, Colin Neal Murphy, Antonietta Oliva, Vei-Han Chan, Thomas Stewart, Jr.
  • Publication number: 20090078962
    Abstract: An Adjustable Field Effect Rectifier uses aspects of MOSFET structure together with an adjustment pocket or region to result in a device that functions reliably and efficiently at high voltages without significant negative resistance, while also permitting fast recovery and operation at high frequency without large electromagnetic interference.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 26, 2009
    Applicant: LAKOTA TECHNOLOGIES, INC.
    Inventors: Alexei Ankoudinov, Vladimir Rodov
  • Patent number: 7488992
    Abstract: The present invention comprises an integrated circuit fabricated on a single substrate where the integrated circuit comprises a first block comprising an enhancement mode pHEMT transistor on a substrate; a second block comprising a depletion mode pHEMT transistor on the substrate, the second block operatively connected to the first block; and a third block comprising a power pHEMT transistor on the substrate, the third block operatively connected to at least one of the first block and the second block. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope of meaning of the claims.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 10, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Kevin L. Robinson
  • Patent number: 7479654
    Abstract: A memory array includes a plurality of memory cells, each of which receives a bit line, a first word line, and a second word line. Each memory cell includes a cell selection circuit, which allows the memory cell to be selected. Each memory cell also includes a two-terminal switching device, which includes first and second conductive terminals in electrical communication with a nanotube article. The memory array also includes a memory operation circuit, which is operably coupled to the bit line, the first word line, and the second word line of each cell. The circuit can select the cell by activating an appropriate line, and can apply appropriate electrical stimuli to an appropriate line to reprogrammably change the relative resistance of the nanotube article between the first and second terminals. The relative resistance corresponds to an informational state of the memory cell.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: January 20, 2009
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Frank Guo, Thomas Rueckes, Steven L. Konsek, Mitchell Meinhold, Max Strasburg, Ramesh Sivarajan, X. M. Henry Huang
  • Patent number: 7332750
    Abstract: A power semiconductor device having high avalanche capability comprises an N+ doped substrate and, in sequence, N? doped, P? doped, and P+ doped semiconductor layers, the P? and P+ doped layers having a combined thickness of about 5 ?m to about 12 ?m. Recombination centers comprising noble metal impurities are disposed substantially in the N? and P? doped layers. A process for forming a power semiconductor device with high avalanche capability comprises: forming an N? doped epitaxial layer on an N+ doped substrate, forming a P? doped layer in the N? doped epitaxial layer, forming a P+ doped layer in the P? doped layer, and forming in the P? and N? doped layers recombination centers comprising noble metal impurities. The P+ and P? doped layers have a combined thickness of about 5 ?m to about 12 ?m.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: February 19, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Jifa Hao, John L. Benjamin, Randall L. Case, Jae J. Yun
  • Patent number: 7301167
    Abstract: Organic light emitting devices include an anode, a cathode and a plurality of organic light emitting units. The adjacent organic light emitting units are separated by a charge transfer layer formed of various fullerenes in combination. The charge transfer layer may be a relatively homogenous layer that is a mixture comprising fullerene.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: November 27, 2007
    Assignee: AU Optronics Corp.
    Inventor: Chung-Wen Ko
  • Patent number: 7285824
    Abstract: A semiconductor device comprises: a semiconductor layer of a first conductivity type; a first semiconductor region of a second conductivity type provided on the semiconductor layer, the first semiconductor region being one of an anode region and a cathode region; a second semiconductor region of the first conductivity type provided on the first semiconductor region, the second semiconductor region being the other of the anode region and the cathode region; and a semiconductor buried region of the second conductivity type provided between the semiconductor layer and the first semiconductor region. The semiconductor buried region has an aperture where the first semiconductor region is in contact with the semiconductor layer.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: October 23, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuto Sumi, Koichi Endo
  • Patent number: 7242037
    Abstract: An electronic power device comprising a single crystal silicon segment being characterized in that the segment comprises a non-uniform distribution of minority carrier recombination centers, the minority carrier recombination centers comprising a substitutional metal, with the concentration of the centers in a bulk layer being greater than the concentration in a surface layer. The centers have a concentration profile in which the peak density of the centers is at or near the central plane with the concentration generally decreasing from the position of peak density in the direction of the front surface of the segment and generally decreasing from the position of peak density in the direction of the back surface of the segment.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: July 10, 2007
    Assignee: MEMC Electronic Materials, Inc.
