Particular Layout Of Complementary Fets With Regard To Each Other Patents (Class 257/206)
  • Patent number: 8692316
    Abstract: One illustrative device disclosed herein includes a plurality of fins separated by a trench formed in a semiconducting substrate, a first layer of insulating material positioned in the trench, the first layer of insulating material having an upper surface that is below an upper surface of the substrate, an isolation layer positioned within the trench above the first layer of insulating material, the isolation layer having an upper surface that is below the upper surface of the substrate, a second layer of insulating material positioned within the trench above the isolation layer, the second layer of insulating material having an upper surface that is below the upper surface of the substrate, and a gate structure positioned above the second layer of insulating material.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ruilong Xie
  • Patent number: 8680584
    Abstract: A transistor device structured such that the bulk, gate, drain, and source are all accessible from all four edges of the device and such that current distribution is uniform over the device is provided. The transistor is created with a four-metal CMOS process. A bulk connection can be made with Metal 1, which is all around the device. A gate connection can be made with Metal 2, which is all around the device. Additionally, a drain/source connection can be made with Metal 3, which is all around the device. A source/drain connection can be made with Metal 4, which is all around the device. Source/drain connections are made with two or more evenly distributed via stripes to connect the source/drain parts of the transistor fingers. The transistor structure may be used to create an array of transistors for a high power output stage, with the transistors arranged in a checkerboard pattern. The connections of each transistor are automatic by abutting edges of the transistors.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: March 25, 2014
    Assignee: Dialog Semiconductor GmbH
    Inventor: Joerg Brand
  • Patent number: 8680583
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features which extend in only a first parallel direction. At least a portion of the first p-type diffusion region and at least a portion of the second p-type diffusion region are formed over a first common line of extent that extends perpendicular to the first parallel direction. Also, at least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a second common line of extent that extends perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 25, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8669594
    Abstract: First and second p-type diffusion regions, and first and second n-type diffusion regions are formed in a semiconductor device. Each diffusion region is electrically connected to a common node. Gate electrodes of cross-coupled transistors are defined to extend over the diffusion regions in only a first parallel direction, with each gate electrode fabricated from a respective originating rectangular-shaped layout feature. The first and second p-type diffusion regions are formed in a spaced apart manner relative to the first parallel direction, such that no single line of extent that extends across the substrate perpendicular to the first parallel direction intersects both the first and second p-type diffusion regions. At least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a common line of extent that extends across the substrate perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 11, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8669595
    Abstract: A semiconductor device includes conductive features that are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS, second PMOS, first NMOS, and second NMOS transistor devices respectively extend along different gate electrode tracks. A first set of interconnected conductors electrically connect the gate electrodes of the first PMOS and second NMOS transistor devices. A second set of interconnected conductors electrically connect the gate electrodes of the second PMOS and first NMOS transistor devices. The first and second sets of interconnected conductors traverse across each other within different levels of the semiconductor device.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: March 11, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8669596
    Abstract: In end portions of first and second gate patterns aligned in parallel relation to each other, and opposite end portions of third and fourth gate patterns aligned in parallel relation to each other, the end portion of the first gate pattern extends to be positioned closer to the third and fourth gate patterns than the end portion of the second gate pattern is, and the opposite end portion of the fourth gate pattern extends to be positioned closer to the first and second gate patterns than the opposite end portion of the third gate pattern is.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: March 11, 2014
    Assignee: Panasonic Corporation
    Inventor: Masaki Tamaru
  • Patent number: 8664055
    Abstract: A fin field-effect transistor structure includes a substrate, a fin channel and a high-k metal gate. The high-k metal gate is formed on the substrate and the fin channel. A process of manufacturing the fin field-effect transistor structure includes the following steps. Firstly, a polysilicon pseudo gate structure is formed on the substrate and a surface of the fin channel. By using the polysilicon pseudo gate structure as a mask, a source/drain region is formed in the fin channel. After the polysilicon pseudo gate structure is removed, a high-k dielectric layer and a metal gate layer are successively formed. Afterwards, a planarization process is performed on the substrate having the metal gate layer until the first dielectric layer is exposed, so that a high-k metal gate is produced.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: March 4, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Teng-Chun Tsai, Chun-Yuan Wu, Chin-Fu Lin, Chih-Chien Liu, Chin-Cheng Chien
