Including Means To Eliminate Island Edge Effects (e.g., Insulating Filling Between Islands, Or Ions In Island Edges) Patents (Class 257/354)
  • Patent number: 7105897
    Abstract: This invention discloses a method and a semiconductor structure for integrating at least one bulk device and at least one silicon-on-insulator (SOI) device. The semiconductor structure includes a first substrate having an SOI area and a bulk area, on which the bulk device is formed; an insulation layer formed on the first substrate in the SOI area; and a second substrate, on which the SOI device is formed, stacked on the insulation layer. The surface of the first substrate is not on the substantially same plane as the surface of the second substrate.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: September 12, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hao-Yu Chen, Fu-Liang Yang, Hung-Wei Chen, Ping-Kun Wu, Chao-Hsiung Wang
  • Patent number: 7102187
    Abstract: Disclosed herein is a method for forming a gate structure in a semiconductor device. The method comprises forming a SiGe film on a predetermined region of a silicon substrate corresponding to a bit-line node portion where a bit-line junction is formed, growing a silicon film over the silicon substrate having the SiGe film formed thereon, selectively etching the SiGe film, embedding a dielectric material into a portion where the SiGe film is removed, forming a stepped profile on the silicon film by etching a predetermined portion of the silicon film such that the bit-line node portion is included in the stepped profile, and forming a gate on the silicon film having the stepped profile formed therein such that the gate overlaps the stepped profile. The dielectric pad prevents the bit-line junction from spreading downward upon operation of the gate, thereby enhancing a punch-through phenomenon.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: September 5, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Soo Yoo
  • Patent number: 7098508
    Abstract: The invention provides integrated semiconductor devices that are formed upon an SOI substrate having different crystal orientations that provide optimal performance for a specific device. Specifically, an integrated semiconductor structure including at least an SOI substrate having a top semiconductor layer of a first crystallographic orientation and a semiconductor material of a second crystallographic orientation, wherein the semiconductor material is substantially coplanar and of substantially the same thickness as that of the top semiconductor layer and the first crystallographic orientation is different from the second crystallographic orientation is provided. The SOI substrate is formed by forming an opening into a structure that includes at least a first semiconductor layer and a second semiconductor layer that have different crystal orientations. The opening extends to the first semiconductor layer.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Min Yang
  • Patent number: 7091588
    Abstract: A primary side circuit and a secondary side circuit are provided on first and second semiconductor substrates, respectively. A first capacitive insulator on the first substrate electrically insulates and isolates between the primary and secondary side circuits while permitting signal transmission between these circuits. A second capacitive insulator on the second semiconductor substrate electrically isolates the primary and secondary side circuit while permitting signal transmission therebetween. First and second frames are provided for input and output of signals to and from the primary and secondary side circuits. External electrodes of the first and second capacitive insulators are connected together by a third lead frame via a conductive adhesive body including more than one solder ball. The first and second substrates and the lead frames are sealed by a dielectric resin.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: August 15, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Noboru Akiyama, Minehiro Nemoto, Seigou Yukutake, Yasuyuki Kojima, Kazuyuki Kamegaki
  • Patent number: 7091561
    Abstract: There is provided a field effect transistor including: a first insulating film formed on a semiconductor substrate, and including at least a metal oxide having a crystallinity and different in a lattice distance of a crystal on an interface from the semiconductor substrate; a convex channel region formed above the first insulating film, and different in the lattice distance from the semiconductor substrate; a source region and a drain region formed above the first insulating film on side surfaces of the channel region, respectively; a second insulating film formed right above the channel region; a gate insulating film formed on a side surface of the channel region different from the side surfaces of the channel region on which the source region and the drain regions are formed; and a gate electrode formed through the gate insulating film on at least the side surface of the channel region different from the side surfaces of the channel region on which the source region and the drain region are formed.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: August 15, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Matsushita, Yukie Nishikawa, Hideki Satake, Noburu Fukushima
