For Protecting Against Gate Insulator Breakdown Patents (Class 257/356)
  • Patent number: 8304316
    Abstract: In a power semiconductor device and a method of forming a power semiconductor device, a thin layer of semiconductor substrate is left below the drift region of a semiconductor device. A power semiconductor device has an active region that includes the drift region and has top and bottom surfaces formed in a layer provided on a semiconductor substrate. A portion of the semiconductor substrate below the active region is removed to leave a thin layer of semiconductor substrate below the drift region. Electrical terminals are provided directly or indirectly to the top surface of the active region to allow a voltage to be applied laterally across the drift region.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 6, 2012
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Gehan Anil Joseph Amaratunga, Tanya Trajkovic, Vasantha Pathirana
  • Patent number: 8288822
    Abstract: An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: October 16, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiaw-Ren Shih, Jian-Hsing Lee
  • Patent number: 8283695
    Abstract: Symmetrical/asymmetrical bidirectional S-shaped I-V characteristics with trigger voltages ranging from 10 V to over 40 V and relatively high holding current are obtained for advanced sub-micron silicided CMOS (Complementary Metal Oxide Semiconductor)/BiCMOS (Bipolar CMOS) technologies by custom implementation of P1-N2-P2-N1//N1-P3-N3-P1 lateral structures with embedded ballast resistance 58, 58A, 56, 56A and periphery guard-ring isolation 88-86. The bidirectional protection devices render a high level of electrostatic discharge (ESD) immunity for advanced CMOS/BiCMOS processes with no latchup problems. Novel design-adapted multifinger 354/interdigitated 336 layout schemes of the ESD protection cells allow for scaling-up the ESD performance of the protection structure and custom integration, while the I-V characteristics 480 are adjustable to the operating conditions of the integrated circuit (IC).
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: October 9, 2012
    Assignees: Intersil Americas Inc., University of Central Florida Research Foundation, Inc.
    Inventors: Javier A. Salcedo, Juin J. Liou, Joseph C. Bernier, Donald K. Whitney
  • Patent number: 8283725
    Abstract: In a semiconductor device including an n-type metal oxide semiconductor transistor for electrostatic discharge protection surrounded by a shallow trench for device isolation, in order to suppress the off-leak current in an off state, there is formed, in the vicinity of the drain region of the NMOS transistor for ESD protection, an n-type region receiving a signal from an external connection terminal via a p-type region in contact with the drain region of the NMOS transistor for ESD protection.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: October 9, 2012
    Assignee: Seiko Instruments, Inc.
    Inventor: Hiroaki Takasu
  • Patent number: 8203183
    Abstract: The present invention relates to an electrostatic discharge diode. The electrostatic discharge diode according to exemplary embodiment of the present invention includes: an N-type well formed on a substrate; an n? region formed on the N-type well; a plurality of p? regions penetrated and formed in the n? region; a plurality of n+ regions penetrated and formed in a first layer in which the n? region and a plurality of the p? regions are formed; a plurality of n+ regions penetrated and formed in a first layer in which the n? region and a plurality of the p? regions are formed; and a plurality of p+ regions penetrated and formed in the first layer, wherein a first n+ region among a plurality of the n+ regions and a first p+ region corresponding to the first n+ region are penetrated and formed in each other region of the corresponding first p? region among a plurality of the p? regions.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: June 19, 2012
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Jun-Hyeong Ryu, Taeg-Hyun Kang, Moon-Ho Kim
  • Patent number: 8193560
    Abstract: An electrostatic discharge (ESD) protection device coupled across input-output (I/O) and common terminals of a core circuit, comprises, first and second merged bipolar transistors. A base of the first transistor serves as collector of the second transistor and the base of the second transistor serves as collector of the first transistor, the bases having, respectively, first width and second width. A first resistance is coupled between an emitter and base of the first transistor and a second resistance is coupled between an emitter and base of the second transistor. ESD trigger voltage Vtl and holding voltage Vh can be independently optimized by choosing appropriate base widths and resistances. By increasing Vh to approximately equal Vtl, the ESD protection is more robust, especially for applications with narrow design windows, for example, with operating voltage close to the degradation voltage.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: June 5, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Rouying Zhan
  • Patent number: 8188476