  • Patent number: 8653565
    Abstract: Various aspects of the technology includes a quad semiconductor power and/or switching FET comprising a pair of control/sync FET devices. Current may be distributed in parallel along source and drain fingers. Gate fingers and pads may be arranged in a serpentine configuration for applying gate signals to both ends of gate fingers. A single continuous ohmic metal finger includes both source and drain regions and functions as a source-drain node. A set of electrodes for distributing the current may be arrayed along the width of the source and/or drain fingers and oriented to cross the fingers along the length of the source and drain fingers. Current may be conducted from the electrodes to the source and drain fingers through vias disposed along the surface of the fingers. Heat developed in the source, drain, and gate fingers may be conducted through the vias to the electrodes and out of the device.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 18, 2014
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8648392
    Abstract: A plurality of PMOS transistors are provided on a substrate along an X-axis direction such that a gate length direction of each of the PMOS transistors is parallel to the X-axis direction. A plurality of NMOS transistors are provided on the substrate along the X-axis direction such that a gate length direction of each of the NMOS transistors is parallel to the X-axis direction, and each of the plurality of NMOS transistors is opposed to a corresponding one of the PMOS transistors in the Y-axis direction. Gate lines respectively correspond to the PMOS transistors and the NMOS transistors, and are arranged parallel to each other and extend linearly along the Y-axis direction such that each of the gate lines passes through gate areas of the PMOS transistors and NMOS transistors which correspond to each of the gate lines.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: February 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Hidetoshi Nishimura, Masaki Tamaru
  • Patent number: 8618579
    Abstract: To provide a circuit layout design method that can prevent degradation of the circuit reliability even in highly miniaturized circuit cells. In order to prevent noise from a power supply potential or a reference potential with a large potential difference from affecting a gate electrode and causing a malfunction, a first plug connected to the gate electrode and a second plug to which the power supply potential or the reference potential is supplied are required to be spaced from each other by a distance sufficient for the noise from the power supply potential or the reference potential not to affect the first plug. To this end, among the second plugs placed at equal intervals under the wiring, only the second plug placed at a layout position that is not sufficiently spaced from the first plug is deleted at the time of planar layout design.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: December 31, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroharu Shimizu, Masakazu Nishibori, Toshihiko Ochiai
  • Patent number: 8618608
    Abstract: A lateral silicon controlled rectifier structure includes a P-type substrate; an N-well region in the P-type substrate; a first P+ doped region in the N-well region and being connected to an anode; a P-well region in the P-type substrate and bordering upon the N-well region; a first N+ doped region formed in the P-well region and separated from the first P+ doped region by a spacing distance, the first N+ doped region being connected to a cathode; and a gate structure overlying a portion of the P-type substrate between the first P+ doped region and the first N+ doped region.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: December 31, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Ta-Cheng Lin, Te-Chang Wu
  • Patent number: 8614496
    Abstract: A method scales down an integrated circuit layout structure without substantially jeopardizing electronic characteristics of devices. First, a conductive line set includes a first conductive line and a second conductive line respectively passing through a first region and a second region. Second, a sizing-down operation is performed so that the first conductive line and the second conductive line respectively have a first region scaled-down line width, a first region scaled-down space and a first region scaled-down pitch in the first region as well as selectively have a second region original line width, a second region scaled-down space and a second region scaled-down pitch in the second region. The first region scaled-down line width and the second region original line width are substantially different from each other.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 24, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Hsien-Chang Chang
  • Patent number: 8609489
    Abstract: Some embodiments include methods of forming memory. A series of photoresist features may be formed over a gate stack, and a placeholder may be formed at an end of said series. The placeholder may be spaced from the end of said series by a gap. A layer may be formed over and between the photoresist features, over the placeholder, and within said gap. The layer may be anisotropically etched into a plurality of first vertical structures along edges of the photoresist features, and into a second vertical structure along an edge of the placeholder. A mask may be formed over the second vertical structure. Subsequently, the first vertical structures may be used to pattern string gates while the mask is used to pattern a select gate. Some embodiments include methods of forming conductive runners, and some embodiments may include semiconductor constructions.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 17, 2013
    Assignee: Micron Technology, Inc.