    Inventor: Robert J. Falster
  • Patent number: 7126204
    Abstract: The invention relates to a semiconductor circuit (20) having an electrically programmable switching element (10), an ā€œantifuseā€, which includes a substrate electrode (2), produced in a substrate (1) which can be electrically biased with a substrate potential (Vo), and an opposing electrode (5) which is isolated from the substrate electrode (2) by an insulating layer (8), where the substrate electrode (2) includes at least one highly doped substrate region (3), and where the opposing electrode (5) can be connected to an external first electrical potential (V+) which can be provided outside of the semiconductor circuit (20). In line with the invention, the substrate electrode (2) can be connected to a second electrical potential (V?), which is provided inside the circuit and which, together with the external first potential (V+), produces a higher programming voltage (V) than the external first potential (V?) together with the substrate potential (Vo).
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: October 24, 2006
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Frey, Andreas Felber, JĆ¼rgen Lindolf
  • Patent number: 7064359
    Abstract: A switching semiconductor device includes a first compound layer formed on a single crystal substrate which includes silicon carbide or sapphire, and including a general formula InxGa1-xN, where 0?x?1; a second compound layer formed on the first compound layer, and including a general formula InyALzGa1-y-zN, where 0?y?1 and 0<z?1; and a gate electrode formed on the second compound layer. The gate electrode is electrically connected to a resistance element formed on a first interlayer insulating film that covers the gate electrode, through a metal wiring formed on a second interlayer insulating film that covers the first interlayer insulating film.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: June 20, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hidetoshi Ishida, Tsuyoshi Tanaka, Daisuke Ueda
  • Patent number: 7042026
    Abstract: A power switching device comprises a semiconductor substrate; a plurality of cells, each of which switches a current from a power supply to a load on the basis of a potential at a gate electrode, said cells being arranged on said semiconductor substrate to form a cell array; and a plurality of drivers connected to the gate electrode, said plurality of drivers being distributively arranged in said cell array or being distributively arranged peripheral said cell array.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: May 9, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mitsuhiro Kameda
  • Patent number: 6965129
    Abstract: Switching operations, such as those used in memory devices, are enhanced using a thyristor-based semiconductor device adapted to switch between a blocking state and a conducting state. According to an example embodiment of the present invention, a thyristor-based semiconductor device includes a thyristor having first and second base regions coupled between first and second emitter regions, respectively. A first control port capacitively couples a first signal to the first base region, and a second control port capacitively couples a second signal to the second base region. Each of the first and second signals have a charge that is opposite in polarity, and the opposite polarity signals effect the switching of the thyristor at a lower power, relative to the power that would be required to switch the thyristor having only one control port.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: November 15, 2005
    Assignee: T-Ram, Inc.
    Inventors: Andrew Horch, Scott Robins, Farid Nemati
  • Patent number: 6906356
    Abstract: A high power switch includes diode and BJT structures interdigitated in a drift layer and separated by insulated trench gates; electrodes contacting the diode and BJT structures provide anode and cathode connections. Shallow N+ regions extend below and around the corners of the oxide side-walls and bottoms of respective gates. A voltage applied across the anode and cathode sufficient to forward bias the diode's p-n junction causes electrons to be injected which provide a base drive current to the BJT sufficient to turn it on and enable current to flow from anode to cathode via the diode and BJT structures. A gate voltage sufficient to reverse bias the junction between the shallow N+ regions and the drift layer forms a potential barrier which blocks current flow through the diode and BJT structures and eliminates the base drive current such that the BJT and said switch are turned off.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: June 14, 2005
    Assignee: Rockwell Scientific Licensing, LLC
    Inventor: Hsueh-Rong Chang
  • Patent number: 6903374
