Particular Layout Of Complementary Fets With Regard To Each Other Patents (Class 257/206)
  • Patent number: 8952424
    Abstract: An improved RF CMOS transistor design is described. Local, narrow interconnect lines, which are located substantially above the active area of the transistor, are each connected to either a source terminal or a drain terminal. The source and the drain terminal are arranged orthogonally to the local interconnect lines and each terminal is significantly wider than a local interconnect line. In an example, the local interconnect lines are formed in a first metal layer and the source and drain terminals are formed in one or more subsequent metal layers.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: February 10, 2015
    Assignee: Cambridge Silicon Radio Ltd
    Inventor: Rainer Herberholz
  • Patent number: 8952423
    Abstract: A semiconductor device includes a logic region disposed in a central region of the semiconductor device, and a peripheral region disposed in an outer region thereof. The logic region includes a line-shaped logic transistor and a box-shaped decoupling capacitor. The peripheral region includes a line-shaped peripheral transistor and a line-shaped peripheral dummy transistor disposed adjacent to the peripheral transistor.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: February 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joong-Won Jeon, Hee-Sung Kang, Dae-Ho Yoon, Dal-Hee Lee, Suk-Joo Lee
  • Patent number: 8952425
    Abstract: An integrated circuit includes at least four linear-shaped conductive structures formed to extend lengthwise in a parallel direction to each other and each respectively including a gate electrode portion and an extending portion that extends away from the gate electrode portion. The gate electrode portions of the linear-shaped conductive structures respectively form gate electrodes of different transistors, such that at least one of the linear-shaped conductive structures forms a gate electrode of a transistor of a first transistor type and does not form a gate electrode of any transistor of a second transistor type, and such that at least one of the linear-shaped conductive structures forms a gate electrode of a transistor of the second transistor type and does not form a gate electrode of any transistor of the first transistor type. Extending portions of the at least four linear-shaped conductive structures include at least two different extending portion lengths.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 10, 2015
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8946781
    Abstract: An integrated circuit includes four parallel positioned linear-shaped structures each including a gate electrode portion and an extension portion. Gate electrode portions of two of the four linear-shaped structures respectively form gate electrodes of first and second transistors of a first transistor type. Gate electrode portions of two of the four linear-shaped structures respectively form a gate electrodes of first and second transistors of a second transistor type. Four contacting structures are respectively connected to the extension portions of the four linear-shaped structures such that each extension portion has a respective contact-to-end distance. At least two of the contact-to-end distances are different. A fifth linear-shaped structure forms gate electrodes of transistors respectively positioned next to the first transistors of the first and second transistor types.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8937340
    Abstract: Memory cells comprising thin film transistor, stacked arrays, employing bandgap engineered tunneling layers in a junction free, NAND configuration. The cells comprise a channel region in a semiconductor strip formed on an insulating layer; a tunnel dielectric structure disposed above the channel region, the tunnel dielectric structure comprising a multilayer structure including at least one layer having a hole-tunneling barrier height lower than that at the interface with the channel region; a charge storage layer disposed above the tunnel dielectric structure; an insulating layer disposed above the charge storage layer; and a gate electrode disposed above the insulating layer Arrays and methods of operation are described.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: January 20, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Hang-Ting Lue, Erh-Kun Lai
  • Publication number: 20150014748
    Abstract: According to one embodiment, a semiconductor integrated circuit includes nonvolatile memory areas, each includes a first nonvolatile memory transistor, a second nonvolatile memory transistor and an output line, the first nonvolatile memory transistor includes a first source diffusion region, a first drain diffusion region and a first control gate electrode, the second nonvolatile memory transistor includes a second source diffusion region, a second drain diffusion region and a second control gate electrode, the output line connected the first drain diffusion region and the second drain diffusion region, and logic transistor areas, each includes a logic transistor, the logic transistor includes a third source diffusion region, a third drain diffusion region and a first gate electrode.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Koichiro ZAITSU, Kosuke TATSUMURA, Mari MATSUMOTO
  • Patent number: 8933490
    Abstract: A structure, method and system for complementary strain fill for integrated circuit chips. The structure includes a first region of an integrated circuit having multiplicity of n-channel and p-channel field effect transistors (FETs); a first stressed layer over n-channel field effect transistors (NFETs) of the first region, the first stressed layer of a first stress type; a second stressed layer over p-channel field effect transistors (PFETs) of the first region, the second stressed layer of a second stress type, the second stress type opposite from the first stress type; and a second region of the integrated circuit, the second region not containing FETs, the second region containing first sub-regions of the first stressed layer and second sub-regions of the second stressed layer.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8921898