  • Patent number: 7087965
    Abstract: Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Meikei Ieong, Alexander Reznicek, Devendra K. Sadana, Leathen Shi, Min Yang
  • Patent number: 7084428
    Abstract: There is provided a transistor and a method of manufacturing this transistor that allow a high degree of freedom when designing a wiring structure and also allow an improvement in product quality to be achieved. The transistor includes a source area, a drain area, and a channel area, each of which are formed by semiconductor films, and also a gate insulating film and a gate electrode. The semiconductor film containing the source area and the semiconductor film containing the drain area are formed separately sandwiching both sides of an insulating member. The semiconductor film containing the channel area is formed on top of the insulating member.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: August 1, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Ichio Yudasaka, Masahiro Furusawa, Takashi Aoki
  • Patent number: 7064391
    Abstract: A supporting structure is wafer-bonded to the upper face side of a partially or fully processed device wafer. The device wafer includes a transistor having a well region that extends into the substrate material of the device wafer. The source and drain regions of the transistor extend into the well region. After attachment of the supporting structure, the device wafer is thinned from the back side until the bottom of the well region is reached. To reduce source and drain junction capacitances, etching can continue until the source and drain regions are reached. In one embodiment, all of the well-to-substrate junction is removed in a subsequent etching step, thereby reducing or eliminating the well-to-substrate junction capacitance of the resulting transistor. Resistance between the well electrode and the transistor channel is reduced because the well contact is disposed on the back side of the device wafer directly under the transistor gate.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: June 20, 2006
    Assignee: XILINX, Inc.
    Inventor: Robert O. Conn
  • Patent number: 7064387
    Abstract: A silicon-on-insulator (SOI) substrate includes a silicon substrate including an active region defined by a field region that surrounds the active region for device isolation. The field region includes a first oxygen-ion-injected isolation region and a second oxygen-ion-injected isolation region. The first oxygen-ion-injected isolation region has a first thickness and is disposed under the active region, a center of the first oxygen-ion-injected isolation region being at a first depth from a top surface of the silicon substrate. The second oxygen-ion-injected isolation region has a second thickness that is greater than the first thickness, the second oxygen-ion-injected isolation region disposed at sides of the active region and formed from a ton surface of the silicon substrate, a center of the second oxygen-ion-injected region disposed at a second depth from the top surface of the silicon substrate.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: June 20, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Tae-Ho Jang
  • Patent number: 7053453
    Abstract: A substrate contact and semiconductor chip, and methods of forming the same. The substrate contact is employable with a semiconductor chip formed from a semiconductor substrate and includes a seal ring region about a periphery of an integrated circuit region. In one embodiment, the substrate contact includes a contact trench extending through a shallow trench isolation region and an insulator overlying the semiconductor substrate and outside the integrated circuit region. The contact trench is substantially filled with a conductive material thereby allowing the semiconductor substrate to be electrically connected with a metal interconnect within the seal ring region.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: May 30, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsun-Chih Tsao, Chien-Chao Huang, Fu-Liang Yang
  • Patent number: 7030467
    Abstract: A method of deforming a pattern comprising the steps of: forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: April 18, 2006
    Assignee: NEC LCD Technologies, Ltd.
