For Operation As Bipolar Or Punchthrough Element Patents (Class 257/361)
  • Patent number: 8691684
    Abstract: A power transistor for use in an audio application is laid out to minimize hot spots. Hot spots are created by non-uniform power dissipation or overly concentrated current densities. The source and drain pads are disposed relative to each other to facilitate uniform power dissipation. Interleaving metal fingers and upper metal layers are connected directly to lower metal layers in the absence of vias to improve current density distribution. This layout improves some fail detection tests by 17%.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: April 8, 2014
    Assignee: STMicroelectronics (Shenzhen) R&D Co. Ltd.
    Inventors: Guo Hua Zhong, Mei Yang
  • Patent number: 8680621
    Abstract: An integrated circuit comprising electro-static discharge (ESD) protection circuitry arranged to provide ESD protection to an external terminal of the integrated circuit. The ESD protection circuitry comprises: a thyristor circuit comprising a first bipolar switching device operably coupled to the external terminal and a second bipolar switching device operably coupled to another external terminal, a collector of the first bipolar switching device being coupled to a base of the second bipolar switching device and a base of the first bipolar switching device being coupled to a collector of the second bipolar switching device. A third bipolar switching device is also provided and operably coupled to the thyristor circuit and has a threshold voltage for triggering the thyristor circuit, the threshold voltage being independently configurable of the thyristor circuit.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: March 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Patrice Besse, Jean Philippe Laine
  • Patent number: 8653627
    Abstract: A semiconductor crystal having a recombination-inhibiting semiconductor layer of a second conductive type that is disposed in the vicinity of the surface between a base contact region and emitter regions and that separates the semiconductor surface having a large number of surface states from the portion that primarily conducts the positive hole electric current and the electron current. Recombination is inhibited, and the current amplification factor is thereby improved and the ON voltage reduced.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: February 18, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Ken-ichi Nonaka
  • Patent number: 8647955
    Abstract: Methods for forming an electrostatic discharge protection (ESD) clamps are provided. In one embodiment, the method includes forming at least one transistor having a first well region of a first conductivity type extending into a substrate. At least one transistor is formed having another well region of a second opposite conductivity type, which extends into the substrate to partially form a collector. The lateral edges of the transistor well regions are separated by a distance D, which at least partially determines a threshold voltage Vt1 of the ESD clamp. A base contact of the first conductivity type is formed in the first well region and separated from an emitter of the second conductivity type by a lateral distance Lbe. The first doping density and the lateral distance Lbe are selected to provide a parasitic base-emitter resistance Rbe in the range of 1<Rbe<800 Ohms.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: February 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
  • Patent number: 8648419
    Abstract: An electrostatic discharge (ESD) protection clamp (21, 21?, 70, 700) for protecting associated devices or circuits (24), comprises a bipolar transistors (21, 21?, 70, 700) in which doping of facing base (75) and collector (86) regions is arranged so that avalanche breakdown occurs preferentially within a portion (84, 85) of the base region (74, 75) of the device (70, 700) away from the overlying dielectric-semiconductor interface (791). Maximum variations (?Vt1)MAX of ESD triggering voltage Vt1 as a function of base-collector spacing dimensions D due, for example, to different azimuthal orientations of transistors (21, 21?, 70, 700) on a semiconductor die or wafer is much reduced. Triggering voltage consistency and manufacturing yield are improved.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: February 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Amaury Gendron, Chai Ean Gill, Changsoo Hong
  • Patent number: 8592910
    Abstract: A semiconductor body includes a protective structure. The protective structure (10) includes a first and a second region (11, 12) which have a first conductivity type and a third region (13) that has a second conductivity type. The second conductivity type is opposite the first conductivity type. The first and the second region (11, 12) are arranged spaced apart in the third region (13), so that a current flow from the first region (11) to the second region (12) is made possible for the limiting of a voltage difference between the first and the second region (11, 12). The protective structure includes an insulator (14) that is arranged on the semiconductor body (9) and an electrode (16) that is constructed with floating potential and is arranged on the insulator (14).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 26, 2013
    Assignee: AMS AG
    Inventor: Hubert Enichlmair
  • Patent number: 8558276
