Complementary Transistors In Wells Of Opposite Conductivity Types More Heavily Doped Than The Substrate Region In Which They Are Formed, E.g., Twin Wells Patents (Class 257/371)
  • Patent number: 8846478
    Abstract: A semiconductor device including a low-concentration impurity region formed on the drain side of an n-type MIS transistor, in a non-self-aligned manner with respect to an end portion of the gate electrode. A high-concentration impurity region is placed with a specific offset from the gate electrode and a sidewall insulating film. The semiconductor device enables the drain breakdown voltage to be sufficient and the on-resistance to decrease. A silicide layer is also formed on the surface of the gate electrode, thereby achieving gate resistance reduction and high frequency characteristics improvement.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: September 30, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masashi Shima
  • Patent number: 8841731
    Abstract: A method of fabricating a semiconductor device includes providing a semiconductor substrate having a first active region and a second active region, forming a first metal layer over a high-k dielectric layer, removing at least a portion of the first metal layer in the second active region, forming a second metal layer on first metal layer in the first active region and over the high-k dielectric layer in the second active region, and thereafter, forming a silicon layer over the second metal layer. The method further includes removing the silicon layer from the first gate stack thereby forming a first trench and from the second gate stack thereby forming a second trench, and forming a third metal layer over the second metal layer in the first trench and over the second metal layer in the second trench.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: September 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Jr Jung Lin, Yi-Shien Mor, Chien-Hao Chen, Kuo-Tai Huang, Yi-Hsing Chen
  • Patent number: 8841732
    Abstract: CMOS devices (60, 61, 61?) having improved latch-up robustness are provided by including with one or both WELL regions (22, 29) underlying the source-drains (24, 25; 31, 32) and the body contacts (27, 34), one or more further regions (62, 62?, 62-2) doped with deep acceptors or deep donors (or both) of the same conductivity type as the corresponding WELL region and whose ionization substantially increases as operating temperature increases. The increase in conductivity exhibited by these further regions as a result of the increasing ionization of the deep acceptors or donors off-sets, in whole or part, the temperature driven increase in gain of the parasitic NPN and/or PNP bipolar transistors inherent in prior art CMOS structures. By clamping or lowering the gain of the parasitic bipolar transistors, the CMOS devices (60, 61, 61?) are less likely to go into latch-up with increasing operating temperature.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: September 23, 2014
    Assignees: Globalfoundries, Inc., International Business Machines Corporation
    Inventors: Yanxiang Liu, Xiaodong Yang, Gan Wang
  • Publication number: 20140264623
    Abstract: A method of fabricating a CMOS integrated circuit (IC) includes implanting a first n-type dopant at a first masking level that exposes a p-region of a substrate surface having a first gate stack thereon to form NLDD regions for forming n-source/drain extension regions for at least a portion of a plurality of n-channel MOS (NMOS) transistors on the IC. A p-type dopant is implanted at a second masking level that exposes an n-region in the substrate surface having a second gate stack thereon to form PLDD regions for at least a portion of a plurality of p-channel MOS (PMOS) transistors on the IC. A second n-type dopant is retrograde implanted including through the first gate stack to form a deep nwell (DNwell) for the portion of NMOS transistors. A depth of the DNwell is shallower below the first gate stack as compared to under the NLDD regions.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: MAHALINGAM NANDAKUMAR
  • Patent number: 8836041
    Abstract: Silicon germanium regions are formed adjacent gates electrodes over both n-type and p-type regions in an integrated circuit. A hard mask patterned by lithography then protects structures over the p-type region while the silicon germanium is selectively removed from over the n-type region, even under remnants of the hard mask on sidewall spacers on the gate electrode. Silicon germanium carbon is epitaxially grown adjacent the gate electrode in place of the removed silicon germanium, and source/drain extension implants are performed prior to removal of the remaining hard mask over the p-type region structures.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: September 16, 2014
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Nicholas Loubet, Balasubramanian Pranatharthiharan
  • Patent number: 8836025
    Abstract: According to one embodiment, a first distance is a distance between both ends of the first insulating film in a direction connecting the fourth semiconductor layer and the sixth semiconductor layer. The first distance in the first region is longer than the first distance in the second region. A second distance is a distance between an edge of the second insulating film on an inner peripheral side of the second semiconductor layer and an edge of the third semiconductor layer on an outer peripheral side of the second semiconductor layer. The second distance in the first region is shorter than the second distance in the second region.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: September 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mariko Shimizu, Jun Morioka, Keita Takahashi, Kanako Komatsu, Masahito Nishigoori
  • Patent number: 8815698