    Inventor: Shusaku Kido
  • Patent number: 7019379
    Abstract: A semiconductor device includes a heavily doped layer 25 of p-type formed in the surface of an n-type well 21, an intermediately doped layer 26 of p-type formed to adjoin and surround the heavily p-doped layer 25, and an isolation region 22 formed to surround the heavily p-doped layer 25 and the intermediately p-doped layer 26. The heavily p-doped layer 25 has a higher dopant concentration than the well 21. The intermediately p-doped layer 26 has a higher dopant concentration than the well 21 and a lower dopant concentration than the heavily p-doped layer 25.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: March 28, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hirotsugu Honda
  • Patent number: 7002215
    Abstract: Methods and apparatuses are provided for protecting an interconnect line in a microelectromechanical system. The interconnect line is disposed over a substrate for conducting electrical signals, such as from a bonding pad to a mechanical component to effect movement as desired of the mechanical component. A first protective covering is disposed over a first portion of the interconnect line and a second protective covering is disposed over a second portion of the interconnect line. The first protective covering is provided in electrical communication with the substrate and the second protective covering is electrically isolated from the substrate.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: February 21, 2006
    Assignee: PTS Corporation
    Inventor: David Miller
  • Patent number: 6992358
    Abstract: Disclosed is a semiconductor device comprising an underlying insulating film having a depression, a semiconductor structure which includes a first semiconductor portion having a portion formed on the underlying insulating film and a first overlap portion which overlaps the depression, a second semiconductor portion having a portion formed on the underlying insulating film and a second overlap portion which overlaps the depression, and a third semiconductor portion disposed between the first and second semiconductor portions and having a portion disposed above the depression, wherein overlap width of the first overlap portion and overlap width of the second overlap portion are equal to each other, a gate electrode including a first electrode portion covering upper and side surfaces of the third semiconductor portion and a second electrode portion formed in the depression, and a gate insulating film interposed between the semiconductor structure and the gate electrode.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: January 31, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Hieda, Kazuya Matsuzawa, Daisuke Hagishima
  • Patent number: 6965149
    Abstract: An epitaxial semiconductor wafer having a wafer substrate made of semiconductor single crystal, an epitaxial layer deposited on a top surface of said wafer substrate and a polysilicon layer deposited on a back surface of said wafer substrate. The semiconductor single crystal is exposed in a region defined within a distance of at least 50 ?m from a ridge line as a center, which is defined as an intersection line between said back surface and a bevel face interconnecting said top surface and said back surface of said wafer substrate. The polysilicon layer is 1.0 to 2.0 ?m thick. The epitaxial layer is 1.0 to 20 ?m thick. The wafer substrate is a silicon single crystal.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: November 15, 2005
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Shigenori Sugihara, Shigeru Nagafuchi
  • Patent number: 6965147
    Abstract: A semiconductor device includes a substrate, a semiconductor layer of a first conductivity type having a single-crystal structure, and a plurality of transistors each including a first gate electrode provided above the semiconductor layer with a first gate insulation film laid therebetween, a pair of impurity regions of a second conductivity type being provided in the semiconductor layer and each becoming a source or drain region, and a channel body of the first conductivity type provided in the semiconductor layer at a portion between these impurity regions.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: November 15, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomoaki Shino
  • Patent number: 6955955
    Abstract: In a method of manufacturing a semiconductor device, an initial structure is provided. The initial structure includes a substrate, a patterned silicon layer, and a covering layer. The substrate has a buried insulator layer formed thereon. The patterned silicon layer is formed on the buried insulator layer. The covering layer is formed on the patterned silicon layer. A first layer is formed on the initial structure. Part of the first layer is removed with an etching process, such that a sidewall portion of the patterned silicon layer is exposed and such that a remaining portion of the first layer remains at a corner where the patterned silicon layer interfaces with the buried insulator layer. An oxide liner is formed on the exposed sidewall portion. A recess may be formed in the buried insulator layer (prior to forming the first layer) and may extend partially beneath the patterned silicon layer.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: October 18, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuang-Hsin Chen, Hsun-Chih Tsao, Hung-Wei Chen, Di-Hong Lee, Chuan-Ping Hou, Jhi-Cherng Lu
  • Patent number: 6949777
    Abstract: An insulated gate transistor is comprised of a semiconductor thin film, a first gate insulating film formed on a main surface of the semiconductor thin film, a first conductive gate formed on the first gate insulating film, first and second confronting semiconductor regions of a first conductivity type insulated from the first conductive gate and disposed in contact with the semiconductor thin film, and a third semiconductor region of a second conductivity type opposite to the first conductivity type and disposed in contact with the semiconductor thin film. The insulated gate transistor is controlled by injecting carriers of the second conductivity type into the semiconductor thin film from the third semiconductor region, and thereafter applying a first electric potential to the first conductive gate to form a channel of the first conductivity type on a portion of the semiconductor thin film disposed between the first semiconductor region and the second semiconductor region.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: September 27, 2005
    Assignee: Seiko Instruments Inc.