    Abstract: A structure of a p-electrode formed at the light-emerging side of an LED that comprises (a) an n-type semiconductor substrate, (b) an n-type cladding layer, an active layer, a p-type cladding layer, and a p-type contact layer formed on the substrate in this order, and (c) an n-electrode formed on the back face of the substrate. The structure of the p-electrode comprises a mesh-shaped semi-transparent thin-film metal electrode for diffusing electric current formed on the p-type contact layer and a bonding electrode for wire bonding. The metal electrode comprises a covering portion having a transmittance of at least 10% and an opening portion having an opening ratio of at least 20%. The bonding electrode is formed at the periphery of the p-type contact layer and is bonded directly to the mesh-shaped semi-transparent thin-film metal electrode. This structure can increase the intensity of the output light emerging from the p-side.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: June 7, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Koji Katayama
  • Patent number: 6828690
    Abstract: A process for heat-treating a single crystal silicon segment to influence the profile of minority carrier recombination centers in the segment. The segment has a front surface, a back surface, and a central plane between the front and back surfaces. In the process, the segment is subjected to a heat-treatment to form crystal lattice vacancies, the vacancies being formed in the bulk of the silicon. The segment is then cooled from the temperature of said heat treatment at a rate which allows some, but not all, of the crystal lattice vacancies to diffuse to the front surface to produce a segment having a vacancy concentration profile in which the peak density is at or near the central plane with the concentration generally decreasing in the direction of the front surface of the segment. Platinum atoms are then in-diffused into the silicon matrix such that the resulting platinum concentration profile is substantially related to the concentration profile of the crystal lattice vacancies.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: December 7, 2004
    Assignee: MEMC Electronic Materials, Inc.
    Inventor: Robert J. Falster
  • Patent number: 6815733
    Abstract: The switching element has a switching layer between a first electrode layer and a second electrode layer. The switching layer includes a charge transfer complex containing an electron donor and an electron acceptor. An insulating layer is provided between the first electrode layer and the switching layer, and contacts the switching layer. The switching layer switches from a high-resistance state to a low-resistance state upon application of a voltage greater than a first threshold value in a first bias direction. Thereafter, the switching layer maintains the low-resistance state when the applied voltage decreases beyond the first threshold value. When the applied voltage becomes not smaller than a second threshold value in a second bias direction or a reverse direction to the first bias direction, the switching layer switches from the low-resistance state to the high-resistance state.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: November 9, 2004
    Assignee: Rohm Co., Ltd.
    Inventors: Haruo Tanaka, Chihaya Adachi, Takahito Oyamada, Hiroyuki Sasabe
  • Patent number: 6809387
    Abstract: A power switching device comprises a semiconductor substrate; a plurality of cells, each of which switches a current from a power supply to a load on the basis of a potential at a gate electrode, said cells being arranged on said semiconductor substrate to form a cell array; and a plurality of drivers connected to the gate electrode, said plurality of drivers being distributively arranged in said cell array or being distributively arranged peripheral said cell array.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: October 26, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mitsuhiro Kameda
  • Publication number: 20040108514
    Abstract: The switching element has a switching layer between a first electrode layer and a second electrode layer. The switching layer includes a charge transfer complex containing an electron donor and an electron acceptor. An insulating layer is provided between the first electrode layer and the switching layer, and contacts the switching layer. The switching layer switches from a high-resistance state to a low-resistance state upon application of a voltage greater than a first threshold value in a first bias direction. Thereafter, the switching layer maintains the low-resistance state when the applied voltage decreases beyond the first threshold value. When the applied voltage becomes not smaller than a second threshold value in a second bias direction or a reverse direction to the first bias direction, the switching layer switches from the low-resistance state to the high-resistance state.
    Type: Application
    Filed: March 19, 2003
    Publication date: June 10, 2004
    Applicant: ROHM CO., LTD.