    Abstract: A well region formation method and a semiconductor base in the field of semiconductor technology are provided. A method comprises: forming isolation regions in a semiconductor substrate to isolate active regions; selecting at least one of the active regions, and forming a first well region in the selected active region; forming a mask to cover the selected active region, and etching the rest of the active regions, so as to form grooves; and growing a semiconductor material by epitaxy to fill the grooves. Another method comprises: forming isolation regions in a semiconductor substrate for isolating active regions; forming well regions in the active regions; etching the active regions to form grooves, such that the grooves have a depth less than or equal to a depth of the well regions; and growing a semiconductor material by epitaxy to fill the grooves.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 26, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8796802
    Abstract: Semiconductor photodetectors are provided that may enable optimized usage of an active detector array. The semiconductor photodetectors may have a structure that can be produced and/or configured as simply as possible. A radiation detector system is also provided.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: August 5, 2014
    Assignee: First Sensor AG
    Inventors: Michael Pierschel, Frank Kudella
  • Patent number: 8785306
    Abstract: A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: July 22, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Yeeheng Lee, John Chen, Moses Ho
  • Patent number: 8778752
    Abstract: A method for designing a semiconductor device includes arranging at least a pattern of a first active region in which a first transistor is formed and a pattern of a second active region in which a second transistor is formed; arranging at least a pattern of a gate wire which intersects the first active region and the second active region; extracting at least a first region in which the first active region and the gate wire are overlapped with each other; arranging at least one pattern of a compressive stress film on a region including the first active region; and obtaining by a computer a layout pattern of the semiconductor device, when the at least one pattern of the compressive stress film is arranged, end portions of the at least one pattern thereof are positioned based on positions of end portions of the first region.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: July 15, 2014
    Assignee: Fujitu Semiconductor Limited
    Inventor: Yasunobu Torii
  • Publication number: 20140191327
    Abstract: A semiconductor memory device has a memory cell array with memory cells, each including first and second conduction type transistors, column-side peripheral circuits disposed with the same row-direction interval as the memory cells, a first conduction type well region formed within the memory cell array, a second conduction type well region formed within the first conduction type well region and is disposed separately in the row direction, a second conduction type well contact region disposed extending in the row direction among the memory cells, a first conduction type well contact region disposed extending in the column direction among the memory cells, a column-side peripheral contact region, a first conduction type back gate voltage line connecting to the first conduction type well region; and a second conduction type back gate voltage line connecting to the second conduction type well.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 10, 2014
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Tomoya TSURUTA, Ryo TANABE
  • Publication number: 20140191328
    Abstract: A semiconductor memory device has a memory cell array having memory cells, each including first and second conduction type transistors, a peripheral circuit having the first and second conduction type transistors, a first conduction type memory cell array well region within the memory cell array region, a second conduction type memory cell array well region within the first conduction type memory cell array well region, a first conduction type peripheral circuit well region within the peripheral circuit region, a second conduction type peripheral circuit well region within the first conduction type peripheral circuit well region, and a second conduction type isolation region between the first conduction type memory cell array well region and the first conduction type peripheral circuit well region. At least a portion of first conduction type transistors of first conduction type transistors of the peripheral circuit is formed in the second conduction type isolation region.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 10, 2014
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Tomoya TSURUTA, Ryo Tanabe
  • Patent number: 8759919
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of gate structures on a semiconductor substrate. The plurality of gate structures are arranged in a plurality of lines, wherein an end-to-end spacing between the lines is smaller than a line-to-line spacing between the lines. The method further includes forming an etch stop layer over the gate structures, forming an interlayer dielectric over the gate structures, and forming a dielectric film over the gate structures before the interlayer dielectric is formed. The dielectric film merges in end-to-end gaps formed in the end-to-end spacing between the gate structures.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 24, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shiang-Bau Wang
  • Publication number: 20140159160
    Abstract: A well potential supply region is provided in an N-type well region of a cell array. Adjacent gates disposed in both sides of the well potential supply region in the horizontal direction and adjacent gates disposed in further both sides thereof are disposed at the same pitch. In addition, an adjacent cell array includes four gates each of which is opposed to the adjacent gates in the vertical direction. In other words, regularity in the shape of the gate patterns in the periphery of the well potential supply region is maintained.