    Abstract: A low voltage transient voltage suppressing (TVS) device supported on a semiconductor substrate supporting an epitaxial layer thereon. The TVS device further includes a bottom-source metal oxide semiconductor field effect transistor (BS-MOSFET) comprises a trench gate surrounded by a drain region encompassed in a body region disposed near a top surface of the semiconductor substrate wherein the drain region interfaces with the body region constituting a junction diode and the drain region encompassed in the body region on top of the epitaxial layer constituting a bipolar transistor with a top electrode disposed on the top surface of the semiconductor functioning as a drain/collector terminal and a bottom electrode disposed on a bottom surface of the semiconductor substrate functioning as a source/emitter electrode.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: October 15, 2013
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventor: Madhur Bobde
  • Patent number: 8530970
    Abstract: A method for reducing areas of high field density in an integrated circuit is disclosed. In one embodiment, the method includes forming a first curvilinear wiring structure in a first interconnect layer of an integrated circuit. A second curvilinear wiring structure may be formed in a second interconnect layer of the integrated circuit, such that the first and second curvilinear wiring structures are substantially vertically aligned. The first curvilinear wiring structure may then be electrically connected to the second curvilinear wiring structure.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: September 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Felix Patrick Anderson, Thomas Leddy McDevitt, Anthony Kendall Stamper
  • Patent number: 8471292
    Abstract: A semiconductor device includes an SCR ESD device region disposed within a semiconductor body, and a plurality of first device regions of the first conductivity type disposed on a second device region of the second conductivity type, where the second conductivity type is opposite the first conductivity type. Also included is a plurality of third device regions having a sub-region of the first conductivity type and a sub-region of the second conductivity type disposed on the second device region. The first regions and second regions are distributed such that the third regions are not directly adjacent to each other. A fourth device region of the first conductivity type adjacent to the second device region and a fifth device region of the second conductivity type disposed within the fourth device region are also included.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: June 25, 2013
    Assignee: Infineon Technologies AG
    Inventors: Krzysztof Domanski, Cornelius Christian Russ, Kai Esmark
  • Patent number: 8460994
    Abstract: A semiconductor crystal includes a recombination-inhibiting semiconductor layer (17) of a second conductive type that is disposed in the vicinity of the surface between a base contact region (16) and emitter regions (14) and that separates the semiconductor surface having a large number of surface states from the portion that primarily conducts the positive hole electric current and the electron current. Recombination is inhibited, and the current amplification factor is thereby improved and the ON voltage reduced.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: June 11, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Ken-ichi Nonaka
  • Patent number: 8390071
    Abstract: A stackable electrostatic discharge (ESD) protection clamp (21) for protecting a circuit core (24) comprises, a bipolar transistor (56, 58) having a base region (74, 51, 52, 85) with a base contact (77) therein and an emitter (78) spaced a lateral distance Lbe from the base contact (77), and a collector (80, 86, 762) proximate the base region (74, 51, 52, 85). The base region (74, 51, 52, 85) comprises a first portion (51) including the base contact (77) and emitter (78), and a second portion (52) with a lateral boundary (752) separated from the collector (86, 762) by a breakdown region (84) whose width D controls the clamp trigger voltage, the second portion (52) lying between the first portion (51) and the boundary (752). The damage-onset threshold current It2 of the ESD clamp (21) is improved by increasing the parasitic resistance Rbe of the emitter-base region (74, 51, 52, 85), by for example, increasing Lbe or decreasing the relative doping density of the first portion (51) or a combination thereof.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: March 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Amaury Gendron, Chai Ean Gill
  • Patent number: 8324688
    Abstract: The present disclosure provides ESD protection devices that can effectively cope with electrostatic stress of microchips for high voltage operation.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 4, 2012
    Assignee: Bauabtech
    Inventor: Kilho Kim
  • Patent number: 8324658
    Abstract: An electrostatic discharge (ESD) protection circuit structure includes a dual directional silicon controlled rectifier (SCR) formed in a substrate. The SCR includes first and second P-wells laterally interposed by an N-well. A deep N-well is disposed underneath the P-wells and the N-well. First and second N-type regions are disposed in the first and second P-wells, respectively, and are coupled to a pair of pads. First and second P-type regions are disposed in the first and second P-wells, respectively, are coupled to the pads, and are disposed closer to the N-well than the first and second N-type regions, respectively.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: December 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Hsien Tsai, Chewn-Pu Jou, Fu-Lung Hsueh, Ming-Hsiang Song