    Inventors: David A. Kewley, Brian Cleereman, Stephen W. Russell, Rex Stone, Anthony C. Krauth
  • Patent number: 8598632
    Abstract: An integrated circuit having differently-sized features wherein the smaller features have a pitch multiplied relationship with the larger features, which are of such size as to be formed by conventional lithography.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: December 3, 2013
    Assignee: Round Rock Research LLC
    Inventors: Luan Tran, William T. Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi Bai, Zhiping Yin, Paul Morgan, Mirzafer K. Abatchev, Gurtej S. Sandhu, D. Mark Durcan
  • Publication number: 20130313615
    Abstract: An integrated circuit layout having a mixed track standard cell configuration that having a mixed track standard cell configuration that includes first well regions of a predetermined height and second well regions of a predetermined height, the first and second well regions are arranged within a substrate, first conductors and second conductors arranged and extending across regions of corresponding first and second well regions, and a plurality of standard cells in multiple rows. The standard cells include a first substantially equal to standard cell having a first cell height substantially equal to I(X+Y)+X or Y, wherein X is one half the predetermined height of the first well region, Y is one half the predetermined height of the second well region, and I is a positive integer.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 28, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jiann-Tyng TZENG, Chih-Liang CHEN, Yi-Feng CHEN, Kam-Tou SIO, Shang-Chih HSIEH, Helen Shu-Hui CHANG
  • Patent number: 8592872
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Each of a number of conductive features within a gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature, with a centerline of each originating rectangular-shaped layout feature aligned in a parallel manner. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. Widths of the first and second p-type diffusion regions are substantially equal, such that the first and second PMOS transistor devices have substantially equal widths. Widths of the first and second n-type diffusion regions are substantially equal, such that the first and second NMOS transistor devices have substantially equal widths.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: November 26, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8587034
    Abstract: A semiconductor device includes conductive features within a gate electrode level region that are each fabricated from respective originating rectangular-shaped layout features having its centerline aligned parallel to a first direction. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and first NMOS transistor devices extend along a first gate electrode track. The gate electrodes of the second PMOS and second NMOS transistor devices extend along second and third gate electrode tracks, respectively. A first set of interconnected conductors electrically connect the gate electrodes of the first PMOS and second NMOS transistor devices. A second set of interconnected conductors electrically connect the gate electrodes of the second PMOS and first NMOS transistor devices.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 19, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8586437
    Abstract: A method of manufacturing a semiconductor device includes forming a first region including a FinFET (Fin Field Effect Transistor), forming a second region including a PlanarFET (Planar Field Effect Transistor), forming first extension regions in the plurality of fins in the first region, forming second extension regions in the second region using the second gate electrode as a mask, forming first side walls and second side walls on side surfaces of the first gate electrode and on side surfaces of the second gate electrode, respectively, and forming a source and a drain of the FinFET in the first region using the first gate electrode and first side walls as masks and forming a source and a drain of the PlanarFET in the second region by an ion implantation method using the second gate electrode and second side walls as masks, at the same time.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: November 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Toshiyuki Iwamoto, Gen Tsutsui
  • Patent number: 8587341
    Abstract: The invention provides a reduced complexity layout style based on applying a limited set of changes to an underlying repeated base template. With the templates properly defined in accordance with the characteristic features disclosed, the invention enables efficient implementation of logic circuitry, with a dramatic reduction in the pattern complexity (or number of unique layout patterns at each mask level) for realistically sized designs. This reduction in pattern complexity that the invention provides is particularly important for advanced and emerging semiconductor processes, because it enables effective use of SMO and full-chip mask optimization.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: November 19, 2013
    Assignee: PDF Solutions, Inc.