    Inventors: Yutaka Hayashi, Hisashi Hasegawa, Yoshifumi Yoshida, Jun Osanai
  • Patent number: 6940130
    Abstract: A body contact structure utilizing an insulating structure between the body contact portion of the active area and the transistor portion of the active area is disclosed. In one embodiment, the present invention substitutes an insulator for at least a portion of the gate layer in the regions between the transistor and the body contact. In another embodiment, a portion of the gate layer is removed and replaced with an insulative layer in regions between the transistor and the body contact. In still another embodiment, the insulative structure is formed by forming multiple layers of gate dielectric between the gate and the body in regions between the transistor and the body contact. The body contact produced by these methods adds no significant gate capacitance to the gate.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: September 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Peter E. Cottrell, John J. Ellis-Monaghan, Robert J. Gauthier, Jr., Edward J. Nowak, Jed H. Rankin, Fariborz Assaderaghi
  • Patent number: 6940138
    Abstract: A structure is provided which suppresses a parasitic bipolar effect without decreasing the breakdown voltage at the junctions between the excessive carrier extracting region and source/drain regions of a MOS transistor for a voltage of approximately 15 volts in a semiconductor device formed on a semiconductor layer on an insulating layer. In the MOS transistor having a source tied body structure, a semiconductor regions having a low impurity concentration is formed between a regions for extracting excessive carriers and source/drain regions. Thus, the breakdown voltage at the junctions between the extracting regions and the source/drain regions is increased and a parasitic bipolar effect is suppressed without breakdown between the extracting regions and the source/drain regions.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: September 6, 2005
    Assignee: Seiko Epson Corporation
    Inventor: Yasushi Yamazaki
  • Patent number: 6900504
    Abstract: The integrated structure and process is effective to form, in a dielectrically insulated well, a MOS component including respective drain and source regions of a first conductivity type as well as a gate region. The integrated structure includes a cut-off layer of the second conductivity type effective to surround only the source region. The cut-off layer is self-aligned by the gate region.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: May 31, 2005
    Assignee: STMicroelectronics S.r.l.
    Inventor: Salvatore Leonardi
  • Patent number: 6891229
    Abstract: A method of forming a semiconductor device so as to provide the device inverted isolation trenches with convex sidewalls. Initially, a plurality of composite isolation posts (50, 51) are formed on a substrate (40) through successive deposition, lithography, and etching steps. The posts comprise a bottom layer (501, 502) of silicon dioxide and an overlying etch-stop layer of silicon nitride (502, 512). An insulating material (60) is then deposited over the isolation posts and areas of the substrate. Isolation structures (70,71) are established by etching the insulating material to form convex sidewall spacers (701,702, 711, 712) at the vertical walls of the isolation posts. Active areas (80) between spacers are filled with semiconductor material. In an embodiment, a strained cap layer (101) may be imposed on the active areas. The strained cap layer has a lattice constant that is different from the lattice constant of the semiconductor material.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: May 10, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Andrea Franke, Jonathan Cobb, John M. Grant, Al T. Koh, Yeong-Jyh T. Lii, Bich-Yen Nguyen, Anna M. Phillips
  • Patent number: 6879002
    Abstract: A semiconductor device comprising an SOI substrate fabricated by forming a silicon layer 3 on an insulating layer 2, a plurality of active regions 3 horizontally arranged in the silicon layer 3, and element isolating parts 5 having a trench-like shape which is made of an insulator 5 embedded between the active regions 3 in the silicon layer 3, wherein the insulating layer 2 has spaces 6 positioned in the vicinity of interfaces between the active regions and the element isolating parts 5, whereby it becomes possible to reduce fixed charges or holes existing on a side of the insulating layer in interfaces between the silicon layer and the insulating layer, which fixed charges or holes are generated in a process of oxidation for forming the insulating layer on a bottom surface of the silicon layer.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: April 12, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Shoichi Miyamoto, Toshiaki Iwamatsu, Takashi Ipposhi
  • Patent number: 6872979
    Abstract: A semiconductor substrate that prevents formation of particles from an edge part of the substrate. The substrate contains an on-substrate oxide film and an SOI layer stacked on the oxide film. A molten layer is formed on the edge part of the on-substrate oxide film and the SOI layer by mixing the SOI layer and the on-substrate oxide film to cover the edge part. An epitaxial layer may also be formed on the edge part of the on-substrate oxide film and the SOI layer to cover the edge part.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: March 29, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Yoshiko Yoshida, Hideki Naruoka, Yasuhiro Kimura, Yasuo Yamaguchi, Toshiaki Iwamatsu, Yuuichi Hirano