    Abstract: The present invention provides an organic EL display and a method of manufacturing the same capable of assuring excellent electric connection between an auxiliary wiring and a second electrode without using large-scale equipment. The organic EL display includes: a plurality of pixels each having, in order from a substrate side, a first electrode, an organic layer including a light emission layer, and a second electrode; an auxiliary wiring disposed in a periphery region of each of the plurality of pixels and conducted to the second electrode; and another auxiliary wiring disposed apart from the auxiliary wiring at least in a part of outer periphery of a formation region of the auxiliary wiring in a substrate surface.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 29, 2012
    Assignee: Sony Corporation
    Inventors: Kazunari Takagi, Kazuo Nakamura
  • Publication number: 20120104499
    Abstract: A semiconductor device including a well, at least a first transistor region formed over the well, a gate electrode formed over the transistor region, a well guard disposed to include an open region while surrounding the transistor region, a diode disposed in the open region, and a metal line configured to electrically connect the gate electrode and the diode.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 3, 2012
    Inventor: Yong-Ho KIM
  • Patent number: 8168985
    Abstract: A semiconductor module having one or more silicon carbide diode elements mounted on a switching element is provided in which the temperature rise is reduced by properly disposing each of the diode elements on the switching element, to thereby provide a thermal dissipation path for the respective diode elements. The respective diode elements are arranged on a non-central portion of the switching element, to facilitate dissipation of the heat produced by each of the diode elements, whereby the temperature rise in the semiconductor module is reduced.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kiyoshi Arai, Gourab Majumdar
  • Patent number: 8154077
    Abstract: According to an embodiment, a semiconductor device includes a gate electrode formed on a semiconductor substrate via an insulating layer; a source region including an extension region, a drain region including an extension region, a first diffusion restraining layer configured to prevent a diffusion of the conductive impurity in the source region and including an impurity other than the conductive impurity, and a second diffusion restraining layer configured to prevent a diffusion of the impurity in the drain region and including the impurity other than the conductive impurity.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: April 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitaka Miyata
  • Patent number: 8154083
    Abstract: The present invention relates to a semiconductor device and a method of manufacturing the same. A high-resistance silicon wafer is manufactured in such a manner that a large-sized silicon wafer manufactured by the Czochralski method is irradiated with neutrons, and high-resistance and low-resistance elements are simultaneously formed on the high-resistance silicon wafer. Thus, the manufacturing cost can be remarkably saved, and the reliability of products can be enhanced.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 10, 2012
    Assignee: Petari Incorporation
    Inventor: Young Jin Park
  • Patent number: 8143645
    Abstract: Each of first base regions of sequentially layered first IGBT and second IGBT has a peripheral section in the vicinity of the side face of the semiconductor substrate. Each of the IGBTs includes a P-type peripheral base region that is adjacent to the peripheral section of the first base region of the N-type to form a diode and a diode electrode that is formed on an upper face of the peripheral section of the first base region, thereby electrically connecting the diode electrode and a collector electrode of each of the IGBTs. When the semiconductor device is ON, current flows at the center side of the semiconductor substrate separated from the side face. When current in a reverse direction is generated when the semiconductor device is OFF, current in a reverse direction flows in the vicinity of the side face of the semiconductor substrate.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: March 27, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Katsuyuki Torii
  • Patent number: 8138546
    Abstract: A silicon control rectifier and an electrostatic discharge protection device of an integrated circuit including the silicon control rectifier. The silicon control rectifier includes a silicon body formed in a silicon layer in direct physical contact with a buried oxide layer of a silicon-on-insulator substrate, a top surface of the silicon layer defining a horizontal plane; and an anode of the silicon control rectifier formed in a first region of the silicon body and a cathode of the silicon control rectifier formed in an opposite second region of the silicon body, wherein a path of current flow between the anode and the cathode is only in a single horizontal direction parallel to the horizontal plane.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Junjun Li, Souvick Mitra, Mahmoud A. Mousa, Christopher Stephen Putnam
  • Patent number: 8134210