    Inventor: Tejas Jhaveri
  • Patent number: 8587097
    Abstract: A semiconductor device includes a first pad row and a second pad row, a first ground potential supply electrode which is connected to a first interconnect provided near the first pad row, and a second ground potential supply electrode which is connected to a second interconnect provided near the second pad row. The first pad row includes a first pad connected to the first circuit within the chip and connected to the first interconnect via a first bonding wire, and includes a second pad connected to a second circuit within the chip and connected to the second interconnect via a second bonding wire crossing over the second pad row.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Elpida Memory Inc.
    Inventors: Hiromasa Takeda, Satoshi Isa, Shotaro Kobayashi, Mitsuaki Katagiri
  • Patent number: 8581303
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. Each of a number of conductive features within a gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature having a centerline aligned parallel to a first direction. The conductive features respectively form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected. The gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected. The electrical connection between the gate electrodes of the first PMOS and second NMOS transistor devices is formed in part by one or more electrical conductors present within at least one interconnect level above the gate electrode level region.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8581304
    Abstract: A semiconductor device includes conductive features within a gate electrode level region that are each fabricated from respective originating rectangular-shaped layout features having its centerline aligned parallel to a first direction. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS, second PMOS, first NMOS, and second NMOS transistor devices respectively extend along different gate electrode tracks. A first set of interconnected conductors electrically connect the gate electrodes of the first PMOS and second NMOS transistor devices. A second set of interconnected conductors electrically connect the gate electrodes of the second PMOS and first NMOS transistor devices. The first and second sets of interconnected conductors traverse across each other within different levels of the semiconductor device.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8575703
    Abstract: In a semiconductor device having paired transistors, an imbalance in characteristics of the paired transistors is reduced or prevented while an increase in circuit area is reduced or prevented. First and second transistors have first and second regions having the same active region pattern, and third and fourth transistors have third and fourth regions having the same active region pattern. The active regions of the third and fourth transistors have a longer length in the channel length direction than that of the active regions of the first and second transistors. The third and fourth regions have a narrower width in the channel length direction than that of the first and second regions.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Tomoyuki Ishizu
  • Patent number: 8569801
    Abstract: A three-dimensional CMOS circuit having at least a first N-conductivity field-effect transistor and a second P-conductivity field-effect transistor respectively formed on first and second crystalline substrates. The first field-effect transistor is oriented, in the first substrate, with a first secondary crystallographic orientation. The second field-effect transistor is oriented, in the second substrate, with a second secondary crystallographic orientation. The orientations of the first and second transistors form a different angle from the angle formed, in one of the substrates, by the first and second secondary crystallographic directions. The first and second substrates are assembled vertically.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: October 29, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Benjamin Vincent
  • Patent number: 8542337
    Abstract: An embodiment of the invention provides a pixel structure of an active matrix organic light emitting display comprising a gate line, a common electrode line, a signal line, a power line, a first thin film transistor which is used as an addressing element, and a second thin film transistor which controls the organic light emitting display. A short-circuit-ring structure is connected between the common electrode line and the signal line and the short-circuit-ring structure communicates the signal line and the common electrode line in the case where a large current flows.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 24, 2013
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventor: Mi Zhang
  • Patent number: 8541271
    Abstract: Various aspects of the technology provide a dual semiconductor power and/or switching FET device to replace two or more discrete FET devices. Portions of the current may be distributed in parallel to sections of the source and drain fingers to maintain a low current density and reduce the size while increasing the overall current handling capabilities of the dual FET. Application of the gate signal to both ends of gate fingers, for example, using a serpentine arrangement of the gate fingers and gate pads, simplifies layout of the dual FET device. A single integral ohmic metal finger including both source functions and drain functions reduces conductors and contacts for connecting the two devices at a source-drain node. Heat developed in the source, drain, and gate fingers may be conducted through the vias to the electrodes and out of the device.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: September 24, 2013