  • Patent number: 6861716
    Abstract: A ladder-type gate structure for a silicon-on-insulator (SOI) four-terminal semiconductor device is disclosed. The structure includes a gate having a first and second portion, a body region, which is under the first portion of the gate, a body contact, which is adjacent to the second portion of the gate, and a plurality of body contacts connecting the body region to the body contact through a drain region. The gate structure provides an independently controlled body region and includes a substantially uniform voltage across the body region in the SOI semiconductor device.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: March 1, 2005
    Assignee: International Business Machines Corporation
    Inventor: Paul A. Hyde
  • Patent number: 6847082
    Abstract: A semiconductor integrated device having a source region and a drain region of a first conductive type, a channel region of a second conductive type which is located between the source and drain regions. The channel region having a highly doped impurity region of the second conductive type which is surrounded by a lightly doped impurity region of the second conductive type.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: January 25, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Kenji Ichikawa
  • Patent number: 6847065
    Abstract: An NMOS field effect transistor (1) is made radiation hard by a pair of guard band implants (115) of limited horizontal extent, extending between the source (30A) and drain (30B) along the edge of the transistor body, and extending only to a limited extent into the field insulator and into the interior of the transistor, leaving an unimplanted area in the center of the body that retains the transistor design threshold voltage.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: January 25, 2005
    Assignee: Raytheon Company
    Inventor: Wing Y. Lum
  • Patent number: 6835983
    Abstract: The present invention provides SOI material which includes a top Si-containing layer which has regions of different thickness as well as a method of fabricating such SOI material. The inventive method includes a step of thinning predetermined regions of the top Si-containing layer by masked oxidation of silicon. SOI IC chips including the inventive SOI material having different types of CMOS devices build thereon as also disclosed.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: December 28, 2004
    Assignee: International Business Machines Corporation
    Inventors: Tak H. Ning, Devendra K. Sadana
  • Patent number: 6825534
    Abstract: A semiconductor device includes a combination substrate having a bulk silicon region, and a silicon-on-insulator (SOI) region. The SOI region includes a crystallized silicon layer formed by annealing amorphous silicon and having isolation trenches formed therein so as to remove defective regions, and isolation oxides formed in the isolation trenches.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: November 30, 2004
    Assignee: International Business Machines Corporation
    Inventors: Howard H. Chen, Louis L. Hsu, Li-Kong Wang
  • Publication number: 20040222463
    Abstract: A semiconductor-on-insulator structure includes a substrate and a buried insulator layer overlying the substrate. A plurality of semiconductor islands overlie the buried insulator layer. The semiconductor islands are isolated from one another by trenches. A plurality of recess resistant regions overlie the buried insulator layer at a lower surface of the trenches.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 11, 2004
    Inventors: Yee-Chia Yeo, Hao-Yu Chen, Hsun-Chih Tsao, Fu-Liang Yang, Chenming Hu
  • Patent number: 6815774
    Abstract: A dielectrically separated wafer and a fabrication method of the same are provided according to the first, second and third embodiments of the present invention. According to the first embodiment, it becomes possible to expand the device fabrication surface area of the dielectrically separated silicon islands by laminating a low concentration impurity layer including a dopant of the same conductivity on a high concentration impurity layer formed on the bottom of the island. According to the second embodiment, a dielectrically separated wafer and a fabrication method for the same which can grow a polysilicon layer without producing voids in the dielectrically separating oxide layer is provided by forming a seed polysilicon layer at low temperature and under low pressure and by forming, on the seed polysilicon layer, a high temperature polysilicon layer 16.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: November 9, 2004
    Assignee: Mitsubishi Materials Silicon Corporation
    Inventors: Hiroyuki Oi, Kazuya Sato, Hiroshi Shimamura
  • Patent number: 6791145
    Abstract: A method of deforming a pattern comprising the steps of: forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: September 14, 2004
    Assignee: NEC LCD Technologies, Ltd.