    Abstract: A device includes an array of a plurality of memory cells, at least one N-well contact area and at least one P-well contact area. The memory cells are arranged in a plurality of rows and a plurality of columns. Each column includes an N-well region and at least one P-well region. The N-well and P-well regions extend between a first end of the column and a second end of the column. Each N-well contact area electrically contacts at least one of the N-well regions, wherein the N-well region of at least one of the columns is electrically contacted at only one of the first and second ends of the column. Each P-well contact area electrically contacts at least one of the P-well regions, wherein the P-well region of at least one of the columns is electrically contacted at only one of the first and second ends of the column.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Nigel Chan, Michael Otto
  • Patent number: 8921896
    Abstract: A first linear-shaped conductive structure (LSCS) forming gate electrodes of both a first p-transistor and a first n-transistor. A second LSCS forming a gate electrode of a second p-transistor and including an extension portion extending away therefrom. A third LSCS forming a gate electrode of a second n-transistor and including an extension portion extending away therefrom. A fourth LSCS forming a gate electrode of a third p-transistor and including an extension portion extending away therefrom. A fifth LSCS forming a gate electrode of a third n-transistor and including an extension portion extending away therefrom. A sixth LSCS forming gate electrodes of both a fourth p-transistor and a fourth n-transistor. Four contact structures respectively contacting the extension portions of the second, third, fourth, and fifth LSCS's, such that at least two of the extension portions extend different distances beyond their contact structure.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 30, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8921897
    Abstract: A first linear-shaped conductive structure (LSCS) forms gate electrodes of a first p-transistor and a first n-transistor. A second LSCS forms a gate electrode of a second p-transistor. A third LSCS forms a gate electrode of a second n-transistor, and is separated from the second LSCS by a first end-to-end spacing (EES). A fourth LSCS forms a gate electrode of a third p-transistor. A fifth LSCS forms a gate electrode of a third n-transistor, and is separated from the fourth LSCS by a second EES. A sixth LSCS forms gate electrodes of a fourth p-transistor and a fourth n-transistor. An end of the second LSCS adjacent to the first EES is offset from an end of the fourth LSCS adjacent to the second EES, and/or an end of the third LSCS adjacent to the first EES is offset from an end of the fifth LSCS adjacent to the second EES.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8912577
    Abstract: According to various embodiments, a distributed heating transistor includes: a plurality of active regions where transistor action occurs including a heat source; and at least one inactive region where transistor action does not occur and no heat source is present, wherein adjacent active regions are separated by the at least one inactive region. The distributed heating transistor may be configured as field effect transistors (FETs), and bipolar junction transistors (BJTs). Methods for forming the distributed heating transistors are also provided.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: December 16, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ali Darwish, Hingloi Alfred Hung
  • Patent number: 8890210
    Abstract: A field effect transistor includes a nitride semiconductor multilayer structure formed on a substrate, a source electrode, a drain electrode, a gate electrode, an insulating film formed on the nitride semiconductor multilayer structure, and a field plate formed on and in contact with the insulating film, and having an end located between the gate electrode and the drain electrode. The insulating film includes a first film, and a second film having a dielectric breakdown voltage lower than that of the first film, and a thin film portion formed between the gate electrode and the drain electrode is formed in the insulating film. The field plate covers the thin film portion, and is connected to the source electrode in an opening.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Satoshi Nakazawa, Tetsuzo Ueda, Yoshiharu Anda, Naohiro Tsurumi, Ryo Kajitani
  • Patent number: 8890256
    Abstract: The invention relates to a design structure, and more particularly, to a design structure for a heavy ion tolerant device, method of manufacturing the same and a structure thereof. The structure includes a first device having a diffusion comprising a drain region and source region and a second device having a diffusion comprising a drain region and source region. The first and second device are aligned in an end-to-end layout along a width of the diffusion of the first device and the second device. A first isolation region separating the diffusion of the first device and the second device.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Hakey, Tak H. Ning, Philip J. Oldiges, Henry H. K. Tang
  • Patent number: 8866197
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Conductive features are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected. However, the first PMOS and second NMOS transistor devices are physically separate within the gate electrode level region. The gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected. However, the second PMOS and first NMOS transistor devices are physically separate within the gate electrode level region.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 21, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Publication number: 20140291730