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8536681
    Abstract: A MOS integrated circuit including an N-type silicide MOS transistor, an N-type non-silicide MOS transistor simultaneously formed with the N-type silicide MOS transistor, and an isolation film having an N conductivity type impurity formed on the N-type non-silicide MOS transistor.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: September 17, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Hiroshi Oji
  • Patent number: 8513707
    Abstract: An improved RF CMOS transistor design is described. Local, narrow interconnect lines, which are located substantially above the active area of the transistor, are each connected to either a source terminal or a drain terminal. The source and the drain terminal are arranged orthogonally to the local interconnect lines and each terminal is significantly wider than a local interconnect line. In an example, the local interconnect lines are formed in a first metal layer and the source and drain terminals are formed in one or more subsequent metal layers.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 20, 2013
    Assignee: Cambridge Silicon Radio Ltd.
    Inventor: Rainer Herberholz
  • Patent number: 8487658
    Abstract: Method and apparatus for voltage level shifters (VLS) design in bulk CMOS technology. A multi-voltage circuit or VLS that operate with different voltage levels and that provides area and power savings for multi-bit implementation of level shifter design. A two-bit VLS to shift bits from a first voltage level logic to a second voltage level logic. The VLS formed with a first N-well in a substrate. The VLS formed with a second N-well in the substrate, adjacent to a side of the first N-well. The VLS formed with a third N-well in the substrate, adjacent to a side of the first N-well and opposite the second N-well. A first one-bit VLS circuit having a portion formed on the first N-well and a portion formed on the second N-well. A second bit VLS circuit having a portion formed on the first N-well and a portion formed on the third N-well.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: July 16, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Animesh Datta, William James Goodall, III
  • Patent number: 8482039
    Abstract: A memory array includes a first layer, a second layer, a third layer and a contact. The first layer is disposed on a substrate. The second layer includes a first conductive line. The first conductive line includes first line segments and second line segments. Each of the second line segments are connected to a respective one of the first line segments. The first line segments extend in a first direction on the first layer. The second line segments extend in a second direction on the first layer. The first direction is different than the second direction. The third layer is disposed on the second layer. The contact is disposed through the second layer and connects the third layer to the first conductive line. One of the first line segments extends towards the contact. Each of the first and second line segments are at least a predetermined distance from the contact.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 9, 2013
    Assignee: Marvell International Ltd.
    Inventors: Qiang Tang, Min She, Ken Liao
  • Patent number: 8476678
    Abstract: A CMOS device with transistors having different gate dielectric materials and a method of manufacture thereof. A CMOS device is formed on a workpiece having a first region and a second region. A first gate dielectric material is deposited over the second region. A first gate material is deposited over the first gate dielectric material. A second gate dielectric material comprising a different material than the first gate dielectric material is deposited over the first region of the workpiece. A second gate material is deposited over the second gate dielectric material. The first gate material, the first gate dielectric material, the second gate material, and the second gate dielectric material are then patterned to form a CMOS device having a symmetric Vt for the PMOS and NMOS FETs.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 2, 2013
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Patent number: 8471299
    Abstract: A power transistor for use in an audio application is laid out to minimize hot spots. Hot spots are created by non-uniform power dissipation or overly concentrated current densities. The source and drain pads are disposed relative to each other to facilitate uniform power dissipation. Interleaving metal fingers and upper metal layers are connected directly to lower metal layers in the absence of vias to improve current density distribution. This layout improves some fail detection tests by 17%.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: June 25, 2013
    Assignee: STMicroelectronics (Shenzhen) R&D Co. Ltd.
