Vertical Transistor Patents (Class 257/302)
  • Publication number: 20150028408
    Abstract: An integrated circuit is formed in a semiconductor substrate. The integrated circuit includes a trench formed in a first main surface of the semiconductor substrate. The trench includes a first trench portion and a second trench portion. The first trench portion is connected with the second trench portion. Openings of the first and second trench portions are adjacent to the first main surface. The integrated circuit further includes a trench transistor structure including a gate electrode disposed in the first trench portion, and a trench capacitor structure including a capacitor dielectric and a first capacitor electrode. The capacitor dielectric and the first capacitor electrode are disposed in the second trench portion. The first capacitor electrode includes a layer conformal with a sidewall of the second trench portion.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Inventors: Andreas Meiser, Markus Zundel, Till Schloesser
  • Patent number: 8941122
    Abstract: In a manufacturing method of a silicon carbide semiconductor device, a semiconductor substrate made of single crystal silicon carbide is prepared. At a portion of the semiconductor substrate where a first electrode is to be formed, a metal thin film made of electrode material including an impurity is formed. After the metal thin film is formed, the first electrode including a metal reaction layer in which the impurity is introduced is formed by irradiating the metal thin film with a laser light.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: January 27, 2015
    Assignee: DENSO CORPORATION
    Inventors: Jun Kawai, Norihito Tokura, Kazuhiko Sugiura
  • Patent number: 8941174
    Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. A GaN-based stacked layer 15 includes n?-type GaN drift layer 4/p-type GaN barrier layer 6/n+-type GaN contact layer 7. An opening 28 extends from a top layer and reaches the n?-type GaN drift layer 4. The semiconductor device includes a regrown layer 27 located so as to cover a wall surface and a bottom portion of the opening, the regrown layer 27 including an electron drift layer 22 and an electron source layer 26, a source electrode S located around the opening, a gate electrode G located on the regrown layer in the opening, and a bottom insulating layer 37 located in the bottom portion of the opening.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: January 27, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
  • Patent number: 8937344
    Abstract: The semiconductor device includes a semiconductor substrate having a cell region and a peripheral circuit region defined therein, semiconductor memory elements formed over the semiconductor substrate in the cell region, an interlayer insulating layer formed over the semiconductor substrate in the peripheral circuit region, first conductive layers substantially vertically passing through the interlayer insulating layer, and arranged in a matrix, and second conductive layers coupling the first conductive layers in rows or columns, each pair of the second conductive layers and the first conductive layers coupled to the each pair of the second conductive layers, respectively, forming electrodes of a capacitor.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: January 20, 2015
    Assignee: SK Hynix Inc.
    Inventors: Jung Ryul Ahn, Jum Soo Kim
  • Publication number: 20150008498
    Abstract: A semiconductor component arrangement method includes producing a trench transistor structure including at least one trench disposed in the semiconductor body and at least one gate electrode disposed in the at least one trench. The method also includes producing a capacitor structure comprising an electrode structure disposed in at least one further trench, the electrode structure comprising at least one electrode. The gate electrode and the at least one electrode of the electrode structure are produced by common process steps.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 8, 2015
    Inventors: Markus Zundel, Franz Hirler, Norbert Krischke
  • Patent number: 8927353
    Abstract: A fin field effect transistor and method of forming the same. The fin field effect transistor includes a semiconductor substrate having a fin structure and between two trenches with top portions and bottom portions. The fin field effect transistor further includes shallow trench isolations formed in the bottom portions of the trenches and a gate electrode over the fin structure and the shallow trench isolation, wherein the gate electrode is substantially perpendicular to the fin structure. The fin field effect transistor further includes a gate dielectric layer along sidewalls of the fin structure and source/drain electrode formed in the fin structure.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ju-Wang Hsu, Chih-Yuan Ting, Tang-Xuan Zhong, Yi-Nien Su, Jang-Shiang Tsai
  • Patent number: 8928057
    Abstract: A method including providing fins etched from a semiconductor substrate and covered by an oxide layer and a nitride layer, the oxide layer being located between the fins and the nitride layer, removing a portion of the fins to form an opening, forming a dielectric spacer on a sidewall of the opening, and filling the opening with a fill material, wherein a top surface of the fill material is substantially flush with a top surface of the nitride layer. The method may further include forming a deep trench capacitor in-line with one of the fins, removing the nitride layer to form a gap between the fins and the fill material, wherein the fill material has re-entrant geometry extending over the gap, and removing the re-entrant geometry and causing the gap between the fins and the fill material to widen.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: William Cote, Johnathan E. Faltermeier, Babar A. Khan, Ravikumar Ramachandran, Theodorus E. Standaert, Xinhui Wang