  • Patent number: 8253203
    Abstract: An electrostatic discharge (ESD) protection circuit that includes a parallel connection of parasitic vertical and lateral bipolar junction transistors (BJTs) each with a floating base and a metal oxide semiconductor (MOS) field transistor with a floating body is disclosed. The three transistors may be connected in parallel between a bond (input or output) pad and a substantially fixed voltage level (e.g., a ground (or zero potential) or Vcc, depending on the transistor configuration) in a semiconductor electronic device so as to protect transistor gates or other circuit portions from damage from electrostatic voltages. The parasitic BJTs and the field transistor may be configured to remain cut off so long as an input voltage at the pad is between a negative V1 voltage (?V1) (V1>0) and a +V2 voltage (V2>Vcc), thereby allowing a greater input voltage swing without signal clamping.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Joohyun Jin
  • Patent number: 8253165
    Abstract: A semiconductor device includes a first well region of a first conductivity, a second well region of a second conductivity type, a source region of the second conductivity type within the first well region, and a drain region of the second conductivity type at least partially within the second well region. A well contact to the first well region is coupled to the source. A third doped region of the first conductivity type and a fourth doped region of the second conductivity type are located in the second well region. A first transistor includes the third doped region, the second well region, and the first well region. The first transistor is coupled to a switch device. A second transistor includes the second well region, the first well region, and the source region. The first and the second transistors are configured to provide a current path during an ESD event.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: August 28, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8188545
    Abstract: A semiconductor integrated circuit includes N pad rows in which pads are respectively arranged, and electrostatic discharge protection elements disposed in a lower layer of the N pad rows and connected with each pad in the N pad rows. The electrostatic discharge protection elements are disposed in a lower layer of regions at least partially including each of the N pads.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: May 29, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Takayuki Saiki, Satoru Ito, Masahiko Moriguchi
  • Patent number: 8138550
    Abstract: A method of manufacturing a semiconductor device, has forming a gate insulating film over a surface of a substrate, eliminating a portion of the gate insulating film in a region, forming a gate electrode over the gate insulating film and a drain electrode on the region, implanting first impurities into the substrate using the gate electrode and the drain electrode as a mask, forming an insulating film to fill the space between the gate electrode and the drain electrode, and implanting second impurities into the substrate to form a source region using the gate electrode, the drain electrode and the insulating film as a mask.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: March 20, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hajime Kurata
  • Patent number: 8129778
    Abstract: Semiconductor devices and methods for making such devices that are especially suited for high-frequency applications are described. The semiconductor devices combine a SIT (or a junction field-effect transistor [JFET]) architecture with a PN super-junction structure. The SIT architecture can be made using a trench formation containing a gate that is sandwiched between thick dielectric layers. While the gate is vertically sandwiched between the two isolating regions in the trench, it is also connected to a region of one conductivity type of the super-junction structure, thereby allowing control of the current path of the semiconductor device. Such semiconductor devices have a lower specific resistance and capacitance relative to conventional planar gate and recessed gate SIT semiconductor devices. Other embodiments are described.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: March 6, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Suku Kim, James J. Murphy, Gary Dolny
  • Patent number: 8102002
    Abstract: The invention is directed to a protection circuit for protecting IC chips against ESD. An ESD protection circuit for an integrated circuit chip may comprise an isolated NMOS transistor, which may comprise an isolation region isolating a backgate from a substrate, and a first and second doped regions and a gate formed on the backgate. The ESD protection circuit may further comprise a first terminal to connect the isolation region to a first electrical node, and a second terminal to connect the second doped region to a second electrical node. The first electrical node may have a higher voltage level than the second electrical node, and the gate and backgate may be coupled to the second terminal.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: January 24, 2012
    Assignee: Analog Devices, Inc.