    Abstract: A first linear-shaped conductive structure (LCS) forms a gate electrode (GE) of a first transistor of a first transistor type. A second LCS forms a GE of a first transistor of a second transistor type. A third LCS forms a GE of a fourth transistor of the first transistor type. A fourth LCS forms a GE of a fourth transistor of the second transistor type. Transistors of the first transistor type are collectively separated from transistors of the second transistor type by an inner region. Each of the first, second, third, and fourth LCS's has a respective electrical connection area. At least two of the electrical connection areas of the first, second, third, and fourth LCS's are located within the inner region. The first and fourth transistors of the first transistor type and the first and fourth transistors of the second transistor type form part of a cross-coupled transistor configuration.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Publication number: 20140291731
    Abstract: A first linear-shaped conductive structure (LCS) forms gate electrodes (GE's) of a first transistor of a first transistor type and a first transistor of a second transistor type. A second LCS forms a GE of a second transistor of the first transistor type. A third LCS forms a GE of a second transistor of the second transistor type. A fourth LCS forms a GE of a third transistor of the first transistor type. A fifth LCS forms a GE of a third transistor of the second transistor type. A sixth LCS forms a GE of a fourth transistor of the first transistor type and a fourth transistor of the second transistor type. Transistors of the first transistor type are collectively separated from transistors of the second transistor type by an inner region. The second, third, fourth, and fifth LCS's have respective electrical connection areas arranged relative to the inner region.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8847330
    Abstract: To suppress stress variation on a channel forming region, a semiconductor device includes an element isolating region on the semiconductor substrate principal surface, and an element forming region on the principal surface to be surrounded by the element isolating region. The principal surface has orthogonal first and second directions. A circumferential shape of the element forming region has a first side extending along the first direction. The element forming region has a first transistor region (TR1), a second transistor region (TR2) arranged between the first side and TR1, and a dummy region on the first direction side of TR1. TR1 has a first channel forming region facing the first side. TR2 has a second channel forming region facing the first side. The first channel forming region has a non-facing region that is not facing the second channel forming region. The dummy region faces the non-facing region in the second direction.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: September 30, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Toshihide Yamaguchi
  • Patent number: 8842400
    Abstract: A semiconductor device for electrostatic discharge (ESD) protection includes a silicon controlled rectifier (SCR) including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, a first p-type region formed in the first well to serve as an anode, and a first n-type region partially formed in the second well to serve as a cathode, a p-type metal-oxide-semiconductor (PMOS) transistor formed in the first well including a gate, a first diffused region and a second diffused region separated apart from the first diffused region, a second n-type region formed in the first well electrically connected to the first diffused region of the PMOS transistor, and a second p-type region formed in the substrate electrically connected to the second diffused region of the PMOS transistor.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: September 23, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Dou Ker, Shih-Hung Chen, Kun-Hsien Lin
  • Patent number: 8835989
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Conductive features are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected in part by a first conductor within a first interconnect level. The gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected in part by a second conductor within the first interconnect level. The first PMOS, second PMOS, first NMOS, and second NMOS transistor devices define a cross-coupled transistor configuration having commonly oriented gate electrodes.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: September 16, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8835260
    Abstract: A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a germanium (Ge) material layer formed on the semiconductor substrate, a diffusion barrier layer formed on the Ge material layer, a high-k dielectric having a high dielectric constant greater than approximately 3.9 formed over the diffusion barrier layer, and a conductive electrode layer formed above the high-k dielectric layer.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Takashi Ando, Vijay Narayanan
  • Patent number: 8836040
    Abstract: A semiconductor standard cell includes an N-type diffusion area and a P-type diffusion area, both extending across the cell and also outside of the cell. The cell also includes a conductive gate above each diffusion area to create a semiconductive device. A pair of dummy gates are also above the N-type diffusion area and the P-type diffusion area creating a pair of dummy devices. The pair of dummy gates are disposed at opposite edges of the cell. The cell further includes a first conductive line configured to couple the dummy devices to power for disabling the dummy devices.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: September 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Pratyush Kamal, Esin Terzioglu, Foua Vang, Prayag Bhanubhai Patel, Giridhar Nallapati, Animesh Datta
  • Patent number: 8828825