    Inventors: Guo Hua Zhong, Mei Yang
  • Patent number: 8470674
    Abstract: A structure, method and system for complementary strain fill for integrated circuit chips. The structure includes a first region of an integrated circuit having multiplicity of n-channel and p-channel field effect transistors (FETs); a first stressed layer over n-channel field effect transistors (NFETs) of the first region, the first stressed layer of a first stress type; a second stressed layer over p-channel field effect transistors (PFETs) of the first region, the second stressed layer of a second stress type, the second stress type opposite from the first stress type; and a second region of the integrated circuit, the second region not containing FETs, the second region containing first sub-regions of the first stressed layer and second sub-regions of the second stressed layer.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: June 25, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8445943
    Abstract: A semiconductor integrated circuit device includes: a plurality of data holding circuits; and a plurality of wells. The plurality of data holding circuits is provided in a substrate of a first conductive type. Each of the plurality of data holding circuits includes a first well of the first conductive type and a second well of a second conductive type different from the first conductive type. The plurality of wells is arranged in two directions for the each of the plurality of data holding circuits.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: May 21, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Furuta
  • Patent number: 8443306
    Abstract: A multi-operation mode application specific integrated circuit (ASIC) implemented in fully-depleted silicon-on-insulator (FDSOI) includes an ASIC implemented in FDSOI having a plurality of operating modes, plurality of power rails, and a power supply that provides voltages for the first and second rails corresponding to the plurality of operating modes. The power rails include at least one VDD rail, at least one Vss rail, a first rail for biasing a NGP region of PMOS transistor devices in the ASIC, and a second rail for biasing a PGP region of NMOS transistor devices in the ASIC.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: May 14, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sang Hoo Dhong, Jiann-Tyng Tzeng, Kushare Mangesh Babaji, Ramakrishnan Krishnan, Lee-Chung Lu, Ta-Pen Guo
  • Patent number: 8436400
    Abstract: A cell of a semiconductor device is disclosed to include a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal and minimized across the gate electrode level region. The gate electrode level includes conductive features defined along at least four different virtual lines of extent in the first parallel direction. A width of the conductive features within a five wavelength photolithographic interaction radius is less than a wavelength of light of 193 nanometers as used in a photolithography process for their fabrication.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: May 7, 2013
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8432003
    Abstract: To suppress stress variation on a channel forming region, a semiconductor device includes an element isolating region on the semiconductor substrate principal surface, and an element forming region on the principal surface to be surrounded by the element isolating region. The principal surface has orthogonal first and second directions. A circumferential shape of the element forming region has a first side extending along the first direction. The element forming region has a first transistor region (TR1), a second transistor region (TR2) arranged between the first side and TR1, and a dummy region on the first direction side of TR1. TR1 has a first channel forming region facing the first side. TR2 has a second channel forming region facing the first side. The first channel forming region has a non-facing region that is not facing the second channel forming region. The dummy region faces the non-facing region in the second direction.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: April 30, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Toshihide Yamaguchi
  • Patent number: 8432016
    Abstract: The present disclosure relates to a stacked body-contacted field effect transistor (FET) that includes multiple body-contacted FETs coupled in series and a lateral isolation band encircling a periphery of the multiple FETs. The multiple FETs include a first end FET having a first body, which is not directly connected to any body of any other of the multiple FETs, and a second end FET having a second body, which is not directly connected to any body of any other of the multiple FETs. The multiple FETs may include inner FETs that incorporate merged source-drains to save space. By keeping the bodies electrically separated from one another, the full benefits of body-contacting may be realized. However, by incorporating multiple FETs within a single lateral isolation band further saves space.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: April 30, 2013
    Assignee: RF Micro Devices, Inc.