    Inventors: Haruo Tanaka, Chihaya Adachi, Takahito Oyamada, Hiroyuki Sasabe
  • Publication number: 20040075103
    Abstract: A semiconductor circuit configuration is described, in particular for ignition applications, having a semiconductor power switching device (100) which has a first main terminal (102), a second main terminal (101) and a control terminal (103); a clamping diode device (205a, 205b) which is switched between the first main terminal (102) and the control terminal (103) for clamping an external voltage (VA) which is applied at the first main terminal (202); the clamping diode device (205a, 205b) having a first part (205a) with a first clamp voltage and a second part (205b) with a second clamp voltage (VKL′), the second part (205b) being connected in series with the first part (205a); a controllable semiconductor switching device (402, 650) which is connected in parallel with the first part (205a) for controllable bridging of the first part (205a), so that either the sum (VKL) of the first and the second clamp voltages, or the second clamp voltage (VKL′) is provided for clamping the external voltage (VA)
    Type: Application
    Filed: November 12, 2003
    Publication date: April 22, 2004
    Inventors: Rainer Topp, Horst Meinders, Wolfgang Feiler
  • Patent number: 6707128
    Abstract: A semiconductor device comprises a first semiconductor layer of a first conductivity type provided on a semiconductor substrate of the first conductivity type, a base layer of a second conductivity type provided in the first semiconductor layer, for defining a vertical MISFET including source regions and a gate electrode on a gate insulation film, a Schottky barrier diode (SBD)-forming region provided in the first semiconductor layer around the base layer, a guard ring region of the second conductivity type provided around SBD-forming region, a first main electrode disposed above the first semiconductor layer and provided in common as both a source electrode of the MISFET and an anode of the SBD, a surface gate electrode disposed above the first semiconductor layer, and a second main electrode provided in common as a drain electrode of the MISFET and a cathode of the SBD.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: March 16, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouji Moriguchi, Yoshitaka Hokomoto
  • Publication number: 20040021151
    Abstract: Microswitch, comprising a base element (G) with a contact surface (KG) and an electrode (EG), and a switching element (S) with a contact surface (KS) and an electrode (ES) disposed opposite the electrode (EG) of the base element (G) at a distance (g). The switching element (S) is provided with a spring constant and is connected at least with a part of its edge portion with the base element (G) in a fixed manner. The contact surfaces (KG, KS) form a switching contact which is closable against a reaction force caused by the spring constant by means of a voltage applied to the electrodes (EG, ES). The base element (G) and the switching element (S) each comprise an auxiliary electrode (HG, HS) at a distance (a) from the electrode (EG, ES), to which a voltage can be applied. For opening the switching contact the electrodes (EG, ES) have a first voltage potential (U1) and the auxiliary electrodes have a second voltage potential (U2) of the voltage.
    Type: Application
    Filed: February 10, 2003
    Publication date: February 5, 2004
    Applicants: Telefonaktiebolaget LM Ericsson (publ), International Business Machines Corporation
    Inventors: Michael Meixner, Leena Paivikki Buchwalter, Jennifer Louise Lund, Hariklia Deligianni
  • Publication number: 20040012035
    Abstract: A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).
    Type: Application
    Filed: February 11, 2003
    Publication date: January 22, 2004
    Inventors: Howard M Branz, Qi Wang
  • Patent number: 6593600
    Abstract: A monolithic bidirectional switch formed in a semiconductor substrate of type N, including a first main vertical thyristor, the rear surface layer of which is of type P, a second main vertical thyristor, the rear surface layer of which is of type N, an auxiliary vertical thyristor, the rear surface layer of which is of type P and is common with that of the first main thyristor, a peripheral region of type P especially connecting the rear surface layer of the auxiliary thyristor to the layer of this thyristor located on the other side of the substrate, a first metallization on the rear surface side, a second metallization on the front surface side connecting the front surface layers of the first and second thyristors. An additional region has a function of isolating the rear surface of the auxiliary thyristor and the first metallization.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: July 15, 2003
    Assignee: STMicroelectronics S.A.
    Inventors: Franck Duclos, Jean-Michel Simonnet, Olivier Ladiray
  • Publication number: 20030116780
    Abstract: In order that the DC potential of the input terminal does not rise, whereby ON/OFF switching is accordingly performed normally, even when a signal having a large amplitude is inputted to an input terminal, thereby the depletion layer expands due to electron trapping effect, a first field effect transistor is connected between a first switch input terminal and a first switch output terminal in a manner that the source is arranged on the first switch input terminal side, a second field effect transistor is connected between the first switch output terminal and a second switch input terminal in a manner that the source is arranged on the second switch input terminal side, a third field effect transistor is connected between the second switch input terminal and a second switch output terminal in a manner that the source is arranged on the second switch input terminal side, and a fourth field effect transistor is connected between the second switch output terminal and the first switch input terminal in a manner th
    Type: Application
    Filed: December 19, 2002
    Publication date: June 26, 2003
    Inventors: Atsushi Suwa, Tadayoshi Nakatsuka, Tadashi Komatsu, Katsushi Tara