    Abstract: A master having a substrate including displaying units and an ESD protection structure including an adjacent first region and a second region is provided. The displaying units have a predetermined-cutting region therebetween. Each displaying unit includes a peripheral circuit region and a display region having pixels.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: March 13, 2012
    Assignee: Au Optronics Corporation
    Inventors: Pei-Ming Chen, Chih-Hung Shih
  • Patent number: 8097921
    Abstract: A semiconductor device includes a high-breakdown-voltage transistor having a semiconductor layer. The semiconductor layer has an element portion and a wiring portion. The element portion has a first wiring on a front side of the semiconductor layer and a backside electrode on a back side of the semiconductor layer. The element portion is configured as a vertical transistor that causes an electric current to flow in a thickness direction of the semiconductor layer between the first wiring and the backside electrode. The backside electrode is elongated to the wiring portion. The wiring portion has a second wiring on the front side of the semiconductor layer. The wiring portion and the backside electrode provide a pulling wire that allows the electric current to flow to the second wiring.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 17, 2012
    Assignee: DENSO CORPORATION
    Inventors: Akira Yamada, Nozomu Akagi
  • Patent number: 8097930
    Abstract: In an embodiment, a semiconductor device is provided. The semiconductor device may include a first diffusion region, a second diffusion region an active region disposed between the first diffusion region and the second diffusion region, a control region disposed above the active region, a first trench isolation disposed laterally adjacent to the first diffusion region opposite to the active region, and a second trench isolation disposed between the second diffusion region and the active region. The second trench isolation may have a smaller depth than the first trench isolation.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: January 17, 2012
    Assignee: Infineon Technologies AG
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Patent number: 8080851
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a bulk substrate of a first polarity type, a buried insulator layer disposed on the bulk substrate, an active semiconductor layer disposed on top of the buried insulator layer including a shallow trench isolation region and a diffusion region of the first polarity type, a band region of a second polarity type disposed directly beneath the buried insulator layer and forming a conductive path, a well region of the second polarity type disposed in the bulk substrate and in contact with the band region, a deep trench filled with a conductive material of the first polarity type disposed within the well region, and an electrostatic discharge (ESD) protect diode defined by a junction between a lower portion of the deep trench and the well region.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kerry Bernstein
  • Publication number: 20110284964
    Abstract: A standard cell has gate patterns extending in Y direction and arranged at an equal pitch in X direction. End portions of the gate patterns are located at the same position in Y direction, and have an equal width in X direction. A diode cell is located next to the standard cell in Y direction, and includes a plurality of opposite end portions formed of gate patterns that are opposed to the end portions, in addition to a diffusion layer which functions as a diode.
    Type: Application
    Filed: July 8, 2011
    Publication date: November 24, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Tomoaki IKEGAMI, Kazuyuki Nakanishi, Masaki Tamaru
  • Patent number: 8062941
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: April 2, 2011
    Date of Patent: November 22, 2011
    Assignee: IXYS CH GmbH
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Publication number: 20110278669
    Abstract: Disclosed is a high-voltage diode structure which realizes high reverse recovery capability and high maximum allowable forward current. The distance between a longitudinal end of a p well layer in an anode region and an element isolation region formed to surround the diode is 5 ?m or shorter so as to allow a depletion layer to reach the element isolation region when a maximum rated reverse voltage is applied. During reverse recovery, the electric field strength at an end portion of a p well layer is reduced, hole current is reduced, and local temperature rises are reduced.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 17, 2011
    Inventors: Tomoyuki MIYOSHI, Shinichiro Wada, Takayuki Oshima, Yohei Yanagida, Takahiro Fujita
  • Patent number: 8053808