    Inventor: Daniel Charles Kerr
  • Patent number: 8421125
    Abstract: A semiconductor device includes a conductive pattern formed on a substrate, a conductive land formed to come into contact with at least part of the top surface of the conductive pattern, and a conductive section formed on the conductive land. The conductive section is electrically connected through the conductive land to the conductive pattern.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: April 16, 2013
    Assignee: Pansonic Corporation
    Inventor: Masaki Tamaru
  • Patent number: 8410526
    Abstract: A semiconductor integrated circuit device with reduced cell size including a first tap formed in a first direction to supply a power-supply potential, a second tap formed in the first direction to supply a power-supply potential and positioned to confront the first tap in a second direction intersecting the first direction, and a standard cell formed between the first and second taps, a cell height (distance) between the center of the first tap and that of the second tap both in the second direction set to ((an integer+0.5)×a wiring pitch of the second-layer wiring lines) or (an integer+0.25×a wiring pitch of the second-layer wiring lines.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: April 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroharu Shimizu
  • Patent number: 8405129
    Abstract: A design structure tangibly embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit includes a plurality of bit line structures, a plurality of word line structures intersecting said plurality of bit line structures to form a plurality of cell locations, and a plurality of cells located at said plurality of cell locations, each of said cells being selectively coupled to a corresponding bit line structure under control of a corresponding word line structure, each of said cells comprising a logical storage element having at least a first n-type field effect transistor and at least a first p-type field effect transistor, wherein said at least first n-type field effect transistor is formed with a relatively thick buried oxide layer sized to reduce capacitance of said bit line structures, and said at least first p-type field effect transistor is formed with a relatively thin buried oxide layer.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ching-Te K. Chuang, Fadi H. Gebara, Keunwoo Kim, Jente Benedict Kuang, Hung C. Ngo
  • Patent number: 8390330
    Abstract: A circuit base cell is for implementing an engineering change order (ECO) obtained on a semiconductor substrate. The base cell may include a PMOS transistor having a first active region obtained in a first diffusion P+ layer implanted in an N-well provided for on the substrate, and an NMOS transistor having a second active region obtained in a second diffusion N+ layer implanted on the substrate in such a manner as to be electrically insulated from the first diffusion P+ layer. The cell may be characterized in that the active regions and the diffusion layers are aligned therebetween with respect to a reference axis and they are extended symmetrically in the direction orthogonal to the axis. A first and a second width may be associated with the active regions and to the diffusion layers, respectively. The first and second width may be greater than a width of the cell, which is equivalent to a pitch of the standard minimum cell.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 5, 2013
    Assignee: STMicroelectronics S.R.L.
    Inventors: Luca Ciccarelli, Roberto Canegallo, Claudio Mucci, Massimiliano Innocenti, Valentina Nardone
  • Patent number: 8390033
    Abstract: A semiconductor device is provided that includes a substrate, a static random access memory (SRAM) unit cell formed in the substrate, a first metal layer formed over the substrate, the first metal layer providing local interconnection to the SRAM unit cell, a second metal layer formed over the first metal layer, the second metal layer including: a bit line and a complementary bit line each having a first thickness and a Vcc line disposed between the bit line and the complementary bit line, and a third metal layer formed over the second metal layer, the third metal layer including a word line having a second thickness greater than the first thickness.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: March 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon Jhy Liaw
  • Patent number: 8390034
    Abstract: Different portions of a continuous loop of semiconductor material are electrically isolated from one another. In some embodiments, the end of the loop is electrically isolated from mid-portions of the loop. In some embodiments, loops of semiconductor material, having two legs connected together at their ends, are formed by a pitch multiplication process in which loops of spacers are formed on sidewalls of mandrels. The mandrels are removed and a block of masking material is overlaid on at least one end of the spacer loops. In some embodiments, the blocks of masking material overlay each end of the spacer loops. The pattern defined by the spacers and the blocks are transferred to a layer of semiconductor material. The blocks electrically connect together all the loops. A select gate is formed along each leg of the loops. The blocks serve as sources/drains.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: March 5, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 8367430
    Abstract: Shapes and orientations of contacts or other closed contours on an integrated circuit are characterized by calculating Elliptic Fourier descriptors. The descriptors are then used for generating design rules for the integrated circuit and for assessing process capability for the manufacturing of the integrated circuit. Monte Carlo simulation can be performed in conjunction with the elliptic Fourier descriptors.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: February 5, 2013
    Assignee: Globalfoundries, Inc.