  • Patent number: 8921934
    Abstract: An integrated circuit device includes a pad layer having a body portion with a first doping type laterally adjacent to a drift region portion with a second doping type, a trench formed in the pad layer, the trench extending through an interface of the body portion and the drift region portion, a gate formed in the trench and over a top surface of the pad layer along the interface of the body portion and the drift region portion, an oxide formed in the trench on opposing sides of the gate, and a field plate embedded in the oxide on each of the opposing sides of the gate.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Patent number: 8907394
    Abstract: In one embodiment, a semiconductor device includes a multi-portion shield electrode structure formed in a drift region. The shield electrode includes a wide portion formed in proximity to a channel side of the drift region, and a narrow portion formed deeper in the drift region. The narrow portion is separated from the drift region by a thicker dielectric region, and the wide portion is separated from the drift region by a thinner dielectric region. That portion of the drift region in proximity to the wide portion can have a higher dopant concentration than other portions of the drift region.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: December 9, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Zia Hossain
  • Patent number: 8901621
    Abstract: Nanochannel sensors and methods for constructing nanochannel sensors. An example method includes forming a sacrificial line on an insulating layer, forming a dielectric layer, etching a pair of electrode trenches, forming a pair of electrodes, and removing the sacrificial line to form a nanochannel. The dielectric layer may be formed on insulating layer and around the sacrificial line. The pair of electrode trenches may be etched in the dielectric layer on opposite sides of the sacrificial line. The pair of electrodes may be formed by filling the electrode trenches with electrode material. The sacrificial line may be removed by forming a nanochannel between the at least one pair of electrodes.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jingwei Bai, Evan G. Colgan, Christopher V. Jahnes, Stanislav Polonsky
  • Patent number: 8901629
    Abstract: A semiconductor device includes a semiconductor substrate divided into a cell region and a peripheral circuit region defined in a first direction, wherein the peripheral circuit region is divided into a first region and a second region defined in a second direction substantially orthogonal to the first direction; gate lines formed over the semiconductor substrate in the cell region and arranged in the second direction; and a capacitor including lower electrodes over the semiconductor substrate, a dielectric layer and an upper electrode, wherein the lower electrodes in the first and second regions, separated from each other in the first direction and coupled to each other in the first region, the dielectric layer is formed along surfaces of the lower electrodes in the second region, and the upper electrode is formed over the dielectric layer.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jung Ryul Ahn, Yun Kyoung Lee
  • Patent number: 8901642
    Abstract: A semiconductor device includes a semiconductor body having a first surface defining a vertical direction and a source metallization arranged on the first surface. In a vertical cross-section the semiconductor body further includes: a drift region of a first conductivity type; at least two compensation regions of a second conductivity type each of which forms a pn-junction with the drift region and is in low resistive electric connection with the source metallization; a drain region of the first conductivity type having a maximum doping concentration higher than a maximum doping concentration of the drift region, and a third semiconductor layer of the first conductivity type arranged between the drift region and the drain region and includes at least one of a floating field plate and a floating semiconductor region of the second conductivity type forming a pn-junction with the third semiconductor layer.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: December 2, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Franz Hirler
  • Patent number: 8901631
    Abstract: Provided is a method for fabricating a semiconductor device, including the following steps. A substrate having a plurality of pillars is provided, wherein a plurality of trenches are formed around each pillar. A doped region is formed in the substrate and below each pillar. The doped region below each trench is removed to form an opening such that the doped regions below the adjacent pillars are separated from each other. A shielding layer is formed in each opening.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 2, 2014
    Assignee: Nanya Technology Corporation
    Inventors: Sheng-Wei Yang, Ying-Cheng Chuang, Shyam Surthi
  • Patent number: 8896058
    Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. The vertical semiconductor device includes a GaN-based stacked layer 15 having an opening 28 and the GaN-based stacked layer 15 includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. The vertical semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, and a gate electrode G located on the regrown layer. The gate electrode G covers a portion having a length corresponding to the thickness of the p-type GaN-based barrier layer and is terminated at a position on the wall surface, the position being away from the bottom portion of the opening.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: November 25, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