    Abstract: A semiconductor power device supported on a semiconductor substrate includes a plurality of transistor cells each having a source and a drain with a gate to control an electric current transmitted between the source and the drain. The semiconductor further includes a source metal connected to the source region, and a gate metal configured as a metal stripe surrounding a peripheral region of the substrate connected to a gate pad wherein the gate metal and the gate pad are separated from the source metal by a metal gap. The semiconductor power device further includes an ESD protection circuit includes a plurality of doped polysilicon regions of opposite conductivity types constituting ESD diodes extending across the metal gap and connected between the gate metal and the source metal on the peripheral region of the substrate.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: November 8, 2011
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Yi Su, Anup Bhalla, Daniel Ng, Wei Wang, Ji Pan
  • Patent number: 8049250
    Abstract: Circuit and method for RC power clamp triggered dual SCR ESD protection. In an integrated circuit, a protected pad is coupled to an upper SCR circuit and a lower SCR circuit; and both are coupled to the RC power clamp circuit, which is coupled between the positive voltage supply and the ground voltage supply. A structure for ESD protection is disclosed having a first well of a first conductivity type adjacent to a second well of a second conductivity type, the boundary forming a p-n junction, and a pad contact diffusion region in each well electrically coupled to a pad terminal; additional diffusions are provided proximate to and electrically isolated from the pad contact diffusion regions, the diffusion regions and first and second wells form two SCR devices. These SCR devices are triggered, during an ESD event, by current injected into the respective wells by an RC power clamp circuit.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hsiang Song, Jam-Wem Lee
  • Patent number: 8039831
    Abstract: Described herein is an electronic device provided with an electrode and a region of polymeric material set in contact with the electrode. The electrode has a polysilicon region and a silicide region, which coats the polysilicon region and is arranged, as interface, between the polysilicon region and the region of polymeric material. The polysilicon region is doped with a doping level that is a function of a desired work function at the interface with the region of polymeric material. The electronic device is, for example, a testing device for characterizing the properties of the polymeric material.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: October 18, 2011
    Inventors: Riccardo Sotgiu, Agostino Pirovano
  • Patent number: 8035162
    Abstract: An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 11, 2011
    Assignee: Broadcom Corporation
    Inventors: Agnes N. Woo, Kenneth R. Kindsfater, Fang Lu
  • Patent number: 8035200
    Abstract: A semiconductor structure. The semiconductor structure includes a semiconductor layer, a charge accumulation layer on top of the semiconductor layer, a doped region in direct physical contact with the semiconductor layer; and a device layer on and in direct physical contact with the charge accumulation layer. The charge accumulation layer includes trapped charges of a first sign. The doped region and the semiconductor layer forms a P?N junction diode. The P?N junction diode includes free charges of a second sign opposite to the first sign. The trapped charge in the charge accumulation layer exceeds a preset limit above which semiconductor structure is configured to malfunction. A first voltage is applied to the doped region. A second voltage is applied to the semiconductor layer. A third voltage is applied to the device layer. The third voltage exceeds the first voltage and the second voltage.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: October 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: John M. Aitken, Ethan Harrison Cannon, Alvin Wayne Strong
  • Publication number: 20110227160
    Abstract: A semiconductor device and a method of manufacturing the same are provided. The semiconductor device has a metal sidewall spacer on the sidewall of a gate electrode on the drain region side. The metal sidewall spacer is made of such metals as Ta, which has an oxygen scavenging effect and can effectively reduce EOT on the drain region side, and thus the ability to control the short channel is effectively increased. In addition, since EOT on the source region side is larger, the carrier mobility of the device will not be degraded. Moreover, such asymmetric device may have a better driving performance.
    Type: Application
    Filed: September 25, 2010
    Publication date: September 22, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8018002
    Abstract: An electrostatic discharge protection device and methodology are provided for protecting semiconductor devices against electrostatic discharge events by temporarily forming during normal (non-ESD) operation two more inversion layers (112, 113) in a first well region (104) that is disposed between anode and cathode regions (105, 106) in response to one or more bias voltages (G1, G2) that are close to Vdd in order to reduce leakage current and capacitance during normal operation (non-ESD) condition. During an electrostatic discharge event, the bias voltages can be removed (e.g., decoupled or set to 0V) to eliminate the inversion layers, thereby forming a semiconductor resistor for shunting the ESD current.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: September 13, 2011
    Assignee: GlobalFoundries Inc.