    Inventors: David Foley, Haiyang Zhu
  • Patent number: 8102001
    Abstract: A semiconductor device for electrostatic discharge (ESD) protection includes a silicon controlled rectifier (SCR) including a semiconductor substrate, a first well formed in the substrate, a second well formed in the substrate, a first p-type region formed in the first well to serve as an anode, and a first n-type region partially formed in the second well to serve as a cathode, a p-type metal-oxide-semiconductor (PMOS) transistor formed in the first well including a gate, a first diffused region and a second diffused region separated apart from the first diffused region, a second n-type region formed in the first well electrically connected to the first diffused region of the PMOS transistor, and a second p-type region formed in the substrate electrically connected to the second diffused region of the PMOS transistor.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: January 24, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Dou Ker, Shih-Hung Chen, Kun-Hsien Lin
  • Patent number: 8086979
    Abstract: A PMOS device can be designed and manufactured in accordance with the invention to locate its drain junction breakdown point and maximum impact ionization point to reduce or eliminate drain breakdown voltage walk-in. In some embodiments, the drain junction breakdown point and maximum impact ionization point are located sufficiently far from the gate that the device exhibits no significant drain breakdown voltage walk-in. The device can be a high voltage power transistor having an extended drain region including a P-type lightly doped drain (P-LDD) implant, with drain junction breakdown and maximum impact ionization points appropriately located by controlling the implant dose employed to produce the P-LDD implant.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: December 27, 2011
    Assignee: National Semiconductor Corp.
    Inventors: Douglas Brisbin, Andrew Strachan
  • Patent number: 8015518
    Abstract: A design structure for electrostatic discharge protection comprises a first data representing a first electrostatic discharge (ESD) protection circuit and a second data representing a second ESD protection circuit. A parallel connection of two ESD protection units, each providing a discharge path for electrical charges of opposite types, provides ESD protection circuit for positive and negative voltage swings in the circuit. Each of the multiple emitter-base regions are cascaded such that the base of one emitter-base region is directly wired to the emitter of an adjacent emitter-base region. The first data represents a first ESD protection unit providing protection on one type of voltage swing, and the second data represents a second ESD protection unit providing protection on the other type of voltage swing.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8008727
    Abstract: To reduce the leak current in the MOSFET connected between the pad and the ground. There are provided a pad PAD for an input or output signal, an n-type MOSFET M1a connected between the pad PAD and the ground and having its gate terminal and backgate connected in common, and a potential control circuit 10 that controls a potential Vb of the gate terminal and the backgate of the n-type MOSFET M1a based on a potential Vin of the pad PAD. The potential control circuit 10 comprises n-type MOSFETs M2 and M3; the n-type MOSFET M1a has its gate terminal and backgate connected to backgates and drains of the n-type MOSFETs M2 and M3; the n-type MOSFET M2 has its source grounded and its gate terminal connected to the pad PAD via a resistance R; and the n-type MOSFET M3 has its source connected to the pad PAD and its gate terminal grounded.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: August 30, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Okamoto, Morihisa Hirata
  • Patent number: 7985987
    Abstract: A HEMT-type field-effect semiconductor device has a main semiconductor region comprising two layers of dissimilar materials such that a two-dimensional electron gas layer is generated along the heterojunction between the two layers. A source and a drain electrode are placed in spaced positions on a major surface of the main semiconductor region. Between these electrodes, a gate electrode is received in a recess in the major surface of the main semiconductor region via a p-type metal oxide semiconductor film whereby a depletion zone is normally created in the electron gas layer, with a minimum of turn-on resistance and gate leak current.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 26, 2011
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Nobuo Kaneko
  • Patent number: 7986011
    Abstract: The invention provides an electrostatic discharge (ESD) protection device with an increased capability to discharge ESD generated current with a reduced device area. The ESD protection device comprises a grounded gate MOS transistor (1) with a source region (3) and a drain region (4) of a first semiconductor type interposed by a first well region (7) of a second semiconductor type. Second well regions (6) of the first semiconductor type, interposed by the first well region (7), are provided beneath the source region (3) and the drain region (4). Heavily doped buried regions (8,9) of the same semiconductor types, respectively, as the adjoining well regions (6,7) are provided beneath the well regions (6,7).