    Inventor: Shusaku Kido
  • Patent number: 6787854
    Abstract: A method for forming a fin structure on a silicon-on-insulator (SOI) wafer that includes a silicon layer on an insulating layer that is formed over a semiconductor substrate includes etching the silicon layer using a first etch procedure, etching, following the first etch procedure, the silicon layer using a second etch procedure, and etching, following the second etch procedure, the silicon layer using a third etch procedure to form a T-shaped fin structure.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: September 7, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Chih-Yuh Yang, Shibly S. Ahmed, Srikanteswara Dakshina-Murthy, Cyrus E. Tabery, Haihong Wang, Bin Yu
  • Patent number: 6787851
    Abstract: A semiconductor device in accordance with one example of the present invention pertains to a semiconductor device to be used for a CMOS inverter circuit, comprising a BOX layer 2 formed on a silicon substrate 1, a SOI film 3 including single crystal Si formed on the BOX layer, a gate oxide film 4 formed on the SOI film 3, a gate electrode 5 formed on the gate oxide film, and diffusion layers 7, 8 for source/drain regions formed in source/drain regions of the SOI film 3, wherein, when a power supply voltage of 0.6 V is used, a thickness TSOI of the SOI film 3 is 0.084 &mgr;m or greater and 0.094 &mgr;m or smaller, and an impurity concentration of the SOI film is 7.95×1017/cm3 or greater and 8.05×1017/cm3 or smaller.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: September 7, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Michiru Hogyoku
  • Patent number: 6787852
    Abstract: A semiconductor-on-insulator (SOI) device. The SOI device includes a substrate having a buried oxide layer disposed thereon and an active layer disposed on the buried oxide layer. The active layer has an active region defined by isolation regions, the active region having a source and a drain with a body disposed therebetween. The source and the drain have a selectively grown silicon-germanium region disposed under an upper layer of selectively grown silicon. The silicon-geranium regions form heterojunction portions respectively along the source/body junction and the drain/body junction.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: September 7, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bin Yu, Ralf van Bentum
  • Patent number: 6781204
    Abstract: An MOS transistor in the surface of a semiconductor substrate (180) of a first conductivity type, which has a grid of isolations (171) in the surface, each grid unit surrounding a rectangular substrate island (102). Each island contains two parallel regions of the opposite conductivity type: one region (174) is operable as the transistor drain and the other region (173) is operable as the transistor drain, each region abutting the isolation. A transistor gate (105) is between the parallel regions, completing the formation of a transistor. Electrical contacts (106) are placed on the source region (173) so that the spacing (120) between each contact and the adjacent isolation is at least twice as large as the spacing (121) between each contact and the gate. A plurality of these islands are interconnected to form a multi-finger MOS transistor.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 24, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Charvaka Duvvury, Kwang-Hoon Oh
  • Publication number: 20040159890
    Abstract: A method of deforming a pattern comprising the steps of: forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Applicant: NEC LCD TECHNOLOGIES
    Inventor: Shusaku Kido
  • Patent number: 6777751
    Abstract: A semiconductor device in accordance with the present invention includes: an insulating layer; a semiconductor region formed on the insulating layer; a trench that surrounds side parts of the semiconductor region and reaches the insulating layer; an isolation insulating film formed in the trench; a semiconductor element in which the semiconductor region serves as an active region; a side oxide film formed by oxidizing the side parts of the semiconductor region and located between the rest of the semiconductor region and the isolation insulating film; and a bottom oxide film that is formed by oxidizing a bottom part of the semiconductor region, located over the entire interface between the rest of the semiconductor region and the insulating layer, and having side surfaces that reach the side oxide film.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 17, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Tohru Yamaoka
  • Patent number: 6759715