    Inventors: Akram A. Salman, Stephen G. Beebe, Shuqing Cao
  • Patent number: 8018001
    Abstract: A breakdown voltage of a clamp diode can be reduced while a leakage current is suppressed. A P? type diffusion layer is formed in a surface of an N? type semiconductor layer. An N+ type diffusion layer is formed in a surface of the P? type diffusion layer. A P+ type diffusion layer is formed adjacent the N+ type diffusion layer in the surface of the P? type diffusion layer. An N+ type diffusion layer is formed adjacent the P? type diffusion layer in the surface of the N? type semiconductor layer. There is formed a cathode electrode, which is electrically connected with the N+ type diffusion layer through a contact hole formed in an insulation film on the N+ type diffusion layer. There is formed a wiring (an anode electrode) connecting between the P+ type diffusion layer and the N+ type diffusion layer through a contact hole formed in the insulation film on the P+ type diffusion layer and a contact hole formed in the insulation film on the N+ type diffusion layer.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: September 13, 2011
    Assignees: Semiconductor Components Industries, LLC, Sanyo Semiconductor Co., Ltd.
    Inventor: Seiji Otake
  • Patent number: 8013393
    Abstract: A method for fabricating a semiconductor device is provided. According to this method, a first gate electrode and a second gate electrode are formed overlying a first portion of a silicon substrate, and ions of a first conductivity-type are implanted into a second portion of the silicon substrate to define a first conductivity-type diode region within the silicon substrate. Ions of a second conductivity-type are implanted into a third portion of the silicon substrate to define a second conductivity-type diode region within the silicon substrate. During one of the steps of implanting ions of the first conductivity-type and implanting ions of the second conductivity-type, ions are also implanted into at least part of the first portion to define a separation region within the first portion. The separation region splits the first portion into a first well device region and a second well device region. The separation region is formed in series between the first well device region and the second well device region.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 6, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akram Salman, Stephen Beebe
  • Patent number: 8008723
    Abstract: Aimed at reducing the area of a protective circuit in a semiconductor device provided therewith, a semiconductor device of the present invention has a first-conductivity-type well, a plurality of first diffusion layers formed in the well, a plurality of second diffusion layers formed in the well, and a diffusion resistance layer formed in the well, wherein the first diffusion layers have a second conductivity type, and are connected in parallel with each other to an input/output terminal of the semiconductor device; the second diffusion layers are arranged alternately with a plurality of first diffusion layers, and are connected to a power source or to the ground; the diffusion resistance layer has a second conductivity type, and is located in adjacent to any of the plurality of second diffusion layers; the diffusion resistance layer is connected to the input/output terminal of the semiconductor device, while being arranged in parallel with the first diffusion layers, and connects the internal circuit and the
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: August 30, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Takayuki Nagai
  • Patent number: 7994577
    Abstract: An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 9, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiaw-Ren Shih, Jian-Hsing Lee
  • Patent number: 7989890
    Abstract: A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring in the HVW and occupying a top portion of the HVW, wherein the field ring is of the first conductivity type; an insulation region over and in contact with the field ring and a portion of the HVW; a gate electrode partially over the insulation region; a drain region in the HVW, wherein the drain region is of the second conductivity type; and wherein the HVW horizontally extends further toward the drain region than the pre-HVW; and a source region adjacent to, and on an opposite side of the gate electrode than the drain region.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 2, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yi Huang, Puo-Yu Chiang, Ruey-Hsin Liu, Shun-Liang Hsu, Chyi-Chyuan Huang, Fu-Hsin Chen, Eric Huang
  • Patent number: 7973365
    Abstract: The invention relates to a high-frequency integrated circuit requiring ESD protection for a circuit node. One or more metallic layer is deposited within the integrated circuit and patterned to form a transmission line. The metallic layers are generally already present in the integrated circuit for signal routing. The transmission line is coupled between the circuit node and a terminal of an ESD protection device, with a transmission line return conductor coupled to a high-frequency ground. The transmission line is formed with an electrical length that transforms the impedance of the ESD protection device substantially into an open circuit at the circuit node at an operational frequency of the integrated circuit. The other terminal of the ESD protection device is coupled to the high-frequency ground.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: July 5, 2011
    Assignee: Infineon Technologies AG
    Inventors: Uwe Hodel, Wolfgang Soldner
  • Patent number: 7956418
    Abstract: An ESD protection device is provided. The ESD protection device comprises an SCR and an ESD detection circuit. The SCR is coupled between a high voltage and a ground and has a special semiconductor structure which saves area. When the ESD detection circuit detects an ESD event, the ESD detection circuit drives the SCR to provide a discharging path.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: June 7, 2011
    Assignee: Mediatek Inc.