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: July 26, 2011
    Assignee: NXP B.V.
    Inventors: Fabrice Blanc, Frederic Francois Barbier
  • Publication number: 20110169093
    Abstract: The present disclosure provides ESD protection devices that can effectively cope with electrostatic stress of microchips for high voltage operation. The ESD protection device is a double diffused drain N-type MOSFET (DDDNMOS) ESD protection device, in which a gate, a source region and a well-pickup region are connected to a ground terminal and a drain region is connected to a power terminal or individual input/output terminals.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Inventor: Kilho Kim
  • Patent number: 7977769
    Abstract: An ESD protection device is described, which includes a first P-type doped region, a second P-type doped region, a first N-type doped region, a second N-type doped region and an isolation structure. The first P-type doped region is configured in a substrate. The second P-type doped region is configured in the first P-type doped region. The first N-type doped region is configured in the first P-type doped region and surrounds the second P-type doped region. The second N-type doped region is configured in the substrate and surrounds the first P-type doped region. The isolation structure is disposed between the first P-type doped region and the second N-type doped region, wherein a spacing is deployed between an outward edge of the first N-type doped region and the isolation structure.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: July 12, 2011
    Assignee: United Microelectronics Corp.
    Inventor: Fang-Mei Chao
  • Publication number: 20110121395
    Abstract: The present disclosure provides ESD protection devices that can effectively cope with electrostatic stress of microchips for high voltage operation.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 26, 2011
    Inventor: Kilho Kim
  • Publication number: 20110095368
    Abstract: An electrostatic discharge protection device is disclosed. The electrostatic discharge protection device preferably includes a first transistor, a second transistor, and an electrostatic discharge clamping circuit. The first transistor includes a first drain electrically connected to an input/output pin of a chip, a first source electrically connected to a first voltage input pin of the chip, and a first gate. The first drain is preferably an internally shrunk drain. The second transistor includes a second drain electrically connected to the input/output pin of the chip, a second source electrically connected to a second voltage input pin and a second gate. The electrostatic discharge clamping circuit is electrically connected to the first voltage input pin and the second voltage input pin.
    Type: Application
    Filed: October 19, 2010
    Publication date: April 28, 2011
    Inventors: Yang-Han Lee, Chun Chang
  • Patent number: 7893498
    Abstract: A semiconductor device 10 comprises a P type base region 13 formed in an N? type base region 11, and N+ type emitter regions 14 formed plurally in the P type base region 13 so as to be spaced form each other. The N+ type emitter regions 14 are formed such that the rate of the area occupied by the N+ type emitter region 14 in the P type base region 13 at the center part of the semiconductor device 10 is smaller than the rate of the area occupied by the N+ type emitter region 14 in the P type base region 13 at the peripheral part of the semiconductor device 10.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: February 22, 2011
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Katsuyuki Torii
  • Patent number: 7888739
    Abstract: An electrostatic discharge circuit between a first pad and a second pad including an electrostatic discharge circuit element, including a bipolar transistor path and a resistor path, the electrostatic discharge circuit element alternately discharging an electrostatic current through the bipolar transistor path and the resistor path.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chan-hee Jeon, Han-gu Kim, Sung-pil Jang
  • Publication number: 20110006341
    Abstract: An electrostatic discharge (ESD) protection element using an NPN bipolar transistor, includes: a trigger element connected at one end with a pad. The NPN bipolar transistor includes: a first base diffusion layer; a collector diffusion layer connected with the pad; a trigger tap formed on the first base diffusion layer and connected with the other end of the trigger element through a first wiring; and an emitter diffusion layer and a second base diffusion layer formed on the first base diffusion layer and connected in common to a power supply through a second wiring which is different from the first wiring.