    Type: Application
    Filed: February 13, 2014
    Publication date: June 12, 2014
    Applicant: Panasonic Corporation
    Inventors: MASAKI TAMARU, KAZUYUKI NAKANISHI, HIDETOSHI NISHIMURA
  • Patent number: 8748869
    Abstract: Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: June 10, 2014
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Anand Murthy, Brian S. Doyle, Robert Chau
  • Patent number: 8723237
    Abstract: A method for designing a semiconductor device includes arranging at least a pattern of a first active region in which a first transistor is formed and a pattern of a second active region in which a second transistor is formed; arranging at least a pattern of a gate wire which intersects the first active region and the second active region; extracting at least a first region in which the first active region and the gate wire are overlapped with each other; arranging at least one pattern of a compressive stress film on a region including the first active region; and obtaining by a computer a layout pattern of the semiconductor device, when the at least one pattern of the compressive stress film is arranged, end portions of the at least one pattern thereof are positioned based on positions of end portions of the first region.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: May 13, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yasunobu Torii
  • Patent number: 8723256
    Abstract: A semiconductor device is provided. The device includes a semiconductor substrate and a gate structure thereon. A well region is formed in the semiconductor substrate. A drain region and a source region are respectively formed in the semiconductor substrate inside and outside of the well region. At least one set of the first and second heavily doped regions is formed in the well region between the drain region and the source region, wherein the first and second heavily doped regions are stacked vertically from bottom to top and have a doping concentration which is larger than that of the well region. The semiconductor substrate and the first heavily doped region have a first conductivity type and the well region and the second heavily doped region have a second conductivity type. A method for fabricating a semiconductor device is also disclosed.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: May 13, 2014
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Wen-Cheng Lin, Shang-Hui Tu, Shin-Cheng Lin
  • Patent number: 8716808
    Abstract: An integrated circuit including a complementary metal-oxide-semiconductor (CMOS) static random access memory (SRAM) with periodic deep well structures within the memory cell array. The deep well structures are contacted by surface well regions of the same conductivity type (e.g., n-type) in the memory cell array, forming two-dimensional grids of both n-type and p-type semiconductor material in the memory cell array area. Bias conductors may contact the grids to apply the desired well bias voltages, for example in well-tie regions or peripheral circuitry adjacent to the memory cell array.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: May 6, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Xiaowei Deng, Wah Kit Loh
  • Patent number: 8710571
    Abstract: A polarity switching member of a dot inversion system is revealed. A first transistor and a second transistor are disposed in a P-well while a N-well is arranged in the P-well, located between the first transistor and the second transistor. The N-well includes a third transistor and a fourth transistor. One end of the third transistor is coupled to one end of the first transistor to generate a first input end and one end of the fourth transistor is coupled to one end of the second transistor to generate a second input end. The other end of the first transistor, the other end of the second transistor, the other end of the third transistor, and the other end of the fourth transistor are coupled to generate an output end. Thereby, by switching of voltage polarity of the P-well and the N-well, a larger range of output voltage difference is achieved.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: April 29, 2014
    Assignee: Sitronix Technology Corp
    Inventor: Min-Nan Liao
  • Patent number: 8704311
    Abstract: The semiconductor device includes a first transistor including a first impurity layer of a first conductivity type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, and a first gate electrode formed above the first gate insulating film, and a second transistor including a second impurity layer of the second conductivity type formed in a second region of the semiconductor substrate, a second epitaxial semiconductor layer formed above the second impurity layer and having a thickness different from that of the first epitaxial semiconductor layer, a second gate insulating film formed above the second epitaxial semiconductor layer and having a film thickness equal to that of the first gate insulating film and a second gate electrode formed above the second gate insulating film.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: April 22, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazushi Fujita, Taiji Ema, Hiroyuki Ogawa
  • Patent number: 8704300