    Abstract: The likelihood of forming silicon germanium abnormal growths, which can be undesirably formed on the gate electrode of a strained-channel PMOS transistor at the same time that silicon germanium source and drain regions are formed, is substantially reduced by using protection materials that reduce the likelihood that the gate electrode is exposed during the formation of the silicon germanium source and drain regions.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: September 9, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Hiroaki Niimi, James Joseph Chambers
  • Patent number: 8822278
    Abstract: Asymmetric FET devices and methods for fabrication thereof that employ a variable pitch gate are provided. In one aspect, a method for fabricating a FET device includes the following steps. A wafer is provided. A plurality of active areas is formed in the wafer using STI. A plurality of gate stacks is formed on the wafer, wherein the gate stacks have an irregular gate-to-gate spacing such that for at least a given one of the active areas a gate-to-gate spacing on a source side of the given active area is greater than a gate-to-gate spacing on a drain side of the given active area. Spacers are formed on opposite sides of the gate stacks. An angled implant is performed into the source side of the given active area. A FET device is also provided.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Chung-Hsun Lin, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8823062
    Abstract: A first linear-shaped conductive structure (LSCS) forms gate electrodes of a first p-transistor and a first n-transistor. A second LSCS forms a gate electrode of a second p-transistor. A third LSCS forms a gate electrode of a second n-transistor, and is separated from the second LSCS by a first end-to-end spacing (EES). A fourth LSCS forms a gate electrode of a third p-transistor. A fifth LSCS forms a gate electrode of a third n-transistor, and is separated from the fourth LSCS by a second EES. A sixth LSCS forms gate electrodes of a fourth p-transistor and a fourth n-transistor. An end of the second LSCS adjacent to the first EES is offset from an end of the fourth LSCS adjacent to the second EES, and/or an end of the third LSCS adjacent to the first EES is offset from an end of the fifth LSCS adjacent to the second EES.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 2, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8823064
    Abstract: Asymmetric FET devices and methods for fabrication thereof that employ a variable pitch gate are provided. In one aspect, a FET device is provided. The FET device includes a wafer; a plurality of active areas formed in the wafer; a plurality of gate stacks on the wafer, wherein at least one of the gate stacks is present over each of the active areas, and wherein the gate stacks have an irregular gate-to-gate spacing such that for at least a given one of the active areas a gate-to-gate spacing on a source side of the given active area is greater than a gate-to-gate spacing on a drain side of the given active area; spacers on opposite sides of the gate stacks; and an angled implant in the source side of the given active area.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Chung-Hsun Lin, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8816402
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Conductive features are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected. The gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected. The electrical connection between the gate electrodes of the first PMOS and second NMOS transistor devices is formed in part by one or more electrical conductors present within at least one interconnect level above the gate electrode level region.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: August 26, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8813014
    Abstract: A method for designing a semiconductor ic chip includes dividing the chip into functional blocks such as a core portion and one or more other functional cells and applying design rules concerning the spatial arrangement of semiconductor fins to the core portion but not to the other functional cells. The design guidelines include the application of design rules to some but not all functional blocks of the chip, may be stored on a computer-readable medium and the design of the semiconductor ic chip and the generation of a photomask set for manufacturing the semiconductor ic chip may be carried out using a CAD or other automated design system. The semiconductor ic chip formed in accordance with this method includes semiconductor fins that are formed in both the core portion and the other functional cells but are only required to be tightly packed in the core portion.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Ming Yu, Chang-Yun Chang
  • Patent number: 8791507
    Abstract: A layout of a semiconductor device is capable of reliably reducing a variation in gate length due to the optical proximity effect, and enables flexible layout design to be implemented. Gate patterns (G1, G2, G3) of a cell (C1) are arranged at the same pitch, and terminal ends (e1, e2, e3) of the gate patterns are located at the same position in the Y direction, and have the same width in the X direction. A gate pattern (G4) of a cell (C2) has protruding portions (4b) protruding toward the cell (C1) in the Y direction, and the protruding portions (4b) form opposing terminal ends (eo1, eo2, eo3). The opposing terminal ends (eo1, eo2, eo3) are arranged at the same pitch as the gate patterns (G1, G2, G3), are located at the same position in the Y direction, and have the same width in the X direction.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazuyuki Nakanishi, Masaki Tamaru
  • Patent number: 8791508