    Type: Application
    Filed: June 29, 2010
    Publication date: January 13, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Kouichi SAWAHATA
  • Patent number: 7859056
    Abstract: An integrated circuit (IC) includes one or more silicon-on-insulator (SOI) transistors. Each SOI transistor includes a first source region, a second source region, a drain region, a body contact region, a gate, and first and second isolation regions. The body contact region couples electrically to a body of the SOI transistor. The gate controls current flow between the first and second source regions and a drain region of the transistor. The first isolation region is disposed between the first source region and the body contact region. The second isolation region is disposed between the second source region and the body contact region.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: December 28, 2010
    Assignee: Altera Corporation
    Inventors: Yowjuang W. Liu, Minchang Liang
  • Patent number: 7859021
    Abstract: A HEMT-type field-effect semiconductor device has a main semiconductor region comprising two layers of dissimilar materials such that a two-dimensional electron gas layer is generated along the heterojunction between the two layers. A source and a drain electrode are placed in spaced positions on a major surface of the main semiconductor region. Between these electrodes, a gate electrode is received in a recess in the major surface of the main semiconductor region via a p-type metal oxide semiconductor film whereby a depletion zone is normally created in the electron gas layer, with a minimum of turn-on resistance and gate leak current.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: December 28, 2010
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Nobuo Kaneko
  • Patent number: 7843009
    Abstract: An integrated circuit is made of a semiconductor material and comprises an input and/or terminal connected to an output transistor forming a parasitic element capable of triggering itself under the effect of an electrostatic discharge applied to the terminal. The integrated circuit comprises a protection device formed so as to be biased at the same time as the parasitic element under the effect of an electrostatic discharge, and more than the parasitic element to evacuate a discharge current as a priority.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: November 30, 2010
    Assignee: STMicroelectronics SA
    Inventors: John Brunel, Nicolas Froidevaux
  • Patent number: 7821053
    Abstract: Disclosed are embodiments of a transistor that operates as a capacitor and an associated method of tuning capacitance within such a capacitor. The embodiments of the capacitor comprise a field effect transistor with front and back gates above and below a semiconductor layer, respectively. The capacitance value exhibited by the capacitor can be selectively varied between two different values by changing the voltage condition in a source/drain region of the transistor, e.g., using a switch or resistor between the source/drain region and a voltage supply. Alternatively, the capacitance value exhibited by the capacitor can be selectively varied between multiple different values by changing voltage conditions in one or more of multiple channel regions that are flanked by multiple source/drain regions within the transistor. The capacitor will exhibit different capacitance values depending upon the conductivity in each of the channel regions.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Corey K. Barrows, Joseph A. Iadanza, Edward J. Nowak, Douglas W. Stout, Mark S. Styduhar
  • Patent number: 7804151
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brennan J. Brown, James R. Elliott, Alvin J. Joseph, Edward J. Nowak
  • Patent number: 7804135
    Abstract: An integrated semiconductor diode arrangement is provided. The arrangement includes an anode region and a cathode region that are formed in a semiconductor material region. The anode region has an arrangement of alternately occurring and directly adjacent first and second anode zones, which alternate in their conductivity type. The anode region furthermore has a first particular anode zone of the second conductivity type, the lateral extent of which is comparatively larger than that of the further anode zones of the same conductivity type.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: September 28, 2010
    Assignee: Infineon Technologies AG
    Inventors: Nils Jensen, Andreas Meiser
  • Patent number: 7795102