  • Patent number: 8896047
    Abstract: Representative implementations of devices and techniques provide a termination arrangement for a transistor structure. The periphery of a transistor structure may include a recessed area having features arranged to improve performance of the transistor at or near breakdown.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: November 25, 2014
    Assignee: Infineon Technologies AG
    Inventors: Andrew Wood, Markus Zundel
  • Patent number: 8890239
    Abstract: In a vertical semiconductor device including a channel in an opening, a semiconductor device whose high-frequency characteristics can be improved and a method for producing the semiconductor device are provided. The semiconductor device includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. An opening 28 extends from a top layer and reaches the n-type GaN-based drift layer. The semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, a drain electrode D, and a gate electrode G located on the regrown layer. Assuming that the source electrode serving as one electrode and the drain electrode serving as the other electrode constitute a capacitor, the semiconductor device includes a capacitance-decreasing structure that decreases the capacitance of the capacitor.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 18, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji Yaegashi, Makoto Kiyama, Mitsunori Yokoyama, Kazutaka Inoue, Masaya Okada, Yu Saitoh
  • Patent number: 8883593
    Abstract: A semiconductor pillar which has a first conductivity type and protrudes from a semiconductor substrate, is formed. A bottom diffusion layer having a second conductivity type is formed in the semiconductor substrate around a bottom of the semiconductor pillar. A gate insulator film which covers a side surface of the semiconductor pillar, is formed. A gate electrode which covers the gate insulator film, is formed. A top diffusion layer having the second conductivity type is formed at a top portion of the semiconductor pillar. The top diffusion layer including a semiconductor body is formed by an epitaxial growth which contains an impurity.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 11, 2014
    Assignee: PS4 Luxco S.a.r.l.
    Inventor: Kazuhiro Nojima
  • Patent number: 8883578
    Abstract: Various embodiments form silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is obtained. The semiconductor wafer comprises a substrate, a dielectric layer, and a semiconductor layer including silicon germanium (SiGe). At least one SiGe fin is formed from at least a first SiGe region of the semiconductor layer in at least one PFET region of the semiconductor wafer. Strained silicon is epitaxially grown on at least a second SiGe region of the semiconductor layer. At least one strained silicon fin is formed from the strained silicon in at least one NFET region of the semiconductor wafer.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Chun-chen Yeh, Tenko Yamashita
  • Patent number: 8883576
    Abstract: Provided are methods of fabricating a semiconductor device. The method may include forming a mold layer on a substrate, forming a mask layer on the mold layer, etching the mold layer using the mask layer as an etch mask to form a channel hole penetrating the mold layer, shrinking the mask layer to provide a reduced mask layer, forming a spacer layer to cover the reduced mask layer, and forming a vertical channel to fill the channel hole and be electrically connected to the substrate. As a result, the channel hole can have an enlarged entrance.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jinkwan Lee, Yoochul Kong, Seongsoo Lee
  • Patent number: 8878271
    Abstract: Methods, apparatuses, and systems for providing a body connection to a vertical access device. The vertical access device may include a digit line extending along a substrate to a digit line contact pillar, a body connection line extending along the substrate to a body connection line contact pillar, a body region disposed on the body connection line, an electrode disposed on the body region, and a word line extending to form a gate to the body region. A method for operation includes applying a first voltage to the body connection line, and applying a second voltage to the word line to cause a conductive channel to form through the body region. A memory cell array may include a plurality of vertical access devices.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 4, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Rajesh N. Gupta, Srinivas Pulugurtha, Chandra V. Mouli, Wolfgang Mueller
  • Patent number: 8866208
    Abstract: A semiconductor device includes a first capacitor in a trench of a semiconductor substrate and an active pillar disposed on the semiconductor substrate opposite the first capacitor. The active pillar includes first region, first channel region, second region, second channel region and third region, sequentially stacked. A pillar connection pattern electrically connects the first capacitor to a first source region. A first gate electrode is disposed on a sidewall of the first channel region. A common drain region is disposed in the second region, and a common bit line is disposed on a sidewall of the common drain region. A second gate electrode is disposed on a sidewall of the second channel region, and a second source region is disposed in the third region. A second capacitor is disposed on a top surface of the second source region opposite the second channel region.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: October 21, 2014
    Assignee: SK hynix Inc.