    Inventor: Chien-Hui Chuang
  • Patent number: 7948036
    Abstract: A technique to enhancing substrate bias of grounded-gate NMOS fingers (ggNMOSFET's) has been developed. By using this technique, lower triggering voltage of NMOS fingers can be achieved without degrading ESD protection in negative zapping. By introducing a simple gate-coupled effect and a PMOSFET triggering source with this technique, low-voltage triggered NMOS fingers have also been developed in power and I/O ESD protection, respectively. A semiconductor device which includes a P-well which is underneath NMOS fingers. The device includes an N-well ring which is configured so that the inner P-well underneath the NMOS fingers is separated from an outer P-well. The inner P-well and outer P-well are connected by a P-substrate resistance which is much higher than the resistance of the P-wells. A P+-diffusion ring surrounding the N-well ring is configured to connect to VSS, i.e., P-taps.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: May 24, 2011
    Assignee: LSI Corporation
    Inventor: Jau-Wen Chen
  • Patent number: 7948035
    Abstract: The present invention relates to a flash memory array. The flash memory array includes at least two word lines of gate electrode material. At least one of the word lines is connected through a first metal level to a discharge circuit, while other word line(s) may connect to a discharge circuit through a first and second metal level. The memory array further includes a shorting path between the word lines of the memory array. The shorting path is a high resistance layer of undoped gate electrode material. The resistance value of the gate electrode material is such that the word lines can be used to read, write, or erase without effecting each other, but that during the formation of a first metal level, as charges will build up on a first word line which requires a second metal level to connect to its discharge junction circuit, it will short the first word line to an adjacent second word line that has a connection to its junction circuit on the first metal level.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 24, 2011
    Assignee: Spansion LLC
    Inventors: Nian Yang, Joon-Heong Ong, Jiani Zhang
  • Patent number: 7902604
    Abstract: A semiconductor power device supported on a semiconductor substrate comprising a plurality of transistor cells each having a source and a drain with a gate to control an electric current transmitted between the source and the drain. The semiconductor further includes a gate-to-drain (GD) clamp termination connected in series between the gate and the drain further includes a plurality of back-to-back polysilicon diodes connected in series to a silicon diode includes parallel doped columns in the semiconductor substrate wherein the parallel doped columns having a predefined gap. The doped columns further include a U-shaped bend column connect together the ends of parallel doped columns with a deep doped well disposed below and engulfing the U-shaped bend.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yi Su, Anup Bhalla, Daniel Ng
  • Patent number: 7897999
    Abstract: A semiconductor integrated circuit device includes a power supply line connected to a power supply terminal, a ground line connected to a ground terminal and a plurality of capacitors connected in parallel between the power supply line and the ground line. The plurality of capacitors include a first capacitor arranged at a first distance from one of the terminals and a second capacitor arranged at a second distance which is larger than the first distance from the one of the terminals, and the first capacitor has a larger area than the second capacitor.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: March 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Furuta
  • Patent number: 7898035
    Abstract: A semiconductor device has a silicon substrate, an external connection terminal disposed on the silicon substrate, an internal circuit region disposed on the silicon substrate, an NMOS transistor for electrostatic discharge protection provided between the external connection terminal and the internal circuit region, and a wiring connecting together the external connection terminal and the NMOS transistor and connecting together the NMOS transistor and the internal circuit region. The NMOS transistor has a drain region and a gate electrode whose potential is fixed to a ground potential. The external connection terminal is smaller than the drain region and is formed above the drain region.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: March 1, 2011
    Assignee: Seiko Instruments Inc.