    Abstract: A Gallium Nitride (GaN) series of devices—transistors and diodes are disclosed—that have greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The devices also include a simpler and superior flip chip connection scheme and a means to reduce the thermal resistance. A simplified fabrication process is disclosed and the layout scheme which uses island electrodes rather than finger electrodes is shown to increase the active area density by two to five times that of conventional interdigitated structures. Ultra low on resistance transistors and very low loss diodes can be built using the island topology. Specifically, the present disclosure provides a means to enhance cost/effective performance of all lateral GaN structures.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: July 29, 2014
    Assignee: GaN Systems Inc.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Patent number: 8791506
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Ted Taylor, Xiawan Yang
  • Patent number: 8785979
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Each of a number of conductive features within a gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature, with a centerline of each originating rectangular-shaped layout feature aligned in a parallel manner. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. Widths of the first and second p-type diffusion regions are different, such that the first and second PMOS transistor devices have different widths. Widths of the first and second n-type diffusion regions are different, such that the first and second NMOS transistor devices have different widths. The first and second PMOS and first and second NMOS transistor devices form a cross-coupled transistor configuration.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 22, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8785978
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features which extend in only a first parallel direction. At least a portion of each of the first and second p-type diffusion regions are formed over a first common line of extent that extends perpendicular to the first parallel direction. The first and second n-type diffusion regions are formed in a spaced apart manner relative to the first parallel direction, such that no single line of extent that extends across the substrate perpendicular to the first parallel direction intersects both the first and second n-type diffusion regions.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 22, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8788984
    Abstract: An integrated circuit includes a gate array layer having a two-dimensional array of logic gates, each logic gate including multiple transistors. At least one upper template-based metal layer is coupled to the gate array layer and is configured to define at least one of a power distribution network, a clock network and a global signal network. A configuration of traces of the upper template-based metal layer is at least mainly predetermined prior to design of the integrated circuit.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: July 22, 2014
    Assignee: Baysand Inc.
    Inventors: Jonathan C Park, Salah M Werfelli, WeiZhi Kang, Wan Tat Hooi, Kok Siong Tee, Jeremy Jia Jian Lee
  • Patent number: 8772839
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. A gate electrode level region is formed in accordance with a virtual grate defined by virtual lines that extend in only a first parallel direction, such that an equal perpendicular spacing exists between adjacent ones of the virtual lines. Each of a number of conductive features within the gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature having a centerline aligned with a virtual line of the virtual grate. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected, and the gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 8, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8772838
    Abstract: A semiconductor layout structure includes multiple active blocks which are disposed on a substrate, parallel with one another and extending along a first direction, multiple first shallow trench isolations which are disposed on a substrate, parallel with one another and respectively disposed on the multiple active blocks, and multiple second shallow trench isolations which are disposed on a substrate, cutting through multiple active blocks and extending along a second direction. The first direction has an angle about 1 degree to about 53 degrees to the second direction.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 8, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Yuan Lee
  • Patent number: 8766376
    Abstract: An embodiment is a method for forming a static random access memory (SRAM) cell. The method comprises forming transistors on a semiconductor substrate and forming a first linear intra-cell connection and a second linear intra-cell connection. Longitudinal axes of the active areas of the transistors are parallel. A first pull-down transistor and a first pull-up transistor share a first common gate structure, and a second pull-down transistor and a second pull-up transistor share a second common gate structure. The first linear intra-cell connection electrically couples active areas of the first pull-down transistor and the first pull-up transistor to the second common gate structure. The second linear intra-cell connection electrically couples active areas of the second pull-down transistor and the second pull-up transistor to the first common gate structure.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lie-Yong Yang, Feng-Ming Chang, Chang-Ta Yang, Ping-Wei Wang
  • Patent number: 8766322
    Abstract: In a layout structure of a standard cell including off transistors 126, 127 unnecessary for logic operation of a circuit, dummy via contacts 116, 117 are disposed on impurity diffusion regions 103, 106 of the off transistors 126, 127, respectively. Dummy metal interconnects 122, 123 are connected to the dummy via contacts 116, 117, respectively. Thus, variations in the density of via contacts, which are one of causes lowering the production yield of semiconductor integrated circuits, is reduced, improving manufacturing defects of the via contacts.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: July 1, 2014