    Inventors: Yuansheng Ma, Harry J. Levinson, Jongwook Kye
  • Patent number: 8357955
    Abstract: Disclosed herein is a semiconductor integrated circuit, wherein a desired circuit is formed by combining and laying out a plurality of standard cells and connecting the cells together, of which the cell length, i.e., the gap between a pair of opposed sides, is standardized, the plurality of standard cells forming the desired circuit include complementary in-phase driven standard cells, each of which includes a plurality of complementary transistor pairs that are complementary in conductivity type to each other and have their gate electrodes connected together, and N (?2) pairs of all the complementary transistor pairs are driven in phase, and the size of the standardized cell length of the complementary in-phase driven standard cell is defined as an M-fold cell length which is M (N?M?2) times the basic cell length which is appropriate to the single complementary transistor pair.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: January 22, 2013
    Assignee: Sony Corporation
    Inventor: Yoshinori Tanaka
  • Patent number: 8354697
    Abstract: To provide a circuit layout design method that can prevent degradation of the circuit reliability even in highly miniaturized circuit cells. In order to prevent noise from a power supply potential or a reference potential with a large potential difference from affecting a gate electrode and causing a malfunction, a first plug connected to the gate electrode and a second plug to which the power supply potential or the reference potential is supplied are required to be spaced from each other by a distance sufficient for the noise from the power supply potential or the reference potential not to affect the first plug. To this end, among the second plugs placed at equal intervals under the wiring, only the second plug placed at a layout position that is not sufficiently spaced from the first plug is deleted at the time of planar layout design.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: January 15, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroharu Shimizu, Masakazu Nishibori, Toshihiko Ochiai
  • Patent number: 8344426
    Abstract: A semiconductor device includes a plurality of first cells having a first cell height, and a plurality of second cells having a second cell height. Each of the first cells has a first MIS transistor of a first conductivity type, and a substrate contact region of a second conductivity type. Each of the second cells has a second MIS transistor of the first conductivity type, a power supply region of the first conductivity type, and a first extended region of the first conductivity type that is silicidated at a surface thereof. The first cell height is greater than the second cell height.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 1, 2013
    Assignee: Panasonic Corporation
    Inventors: Naoki Kotani, Tokuhiko Tamaki
  • Patent number: 8344427
    Abstract: The chip area of a semiconductor device having a plurality of standard cells is to be made smaller. A semiconductor device includes first and second standard cells. The first standard cell includes a diffusion region, a functional device region opposed to the diffusion region, and a metal layer. The second standard cell includes another diffusion region continuous with the diffusion region, another functional device region opposed to the other diffusion region, and further another diffusion region formed between the other diffusion region and the other functional device region. The metal layer and the other functional device region are coupled together electrically through the diffusion regions.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: January 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Omura
  • Patent number: 8338864
    Abstract: A semiconductor device in a continuous diffusion region formed on a semiconductor substrate and having either a P-type or N-type polarity includes: a first transistor formed within the continuous diffusion region; a second transistor formed within the continuous diffusion region and in an area that is different from an area where the first transistor is formed; a third transistor formed within the continuous diffusion region and in an area between the first and second transistors, and having a gate electrode to which a fixed potential is applied; and a fourth transistor formed within the continuous diffusion region and in an area between the second and third transistors, and having a gate electrode to which a fixed potential is applied.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: December 25, 2012
    Assignee: Fujitsu Limited
    Inventor: Hiroshi Katakura