    Inventors: Hiroaki Takasu, Sukehiro Yamamoto
  • Patent number: 7893497
    Abstract: Provided is a semiconductor device including an electrostatic discharge (ESD) protection element provided between an external connection terminal and an internal circuit region. In the semiconductor device, interconnect extending from the external connection terminal to the ESD protection element includes a plurality of metal interconnect layers so that a resistance of the interconnect extending from the external connection terminal to the ESD protection element is made smaller than a resistance of interconnect extending from the ESD protection element to an internal element. The interconnect extending from the ESD protection element to the internal element includes metal interconnect layers equal to or smaller in number than the plurality of interconnect layers used in the interconnect extending from the external connection terminal to the ESD protection element.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 22, 2011
    Assignee: Seiko Instruments Inc.
    Inventor: Hiroaki Takasu
  • Patent number: 7880235
    Abstract: A semiconductor integrated circuit device has an SOI substrate comprising an insulating film laminated on a semiconductor support substrate and a semiconductor thin film laminated on the insulating film. A first N-channel MOS transistor, a first P-channel MOS transistor, and a resistor are each disposed on the semiconductor thin film. A second N-channel MOS transistor serving as an electrostatic discharge (ESD) protection element is disposed on a surface of the semiconductor support substrate that is exposed by removing a part of the semiconductor thin film and a part of the insulating film. The second N-channel MOS transistor has a gate electrode, a source region and a drain region surrounding the source region through the gate electrode to maintain a constant distance between the drain region and the source region.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: February 1, 2011
    Assignee: Seiko Instruments Inc.
    Inventor: Naoto Saitoh
  • Publication number: 20110018062
    Abstract: A process for fabricating single or multiple gate field plates using consecutive steps of dielectric material deposition/growth, dielectric material etch and metal evaporation on the surface of a field effect transistors. This fabrication process permits a tight control on the field plate operation since dielectric material deposition/growth is typically a well controllable process. Moreover, the dielectric material deposited on the device surface does not need to be removed from the device intrinsic regions: this essentially enables the realization of field-plated devices without the need of low-damage dielectric material dry/wet etches. Using multiple gate field plates also reduces gate resistance by multiple connections, thus improving performances of large periphery and/or sub-micron gate devices.
    Type: Application
    Filed: October 5, 2010
    Publication date: January 27, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alessandro Chini, Umesh K. Mishra, Primit Parikh, Yifeng Wu
  • Patent number: 7855419
    Abstract: An improved layout pattern for electrostatic discharge protection is disclosed. A first heavily doped region of a first type is formed in a well of said first type. A second heavily doped region of a second type is formed in a well of said second type. A battlement layout pattern of said first heavily doped region is formed along the boundary of said first heavily doped region and said second heavily doped region. A battlement layout pattern of said second heavily doped region is formed along the boundary of said first heavily doped region and said second heavily doped region. By adjusting a distance between the battlement layout pattern of a heavily doped region and a edge of well of said second type, i.e. n-well, a first distance will be shorter than what is typically required by the layout rules of internal circuit; and a second distance will be longer than the first distance to ensure that the I/O device have a better ESD protection capability.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: December 21, 2010
    Assignee: Himax Technologies Limited
    Inventor: Tung-Yang Chen
  • Patent number: 7851864
    Abstract: A test structure includes a transistor, a dummy transistor and a pad unit. The transistor is formed on a first active region of a substrate. The dummy transistor is formed on a second active region of the substrate and electrically connected to the transistor. The pad unit is electrically connected to the transistor. Plasma damage to the transistor is reduced due to the presence of dummy transistor.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: December 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Young Chung, Ji-Hae Kim
  • Publication number: 20100308407
    Abstract: A recessed dielectric antifuse device includes a substrate and laterally spaced source and drain regions formed in the substrate. A recess is formed between the source and drain regions. A gate and gate oxide are formed in the recess and lightly doped source and drain extension regions contiguous with the laterally spaced source and drain regions are optionally formed adjacent the recess. Programming of the recessed dielectric antifuse is performed by application of power to the gate and at least one of the source region and the drain region to breakdown the dielectric, which minimizes resistance between the gate and the channel.