    Assignee: Panasonic Corporation
    Inventors: Nana Okamoto, Masaki Tamaru, Hidetoshi Nishimura
  • Patent number: 8759885
    Abstract: A standard cell for a semiconductor device has first and second opposing boundaries and third and fourth opposite boundaries, and includes first and second active regions formed in a semiconductor substrate. The first and second active regions are a first predetermined distance (a) from the first and second boundaries, respectively. A gate electrode is formed over the first and second active regions. First and second dummy diffusions layers are formed along the third boundary and are the first predetermined distance (a) from the first and second boundaries and a second predetermined distance (b) from the first and second active regions, respectively. Third and fourth dummy diffusions layers are formed along the fourth boundary and are the first predetermined distance (a) from the first and second boundaries and a third predetermined distance (b?) from the first and second active regions, respectively.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: June 24, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ankit Jain, Vikas Tripathi
  • Patent number: 8759924
    Abstract: Various aspects of the technology provide a dual semiconductor power and/or switching FET device to replace two or more discrete FET devices. Portions of the current may be distributed in parallel to sections of the source and drain fingers to maintain a low current density and reduce the size while increasing the overall current handling capabilities of the dual FET. Application of the gate signal to both ends of gate fingers, for example, using a serpentine arrangement of the gate fingers and gate pads, simplifies layout of the dual FET device. A single integral ohmic metal finger including both source functions and drain functions reduces conductors and contacts for connecting the two devices at a source-drain node. Heat developed in the source, drain, and gate fingers may be conducted through the vias to the electrodes and out of the device.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: June 24, 2014
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8759882
    Abstract: An integrated circuit device includes a plurality of dynamic array sections, each of which includes three or more linear conductive segments formed within its gate electrode level in a parallel manner to extend lengthwise in a first direction. An adjoining pair of dynamic array sections are positioned to have co-located portions of outer peripheral boundary segments extending perpendicular to the first direction. Some of the three or more linear conductive segments within the gate electrode levels of the adjoining pair of dynamic array sections are co-aligned in the first direction and separated by an end-to-end spacing that spans the co-located portions of outer peripheral boundary segments of the adjoining pair of dynamic array sections. Each of these end-to-end spacings is sized to ensure that each gate electrode level manufacturing assurance halo portion of the first adjoining pair of dynamic array sections is devoid of the co-aligned linear conductive segments.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: June 24, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8742462
    Abstract: First and second PMOS transistors are defined over first and second p-type diffusion regions. First and second NMOS transistors are defined over first and second n-type diffusion regions. Each diffusion region is electrically connected to a common node. Gate electrodes are formed from conductive features that are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. At least a portion of each of the first and second p-type diffusion regions are formed over a first common line of extent that extends perpendicular to the first parallel direction. The first and second n-type diffusion regions are formed in a spaced apart manner relative to the first parallel direction, such that no single line of extent that extends across the substrate perpendicular to the first parallel direction intersects both the first and second n-type diffusion regions.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 3, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8742463
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. A gate electrode level region is formed in accordance with a virtual grate defined by virtual lines that extend in only a first parallel direction, such that an equal perpendicular spacing exists between adjacent ones of the virtual lines. Conductive features are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of virtual lines of the virtual grate. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected, and the gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 3, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8735239
    Abstract: Provided is a method of fabricating a semiconductor device. Gate patterns are formed on a substrate including an NMOS transistor region and a PMOS transistor region. A spacer structure is formed on sidewalls of the gate patterns. The substrate in the PMOS transistor region is etched using the gate patterns and the spacer structure as etching masks, and thereby a recessed region is formed. A compressive stress pattern is formed in the recessed region, and a sidewall of the compressive stress pattern protrudes upwardly from an upper surface of the substrate. A mask oxide layer is formed on a sidewall of the spacer structure. The mask oxide layer is formed to cover a portion of the sidewall of the compressive stress pattern that protrudes upwardly from the upper surface of the substrate.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: May 27, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sangjine Park, Young Suk Jung, Boun Yoon, Jeongman Han, Byung-Kwon Cho
  • Patent number: 8735944