    Inventor: Jin Yul Lee
  • Patent number: 8866209
    Abstract: Semiconductor arrays including a plurality of access devices disposed on a buried conductive line and methods for forming the same are provided. The access devices each include a transistor having a source region and drain region spaced apart by a channel region of opposite dopant type and an access line associated with the transistor. The access line may be electrically coupled with one or more of the transistors and may be operably coupled to a voltage source. The access devices may be formed in an array on one or more conductive lines. A system may be formed by integrating the semiconductor devices with one or more memory semiconductor arrays or conventional logic devices, such as a complementary metal-oxide-semiconductor (CMOS) device.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: October 21, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak
  • Patent number: 8860113
    Abstract: A semiconductor structure is disclosed in which, in an embodiment, a first substrate includes at least one buried plate disposed in an upper part of the first substrate. Each of the at least one buried plate includes at least one buried plate contact, and a plurality of deep trench capacitors disposed about the at least one buried plate contact. A first oxide layer is disposed over the first substrate. The deep trench capacitors and buried plate contacts in the first substrate may be accessed for use in a variety of memory and decoupling applications.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jennifer E. Appleyard, John E. Barth, John B. DeForge, Herbert L. Ho, Babar A. Khan, Kirk D. Peterson, Andrew A. Turner
  • Patent number: 8847327
    Abstract: A layout data creation device includes a transistor adjustment unit. The transistor adjustment unit divides a pillar-type transistor including a plurality of unit pillar-type transistors into the unit pillar-type transistors groups. The unit pillar-type transistors can be placed in a placement area. The number of the unit pillar-type transistors in each group is an integer. The transistor adjustment unit generates sub-pillar-type transistors that are placed in the placement area.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: September 30, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Shinji Kato, Kazuteru Ishizuka, Kiyotaka Endo, Mitsuki Koda
  • Patent number: 8841178
    Abstract: Various embodiments form silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is obtained. The semiconductor wafer comprises a substrate, a dielectric layer, and a semiconductor layer including silicon germanium (SiGe). At least one SiGe fin is formed from at least a first SiGe region of the semiconductor layer in at least one PFET region of the semiconductor wafer. Strained silicon is epitaxially grown on at least a second SiGe region of the semiconductor layer. At least one strained silicon fin is formed from the strained silicon in at least one NFET region of the semiconductor wafer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Chun-chen Yeh, Tenko Yamashita
  • Patent number: 8841720
    Abstract: A semiconductor substrate capable of detecting operating current of a MOSFET and diode current in a miniaturized MOSFET such as a trench-gate type MOSFET is provided. A semiconductor substrate includes a main current region and a current sensing region in which current smaller than main current flowing in the main current region flows. The main current region has a source electrode disposed on a main surface, the source electrode being in contact with a p-type semiconductor region (body) and an n+-type semiconductor region (source), and the current sensing region has a MOSFET current detecting electrode and a diode current detecting electrode on a main surface, the MOSFET current detecting electrode being in contact with the p-type semiconductor region (body) and the n+-type semiconductor region (source), the diode current detecting electrode being in contact with the p-type semiconductor region (body).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 23, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Takayuki Hashimoto
  • Patent number: 8841715
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: September 23, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Patent number: 8836001
    Abstract: A method for fabricating a semiconductor device includes forming at least one body having two sidewalls by vertically etching a semiconductor substrate, forming a protective layer having open parts that expose portions of the both sidewalls of the body, forming a buffer layer that fills the open parts, and forming a buried bit line in the body by siliciding the buffer layer and a portion of the body between the buffer layer.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: September 16, 2014
    Assignee: SK Hynix Inc.