    Abstract: A III nitride buffer film including at least Al element and having a screw-type dislocation density of 1×108/cm2 or less is formed on a base made from a sapphire single crystal, etc., to fabricate an epitaxial base substrate. Then, a III nitride underfilm is formed on the III nitride buffer film, to fabricate an epitaxial substrate.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: July 6, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda, Yukinori Nakamura
  • Patent number: 6756639
    Abstract: A method of fabricating a defect induced buried oxide (DIBOX) region in a semiconductor substrate utilizing an oxygen ion implantation step to create a stable defect region; a low energy implantation step to create an amorphous layer adjacent to the stable defect region, wherein the low energy implantation steps uses at least one ion other than oxygen; oxidation and, optionally, annealing, is provided. Silicon-on-insulator (SOI) materials comprising a semiconductor substrate having a DIBOX region in patterned or unpatterned forms is also provided herein.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: June 29, 2004
    Assignee: International Business Machines Corporation
    Inventors: Maurice H. Norcott, Devendra K. Sadana
  • Patent number: 6753550
    Abstract: The present invention improves a productivity in growing an a-Si film in a thin film transistor and to obtain an excellent thin film transistor characteristic. More specifically, disclosed is a thin film transistor in which an amorphous silicon film 2, a gate insulating film 3 and a gate electrode are sequentially stacked on an insulating substrate 1. The amorphous silicon film 2 includes a low defect-density amorphous silicon layer 5 formed at a low deposition rate and a high deposition rate amorphous silicon layer 6 formed at a deposition rate higher than that of the low defect-density amorphous silicon layer 5. The low defect-density amorphous silicon layer 5 in the amorphous silicon film 2 is grown closer to the insulating substrate 1, and the high deposition rate amorphous silicon layer 6 is grown closer to the gate insulating film 3.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 22, 2004
    Assignee: International Business Machines Corporation
    Inventors: Takatoshi Tsujimura, Osamu Tokuhiro, Mitsuo Morooka, Takashi Miyamoto
  • Patent number: 6734500
    Abstract: A semiconductor device 1000 may include an element isolation region 14, an n-type field effect transistor 100 and an npn-type bipolar transistor 200 formed on a SOI substrate 10. A p-type body region 50a may be electrically connected to an n-type source region 120. The p-type body region 50a may be electrically connected to a p-type base region 220. An n-type drain region 130 may be electrically connected to an n-type collector region 230. An n-type source region 120 may be formed structurally isolated from an n-type emitter region 210.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: May 11, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Akihiko Ebina
  • Patent number: 6727553
    Abstract: After a Si layer (2) is formed on a BOX layer (1) of a semiconductor substrate (50), trenches (11) and (15) each reaching the semiconductor substrate (50) are formed. An electric connection is provided between the Si layer (2) and an external circuit by forming a sidewall (18) composed of a conductor material over the side surfaces of the trenches (11) and (15). This facilitates fixation of the body potential of the Si layer (2). Oxidation for rounding off the upper-surface edge portions of the Si layer (2) is further performed with the upper-surface edge portions of the Si layer (2) being exposed and with the lower-surface edge portions of the Si layer (2) being covered with the sidewall (18). As a consequence, the deformation of the lower-surface edge portions of the Si layer (2) resulting from oxidation is less likely to occur and a leakage current resulting from a failure caused by the deformation of the lower-surface edge portions of the Si layer (2) is suppressed.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: April 27, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Naoki Kotani
  • Patent number: 6727550
    Abstract: An integrated circuit device comprises an insulation layer formed on a substrate, a plurality of lattice relaxed SiGe layers each formed in an island form on the insulation layer, wherein a maximum size of the island form thereof is 10 &mgr;m or less, one of a strained Si layer, a strained SiGe layer and a strained Ge layer formed on at least one of the plurality of lattice relaxed SiGe layers, and a field effect transistor having a gate electrode and source and drain regions, wherein the gate electrode is formed on one of the strained Si layer, the strained SiGe layer and the strained Ge layer with a gate insulation film is disposed therebetween, and the source and drain regions is formed to sandwich a channel region formed below the gate electrode with the gate insulation film disposed therebetween.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: April 27, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsutomu Tezuka, Takashi Kawakubo, Naoharu Sugiyama