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features that are each defined within any one gate level channel. At least a portion of the first p-type diffusion region and at least a portion of the second p-type diffusion region are formed over a first common line of extent that extends perpendicular to the first parallel direction. Also, at least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a second common line of extent that extends perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8729606
    Abstract: Each of first and second PMOS transistors, and first and second NMOS transistors has a respective diffusion terminal with a direct electrical connection to a common node, and has a respective gate electrode defined within any one gate level channel. Each gate level channel is uniquely associated with and defined along one of a number of parallel oriented gate electrode tracks. The first PMOS transistor gate electrode is electrically connected to the second NMOS transistor electrode. The second PMOS transistor gate electrode is electrically connected to the first NMOS transistor gate electrode. The first and second PMOS transistors, and the first and second NMOS transistors together define a cross-coupled transistor configuration having commonly oriented gate electrodes formed from respective rectangular-shaped layout features.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 20, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8710553
    Abstract: An integrated circuit includes a substrate. The substrate includes diffusion lines. The diffusion lines include impurities diffused into the substrate. A signal line layer includes first signal lines. A first metal layer includes second signal lines. The second signal lines include a first metallic material. A second metal layer includes third signal lines. The third signal lines include a second metallic material. First contacts connect the diffusion lines to (i) a first set of the second signal lines, or (ii) a first set of the third signal lines. Second contacts connect a first set of the first signal lines to a second set of the third signal lines. Each signal line in a first set of the second signal lines includes first portions and second portions. The first portions extend towards and are not connected to the second contacts. The first portions are not parallel to the second portions.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: April 29, 2014
    Assignee: Marvell International Ltd.
    Inventors: Qiang Tang, Min She, Ken Liao
  • Patent number: 8710552
    Abstract: A pMIS region is provided between a boundary extending in a first direction and passing through each of a plurality of standard cells and a first peripheral edge. An nMIS region is provided between the boundary and a second peripheral edge. A power supply wiring and a grounding wiring extend along the first and second peripheral edges, respectively. A plurality of pMIS wirings and a plurality of nMIS wirings are arranged on a plurality of first virtual lines and a plurality of second virtual lines, respectively, extending in the first direction and arranged with a single pitch in a second direction. The first virtual line that is the closest to the boundary and the second virtual line that is the closest to the boundary have therebetween a spacing larger than the single pitch.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 29, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Nobuhiro Tsuda, Hidekatsu Nishimaki, Hiroshi Omura, Yuko Yoshifuku
  • Patent number: 8698204
    Abstract: In one embodiment, a semiconductor memory device includes a substrate, and device regions in the substrate to extend in a first direction. The device further includes select gates on the substrate to extend in a second direction, and a contact region provided between the select gates and including contact plugs on the respective device regions. The contact region includes partial regions, in each of which N contact plugs are disposed on N successive device regions to be arranged on a straight line being non-parallel to the first and second directions, where N is an integer of 2 or more. The contact region includes the partial regions of at least two types whose values of N are different. Further, each of the contact plugs has a planar shape of an ellipse, and is arranged so that a major axis of the ellipse is tilted with respect to the first direction.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: April 15, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Yoshiko Kato
  • Patent number: 8698205
    Abstract: An integrated circuit layout having a mixed track standard cell configuration that having a mixed track standard cell configuration that includes first well regions of a predetermined height and second well regions of a predetermined height, the first and second well regions are arranged within a substrate, first conductors and second conductors arranged and extending across regions of corresponding first and second well regions, and a plurality of standard cells in multiple rows. The standard cells include a first substantially equal to standard cell having a first cell height substantially equal to I(X+Y)+X or Y, wherein X is one half the predetermined height of the first well region, Y is one half the predetermined height of the second well region, and I is a positive integer.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiann-Tyng Tzeng, Chih-Liang Chen, Yi-Feng Chen, Kam-Tou Sio, Shang-Chih Hsieh, Helen Shu-Hui Chang
  • Patent number: 8692333
    Abstract: A semiconductor device comprises first, second, and third. The first conductor is a gate conductor formed above an oxide region over a substrate and having a contact. The second conductor is coupled to the contact and extends across a width of the oxide region. The second conductor has a lower resistance than the gate conductor. The third conductor is a word line conductor. The second conductor is routed to not intersect the word line conductor.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Huei Chen, You-Cheng Xiao, Jung-Hsuan Chen, Shao-Yu Chou