    Inventors: Eun-Shil Park, Ju-Hyun Myung
  • Patent number: 8835250
    Abstract: A finFET trench circuit is disclosed. FinFETs are integrated with trench capacitors by employing a trench top oxide over a portion of the trench conductor. A passing gate is then disposed over the trench top oxide to form a larger circuit, such as a DRAM array. The trench top oxide is formed by utilizing different growth rates between polysilicon and single crystal silicon.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jonathan E. Faltermeier, Veeraraghavan S. Basker, Kangguo Cheng, Theodorus Eduardus Standaert
  • Patent number: 8829617
    Abstract: A method including providing a plurality of fins etched from a semiconductor substrate and covered by an oxide layer and a nitride layer, the oxide layer being located between the plurality of fins and the nitride layer, removing a portion of the plurality of fins to form an opening, and forming a dielectric spacer on a sidewall of the opening. The method may also include filling the opening with a fill material, wherein a top surface of the fill material is substantially flush with a top surface of the nitride layer, removing the nitride layer to form a gap between the plurality of fins and the fill material, wherein the fill material has re-entrant geometry extending over the gap, and removing the re-entrant geometry and causing the gap between the plurality of fins and the fill material to widen.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Balasubramanian S. Haran, Sanjay Mehta, Shom Ponoth, Ravikumar Ramachandran, Stefan Schmitz, Theodorus E. Standaert
  • Patent number: 8829585
    Abstract: In a vertical dynamic memory cell, monocrystalline semiconductor material of improved quality is provided for the channel of an access transistor by lateral epitaxial growth over an insulator material (which complements the capacitor dielectric in completely surrounding the storage node except at a contact connection structure, preferably of metal, from the access transistor to the storage node electrode) and etching away a region of the lateral epitaxial growth including a location where crystal lattice dislocations are most likely to occur; both of which features serve to reduce or avoid leakage of charge from the storage node. An isolation structure can be provided in the etched region such that space is provided for connections to various portions of a memory cell array.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, David M. Fried, Byeong Y. Kim, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8829624
    Abstract: In one general aspect, a semiconductor structure can include a power transistor including a body region extending in a silicon region, a gate electrode insulated from the body region by a gate dielectric, a source region extending in the body region where the source region is of opposite conductivity type from the body region, a source interconnect contacting the source region, and a backside drain. The semiconductor structure can include an RC snubber monolithically integrated with the power transistor in a die. The RC snubber can include a snubber electrode insulated from the silicon region by a snubber dielectric such that the snubber electrode and the silicon region form a snubber capacitor.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 9, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Jon Gladish, Arthur Black
  • Patent number: 8816419
    Abstract: Provided is a semiconductor device having a high switching speed. A semiconductor device is provided with an n-type epitaxial layer having a plurality of trenches arranged at prescribed intervals; an embedded electrode formed on an inner surface of the trench through a silicon oxide film to embed each trench; and a metal layer, which is capacitively coupled with the embedded electrode by being arranged above the embedded electrode through a silicon oxide film. In the semiconductor device, a region between the adjacent trenches operates as a channel (current path). A current flowing in the channel is interrupted by covering the region with a depletion layer formed at the periphery of the trenches, and the current is permitted to flow through the channel by eliminating the depletion layer at the periphery of the trenches.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: August 26, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Masaru Takaishi
  • Patent number: 8809926
    Abstract: A semiconductor memory device may include a common source region on a substrate, an active pattern between the substrate and the common source region, a gate pattern facing a sidewall of the active pattern, a gate dielectric pattern between the gate pattern and the active pattern, a variable resistance pattern between the common source region and the active pattern, and an interconnection line.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sua Kim, Jin Ho Kim, Chulwoo Park, Sangbo Lee, Hongsun Hwang
  • Patent number: 8779506
    Abstract: Disclosed is a semiconductor component arrangement and a method for producing a semiconductor component arrangement. The method comprises producing a trench transistor structure with at least one trench disposed in the semiconductor body and with at least an gate electrode disposed in the at least one trench. An electrode structure is disposed in at least one further trench and comprises at least one electrode. The at least one trench of the transistor structure and the at least one further trench are produced by common process steps. Furthermore, the at least one electrode of the electrode structure and the gate electrode are produced by common process steps.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: July 15, 2014
    Assignee: Infineon Technologies AG
    Inventors: Markus Zundel, Franz Hirler, Norbert Krischke
  • Patent number: 8779492
    Abstract: A semiconductor device includes a first island and a first electrode. The first island includes a first semiconductor region, a first insulation region, and a first insulating film. The first semiconductor region has first and second side surfaces adjacent to the first insulation region and the first insulating film, respectively. The first electrode is adjacent to the first insulation region and the first insulating film. The first insulating film is between the first electrode and the first semiconductor region.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: July 15, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Yoshihiro Takaishi, Kazuhiro Nojima