  • Patent number: 6724049
    Abstract: A semiconductor device comprising a source region, a drain region, and a buried insulating film. The buried insulating film is composed of a first part lying below the source and drain region, and a second part lying below the space between the source and drain regions. The first part of the buried insulating film is thicker than the second part. The bottoms of the source and drain regions contact the first part of the buried insulating film.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: April 20, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Makoto Fujiwara
  • Patent number: 6716664
    Abstract: A functional device free from cracking and having excellent functional characteristics, and a method of manufacturing the same are disclosed. A low-temperature softening layer (12) and a heat-resistant layer (13) are formed in this order on a substrate (11) made of an organic material such as polyethylene terephthalate, and a functional layer (14) made of polysilicon is formed thereon. The functional layer (14) is formed by crystallizing an amorphous silicon layer, which is a precursor layer, with laser beam irradiation. When a laser beam is applied, heat is transmitted to the substrate (11) and the substrate (11) tends to expand. However, a stress caused by a difference in a thermal expansion coefficient between the substrate (11) and the functional layer (14) is absorbed by the low-temperature softening layer (12), so that no cracks and peeling occurs in the functional layer (14). The low-temperature softening layer (12) is preferably made of a polymeric material containing an acrylic resin.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: April 6, 2004
    Assignee: Sony Corporation
    Inventors: Akio Machida, Dharam Pal Gosain, Setsuo Usui
  • Patent number: 6713783
    Abstract: A liquid-crystal electro-optical device capable of compensating for the operation of any malfunctioning one of TFTs (thin-film transistors) existing within the device if such a malfunction occurs. Plural complementary TFT configurations are provided per pixel electrode. Each complementary TFT configuration consists of at least one p-channel TFT and at least one n-channel TFT. The input and output terminals of the plural complementary TFT configurations are connected in series. One of the input and output terminals is connected to the pixel electrode, while the other is connected to a first signal line. All the gate electrodes of the p-channel and n-channel TFTs included in said plural complementary TFT configurations are connected to a second signal line.
    Type: Grant
    Filed: June 22, 1998
    Date of Patent: March 30, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akira Mase, Masaaki Hiroki
  • Patent number: 6707107
    Abstract: A method of deforming a pattern comprising the steps of forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: March 16, 2004
    Assignee: NEC LCD Technologies, Ltd.
    Inventor: Shusaku Kido
  • Patent number: 6703641
    Abstract: A semiconductor device monitor structure is described which can detect localized defects due to floating-body effects, particularly on SOI device wafers. The monitor structure includes a plurality of cells containing PFET or NFET devices, disposed at a perimeter of the structure which is bordered by an insulating region such as shallow trench isolation (STI). Each cell includes polysilicon gate structures having a characteristic spacing given by a first distance, and a portion extending beyond the perimeter a second distance. The cells are constructed in accordance with progressively varying ground rules, so that the first distance and second distance are non-uniform between cells. The cells may be bit fail mapped for single-cell failures, thereby enabling detection of localized defects due to floating-body effects.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: March 9, 2004
    Assignee: International Business Machines Corporation
    Inventors: Terence L. Kane, Yun Yu Wang, Malcolm P. Cambra, Jr., Michael P. Tenney
  • Patent number: 6693299
    Abstract: In a semiconductor device using a crystalline semiconductor film on a substrate 106 having an insulating surface, impurities are locally implanted into an active region 102 to form a pinning region 104. The pinning region 104 suppresses the spread of a depletion layer from the drain side to effectively prevent the short-channel effect. Also, since a channel forming region 105 is intrinsic or substantially intrinsic, a high mobility is realized.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: February 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Akiharu Miyanaga, Toru Mitsuki, Takeshi Fukunaga