    Abstract: In a SiGe BJT process, a diode is formed by defining a p-n junction between the BJT collector and BJT internal base, blocking the external gate regions of the BJT and doping the emitter poly of the BJT with the same dopant type as the internal base thereby using the emitter contact to define the contact to the internal base. Electrical contact to the collector is established through a sub-collector or by means of a second emitter poly and internal base both doped with the same dopant type as the collector.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: September 14, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Vladimir Kuznetsov, Peter J. Hopper
  • Patent number: 7750407
    Abstract: A semiconductor device includes a substrate and a memory cell formed on the substrate. The memory cell includes a word line. The semiconductor device also includes a protection area formed in the substrate, a conductive structure configured to extend the word line to the protection area, and a contact configured to short the word line and the protection area.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 6, 2010
    Assignee: Spansion LLC
    Inventors: Wei Zheng, Jean Yang, Mark Randolph, Ming Kwan, Yi He, Zhizheng Liu, Meng Ding
  • Patent number: 7696600
    Abstract: A semiconductor device in the form of an IGBT has a front side contact, a rear side contact, and a semiconductor volume disposed between the front side contact and the rear side contact. The semiconductor volume includes a field stop layer for spatially delimiting an electric field that can be formed in the semiconductor volume. The semiconductor volume further includes a plurality of semiconductor zones, the plurality of semiconductor zones spaced apart from each other and each inversely doped with respect to adjacent areas. The plurality of semiconductor zones are located within the field stop layer.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: April 13, 2010
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Frank Pfirsch, Elmar Falck, Josef Lutz
  • Patent number: 7696575
    Abstract: A semiconductor device of complementary structure with increased carrier mobilities of both polarities by applying orientation-dependent mechanical stresses to their respective semiconductor channel regions, comprises a semiconductor region subjected to compressive stress in a first direction along a surface and tensile stress in a second direction different from the first direction, a field effect transistor of a first conductivity type formed in the semiconductor region and including source and drain regions separately arranged along the first direction and a field effect transistor of a second conductivity type formed in the semiconductor region and including source and drain regions separately arranged along the second direction.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masakatsu Tsuchiaki
  • Patent number: 7687860
    Abstract: There are provided a memory transistor having a select transistor with asymmetric gate electrode structure and an inverted T-shaped floating gates and a method for forming the same. A gate electrode of the select transistor adjacent to a memory transistor has substantially an inverted T-shaped figure, whereas the gate electrode of the select transistor opposite to the memory transistor has nearly a box-shaped figure. In order to form the floating gate of the memory transistor in shape of the inverted T, a region for the select transistor is closed when opening a region for the memory transistor.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woon-Kyung Lee, Jeong-Hyuk Choi, Dong-Jun Lee, Jai-Hyuk Song
  • Patent number: 7679944
    Abstract: To provide a motor drive adapted to operate stably and suffer essentially no damage, even when a high voltage is applied between grounding terminals of upper and lower arms. The motor drive of this invention includes: an arm with a first electric power semiconductor-switching element and a second electric power semiconductor-switching element, both connected in series between major terminals; and a level-shifting circuit that transmits a control signal of the first semiconductor-switching element connected to the high-voltage side of the arm, from a low-voltage circuit to a high-voltage circuit; the motor drive employing an insulated-gate bipolar transistor as the signal-transmitting high-withstand-voltage element formed in the level-shifting circuit.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 16, 2010
    Assignee: Hitachi, Ltd.
    Inventor: Naoki Sakurai
  • Patent number: 7656009
    Abstract: An electric discharge device includes a bipolar transistor configuration comprising a base, an emitter, and a collector. At least one pinched resistor is formed in a region comprising both the base and emitter so as to produce a pinched resistive area that develops a voltage once the bipolar transistor experiences junction breakdown.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: February 2, 2010
    Assignee: Analog Devices, Inc.