  • Patent number: 8766333
    Abstract: A semiconductor device includes a first buried bit line (120a) provided between lower and upper substrates (100b, 100a), first and second pillar patterns (105a, 105b) extending from the upper substrate (100a) and coupled to the first buried bit line (120a) through first and second gate patterns (140a), respectively. A first body contact pattern (160a) coupled to the first and/or the second pillar patterns (105a, 105b) through the upper substrate (100a) prevents the first and the second pillar patterns from floating.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: July 1, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Chul Sung
  • Patent number: 8766344
    Abstract: A vertical MOSFET transistor is formed in a body of semiconductor material having a surface. The transistor includes a buried conductive region of a first conductivity type; a channel region of a second conductivity type, arranged on top of the buried conductive region; a surface conductive region of the first conductivity type, arranged on top of the channel region and the buried conductive region; a gate insulation region, extending at the sides of and contiguous to the channel region; and a gate region extending at the sides of and contiguous to the gate insulation region.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: July 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Agostino Pirovano
  • Patent number: 8754443
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: June 17, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Suraj J. Mathew, Chandra Mouli
  • Patent number: 8749012
    Abstract: Methods and structures for discharging plasma formed during the fabrication of semiconductor device are disclosed. The semiconductor device includes a wordline, a common ground line and a fuse structure for electrically coupling the wordline and the common ground line until a break signal is applied via the fuse structure.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 10, 2014
    Assignee: Spansion LLC
    Inventors: Masahiko Higashi, Naoki Takeguchi
  • Patent number: 8748959
    Abstract: A semiconductor memory device is disclosed. In one particular exemplary embodiment, the semiconductor memory device includes a plurality of memory cells arranged in an array of rows and columns. Each memory cell may include a first region connected to a source line extending in a first orientation. Each memory cell may also include a second region connected to a bit line extending a second orientation. Each memory cell may further include a body region spaced apart from and capacitively coupled to a word line, wherein the body region is electrically floating and disposed between the first region and the second region. The semiconductor device may also include a first barrier wall extending in the first orientation and a second barrier wall extending in the second orientation and intersecting with the first barrier wall to form a trench region configured to accommodate each of the plurality of memory cells.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 10, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Van Buskirk, Christian Caillat, Viktor I Koldiaev, Jungtae Kwon, Pierre C. Fazan
  • Patent number: 8742493
    Abstract: A semiconductor device has a plurality of vertical channels extending upright on a substrate, a plurality of bit lines extending among the vertical channels, a plurality of word lines which include a plurality of gates disposed adjacent first sides of the vertical channels, respectively, and a plurality of conductive elements disposed adjacent second sides of the vertical channels opposite the first sides. The conductive elements can provide a path to the substrate for charge carriers which have accumulated in the associated vertical channel to thereby mitigate a so-called floating effect.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: June 3, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Ik Kim, Hyeong-Sun Hong, Yoo-Sang Hwang, Hyun-Woo Chung
  • Patent number: 8742451
    Abstract: A field-effect transistor involves a drain electrode, a drift region, a body region, a source region, a gate insulator layer, and a gate electrode. The drift region is disposed above the drain electrode. The body region extends down into the drift region from a first upper semiconductor surface. The source region is ladder-shaped and extends down in the body region from a second upper semiconductor surface. The first and second upper semiconductor surfaces are substantially planar and are not coplanar. A first portion of the body region is surrounded laterally by a second portion of the body region. The second portion of the body region and the drift region meet at a body-to-drift boundary. The body-to-drift boundary has a central portion that is non-planar. A gate insulator layer is disposed over the source region and a gate electrode is disposed over the gate insulator.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 3, 2014
    Assignee: IXYS Corporation
    Inventor: Kyoung Wook Seok
  • Patent number: 8735957
    Abstract: Consistent with an example embodiment, there is a package that includes a first voltage terminal, and a second voltage terminal, a first die including a first MOSFET having a drain region electrically connected to the first voltage terminal and further having a source region, A second die is adjacent to the first die, the second die includes a second MOSFET having a drain region electrically connected to the source region of the first MOSFET and having a source region electrically connected to the second voltage terminal. The semiconductor package further includes a vertical capacitor having a first plate electrically connected to the drain region of the first MOSFET and a second plate electrically connected to the source region of the second MOSFET and the second plate is electrically insulated from the first plate by a dielectric material. The capacitor is integrated on the first die or the second die.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: May 27, 2014
    Assignee: NXP B.V.