    Type: Application
    Filed: August 13, 2010
    Publication date: December 9, 2010
    Inventor: Dwayne Kreipl
  • Patent number: 7838965
    Abstract: The integrated capacitor structure comprises a first branch with a first capacitor (60) and a second branch with a second capacitor (70). The second capacitor (70) has a higher capacitance density and a lower breakdown voltage than the first capacitor (60). The first branch has a shorter RC time constant than the second branch, such that a voltage peak will substantially follow the first branch. This first capacitor (60) has a sufficient capacity to store the charge of the voltage peak. In one embodiment, the second capacitor (70) is a stacked capacitor. The structure is suitable for ESD-protection and may, to this end, additionally comprise diodes (21) and resistors (22).
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: November 23, 2010
    Assignee: NXP B.V.
    Inventors: Mareike Klee, Rainer Kiewitt, Ulrich Schiebel, Hans-Wolfgang Brand, Ruediger Mauczok
  • Patent number: 7816242
    Abstract: A semiconductor device includes a plate of semiconductor layer, an insulator layer formed on the plate of semiconductor layer and brought into contact with the plate of semiconductor layer by at least two adjacent faces, a thickness of the insulator layer in the vicinity of a boundary line between the two adjacent faces being larger than that of the insulator layer in a region other than the vicinity of the boundary line, and a band of conductor layer formed facing a middle portion of the plate-like semiconductor layer via the insulator layer.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 19, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mizuki Ono
  • Patent number: 7808047
    Abstract: A trigger circuit is provided for a pull-down device by connecting a diode between the I/O pad and the body of the pull-down device. In one embodiment, the pull-down device is formed as a plurality of discrete transistors in a single well. The drain of each transistor is connected through a ballast resistor to the I/O pad; and the source of each transistor is connected through a ballast resistor to ground. The trigger circuit is a diode formed in a different well from that of the transistors. The cathode of the diode is connected to the I/O pad and the anode is connected to the transistor well through a center tap located between the transistors. Preferably, the transistors are NMOS transistors formed in a P-well. Advantageously, the diode is an N+/PLDD diode. Alternatively, the diode is an N+/P diode where the P region is formed by an ESD implant. In other embodiments the diode is formed in the same well as the transistors.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 5, 2010
    Assignee: Altera Corporation
    Inventors: Antonio Gallerano, Cheng-Hsiung Huang, Chih-Ching Shih, Jeffrey T. Watt
  • Patent number: RE42776
    Abstract: An integrated circuit biases the substrate and well using voltages other than those used for power and ground. Tap cells inside the standard cell circuits are removed. New tap cells used to bias the substrate and well reside outside the standard cell circuits. The location of the new voltage power rails is designated prior to placement of the tap cells in the integrated circuit. The tap cells are then strategically placed near the power rails such that metal connections are minimized. Circuit density is thus not adversely impacted by the addition of the new power rails. Transistors are also placed inside the tap cells to address electrostatic discharge issues during fabrication.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: October 4, 2011
    Assignee: Marvell International Ltd.
    Inventors: Lawrence T. Clark, Vikas R. Amrelia, Raphael A. Soetan, Eric J. Hoffman, Tuan X. Do
  • Patent number: RE43215
    Abstract: The present invention is directed to an electrostatic discharge (ESD) device with an improved ESD robustness for protecting output buffers in I/O cell libraries. The ESD device according to the present invention uses a novel I/O cell layout structure for implementing a turn-on restrained method that reduces the turn-on speed of an ESD guarded MOS transistor by adding a pick-up diffusion region and/or varying channel lengths in the layout structure.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: February 28, 2012
    Inventors: Ming-Dou Ker, Jeng-Jie Peng, Hsin-Chin Jiang