    Inventors: Moshe Gerstenhaber, Padraig Cooney
  • Patent number: 7638847
    Abstract: An ESD protection structure includes, in part, a NMOS transistor having a source and drain in a well in a substrate and a gate on the substrate with the source and drain being connected between ground and a series diode, and the gate being connected to ground. The structure further includes a diode having a cathode connected to the input pad and an anode connected to the well so that the diode is reverse-biased in the event of a positive voltage ESD event on the input pad. As a result, in a positive voltage ESD event, the avalanche effect rapidly injects current into the substrate and therefore into the base of the parasitic bipolar transistor so as to trigger the transistor into conduction and discharge the ESD pulse. Alternatively, the diode is a Zener diode and the current is generated by the Zener effect. A complementary structure provides protection against a negative ESD pulse.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: December 29, 2009
    Assignee: Altera Corporation
    Inventors: Hugh Sungki O, Chih-Ching Shih, Cheng-Hsiung Huang, Yow-Juang Bill Liu
  • Patent number: 7622776
    Abstract: A semiconductor device includes: a substrate including a compound semiconductor, a semiconductor layer formed on a surface of the substrate, a plurality of gate electrodes formed on the semiconductor layer, a plurality of source electrodes formed on the semiconductor layer, a plurality of drain electrodes formed on the semiconductor layer, a via hole configured to extend from a substrate side of the semiconductor layer to a rear surface of the source electrode, a ground electrode which is formed on an inner wall of the via hole and on the rear surface of the substrate and connects the plurality of source electrodes, and a first air bridge interconnection which is formed on a surface side of the source electrode and connects the plurality of source electrodes.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: November 24, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hisao Kawasaki
  • Patent number: 7615826
    Abstract: An electrostatic discharge (ESD) protection device with adjustable single-trigger or multi-trigger voltage is provided. The semiconductor structure has multi-stage protection semiconductor circuit function and adjustable discharge capacity. The single-trigger or multi-trigger semiconductor structure may be fabricated by using the conventional semiconductor process, and can be applied to IC semiconductor design and to effectively protect the important semiconductor devices and to prevent the semiconductor devices from ESD damage. In particular, the present invention can meet the requirements of high power semiconductor device and has better protection function compared to conventional ESD protection circuit. In the present invention, a plurality of N-wells or P-wells connected in parallel are used to adjust the discharge capacity of various wells in the P-substrate so as to improve the ESD protection capability and meet different power standards.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: November 10, 2009
    Assignee: System General Corp.
    Inventors: Chih-Feng Huang, Tuo-Hsin Chien, Jenn-Yu G. Lin, Ta-yung Yang
  • Patent number: 7582938
    Abstract: A technique to enhancing substrate bias of grounded-gate NMOS fingers (ggNMOSFET's) has been developed. By using this technique, lower triggering voltage of NMOS fingers can be achieved without degrading ESD protection in negative zapping. By introducing a simple gate-coupled effect and a PMOSFET triggering source with this technique, low-voltage triggered NMOS fingers have also been developed in power and I/O ESD protection, respectively. A semiconductor device which includes a P-well which is underneath NMOS fingers. The device includes an N-well ring which is configured so that the inner P-well underneath the NMOS fingers is separated from an outer P-well. The inner P-well and outer P-well are connected by a P-substrate resistance which is much higher than the resistance of the P-wells. A P+-diffusion ring surrounding the N-well ring is configured to connect to VSS, i.e., P-taps.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: September 1, 2009
    Assignee: LSI Corporation
    Inventor: Jau-Wen Chen
  • Patent number: 7579658
    Abstract: ESD protection devices without current crowding effect at the finger's ends. It is applied under MM ESD stress in sub-quarter-micron CMOS technology. The ESD discharging current path in the NMOS or PMOS device structure is changed by the proposed new structures, therefore the MM ESD level of the NMOS and PMOS can be significantly improved. In this invention, 6 kinds of new structures are provided. The current crowding problem can be successfully solved, and have a higher MM ESD robustness. Moreover, these novel devices will not degrade the HBM ESD level and are widely used in ESD protection circuits.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: August 25, 2009
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Ming-Dou Ker, Geeng-Lih Lin, Hsin-Chyh Hsu