    Inventor: Phil Rutter
  • Patent number: 8734583
    Abstract: One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment, a fin of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy (SPE) process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The fin has a cross-sectional thickness in at least one direction less than a minimum feature size. The transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 8735267
    Abstract: A method of forming a buried word line structure is provided. A first mask layer, an interlayer and a second mask layer are sequentially formed on a substrate, wherein the second mask layer has a plurality of mask patterns and a plurality of gaps arranged alternately, and the gaps includes first gaps and second gaps arranged alternately. A dielectric pattern is formed in each first gap and spacers are simultaneously formed on sidewalls of each second gap, wherein a first trench is formed between the adjacent spacers and exposes a portion of the first mask layer. The mask patterns are removed to form second trenches. An etching process is performed by using the dielectric patterns and the spacers as a mask, so that the first trenches are deepened to the substrate and the second trenches are deepened to the first mask layer.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: May 27, 2014
    Assignee: Nanya Technology Corporation
    Inventors: Inho Park, Lars Heineck
  • Patent number: 8729617
    Abstract: A semiconductor memory device includes: a lower pillar protruding from a substrate in a vertical direction and extending in a first direction by a trench formed in the first direction; an upper pillar protruding on the lower pillar in a second direction perpendicular to the first direction; a buried bit line junction region disposed on one sidewall of the lower pillar; a buried bit line contacting the buried bit line junction region and filling a portion of the trench; an etch stop film disposed on an exposed surface of the buried bit line; a first interlayer dielectric film recessed to expose a portion of an outer side of at least the upper pillar disposed on the etch stop film; a second interlayer dielectric film disposed on the first interlayer dielectric film; and a gate surrounding the exposed outer side of the upper pillar and crossing the buried bit line.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 20, 2014
    Assignee: SK Hynix Inc.
    Inventor: Tae Kyun Kim
  • Patent number: 8716116
    Abstract: A method is disclosed for forming a memory device having buried access lines (e.g., wordlines) and buried data/sense lines (e.g., digitlines) disposed below vertical cell contacts. The buried wordlines may be formed trenches in a substrate extending in a first direction, and the buried digitlines may be formed from trenches in a substrate extending in a second direction perpendicular to the first direction. The buried digitlines may be coupled to a silicon sidewall by a digitline contact disposed between the digitlines and the silicon substrate.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: May 6, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kunal Parekh, Ceredig Roberts, Thy Tran, Jim Jozwiak, David Hwang
  • Patent number: 8716777
    Abstract: A method for forming a semiconductor device includes forming a sealing insulation film over a semiconductor substrate including a device isolation film and an active region, forming a bit line contact plug that protrudes from an upper part of the sealing insulation film and is coupled to the active region, forming a spacer over a sidewall of the protruded bit line contact plug, and forming a bit line coupled to an upper part of the bit line contact plug.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 6, 2014
    Assignee: SK Hynix Inc.
    Inventors: Sung Soo Kim, Na Hye Won
  • Patent number: 8710568
    Abstract: A semiconductor device includes a semiconductor substrate that includes a plurality of section having different thicknesses. The sections include a first section having a first thickness and a second section having a second thickness, the second section is the thinnest section among all the sections, and the first thickness is greater than the second thickness. A plurality of isolation trenches penetrates the semiconductor substrate for defining a plurality of element-forming regions in the first section and the second section. A plurality of elements is located at respective ones of the plurality of element-forming regions. The elements include a double-sided electrode element that includes a pair of electrodes separately disposed on the first surface and the second surface, and the double-sided electrode element is located in the second section.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 29, 2014
    Assignee: DENSO CORPORATION
    Inventors: Yoshihiko Ozeki, Tetsuo Fujii, Kenji Kouno