    Abstract: A semiconductor device including a semiconductor substrate of a first conductivity type and an epitaxial structure of the first conductivity type disposed thereon is disclosed. A well region of a second conductivity type is formed in the epitaxial structure and the semiconductor substrate. A drain region and a source region are respectively formed in the epitaxial structure inside and outside of the well region. At least one set of the first and second heavily doped regions is formed in the well region between the drain region and the source region, wherein the first and second heavily doped regions of the first and second conductivity type, respectively, are stacked vertically from bottom to top and have a doping concentration which is larger than that of the well region. A gate structure is disposed on the epitaxial structure. A method for fabricating a semiconductor device is also disclosed.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: April 22, 2014
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Wen-Cheng Lin, Shang-Hui Tu, Shin-Cheng Lin
  • Patent number: 8704296
    Abstract: In a general aspect, a semiconductor device can include a gate having a first trench portion disposed within a first trench of a junction field-effect transistor device, a second trench portion disposed within a second trench of the junction field-effect transistor device, and a top portion coupled to both the first trench portion and to the second trench portion. The semiconductor device can include a mesa region disposed between the first trench and the second trench, and including a single PN junction defined by an interface between a substrate dopant region having a first dopant type and a channel dopant region having a second dopant type.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: April 22, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Robert Kuo-Chang Yang
  • Patent number: 8664727
    Abstract: Provided is a semiconductor integrated circuit device capable of realizing an analog circuit required to have a high-precision relative ratio between adjacent transistors, which is reduced in size and cost. A single MOS transistor is provided within each of well regions. A plurality of the MOS transistors is combined to serve as an analog circuit block. Since distances between the well regions and channel regions may be made equal to one another, a high-precision semiconductor integrated circuit device can be obtained.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: March 4, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Hirofumi Harada
  • Patent number: 8659081
    Abstract: According to an exemplary embodiment, a method for fabricating a MOS transistor, such as an LDMOS transistor, includes forming a self-aligned lightly doped region in a first well underlying a first sidewall of a gate. The method further includes forming a self-aligned extension region under a second sidewall of the gate, where the self-aligned extension region extends into the first well from a second well. The method further includes forming a drain region spaced apart from the second sidewall of the gate. The method further includes forming a source region in the self-aligned lightly doped region and the first well. The self-aligned lightly doped region and the self-aligned extension region define a channel length of the MOS transistor, such as an LDMOS transistor.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 25, 2014
    Assignee: Broadcom Corporation
    Inventors: Xiangdong Chen, Wei Xia, Henry Kuo-Shun Chen
  • Patent number: 8643135
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate and having an active cell area and an edge termination area wherein the edge termination area comprises a wide trench filled with a field-crowding reduction filler and a buried field plate buried under a top surface of the semiconductor substrate and laterally extended over a top portion of the field crowding field to move a peak electric field laterally away from the active cell area. In a specific embodiment, the field-crowding reduction filler comprises a silicon oxide filled in the wide trench.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 4, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Sik K Lui, Anup Bhalla
  • Patent number: 8643113
    Abstract: A process is disclosed of forming metal replacement gates for NMOS and PMOS transistors with oxygen in the PMOS metal gates and metal atom enrichment in the NMOS gates such that the PMOS gates have effective work functions above 4.85 eV and the NMOS gates have effective work functions below 4.25 eV. Metal work function layers in both the NMOS and PMOS gates are oxidized to increase their effective work functions to the desired PMOS range. An oxygen diffusion blocking layer is formed over the PMOS gate and an oxygen getter is formed over the NMOS gates. A getter anneal extracts the oxygen from the NMOS work function layers and adds metal atom enrichment to the NMOS work function layers, reducing their effective work functions to the desired NMOS range. Processes and materials for the metal work function layers, the oxidation process and oxygen gettering are disclosed.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: February 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Hiroaki Niimi
  • Patent number: 8633547
    Abstract: Structures for spanning gap in body-bias voltage routing structure. In an embodiment, a structure is comprised of at least one metal wire.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: January 21, 2014
    Inventors: Robert Masleid, James B. Burr, Michael Pelham
  • Patent number: 8633548
    Abstract: A non-volatile programmable memory cell suitable for use in a programmable logic array includes a non-volatile MOS transistor of a first conductivity type in series with a volatile MOS transistor of a second conductivity type. The non-volatile MOS transistor may be a floating gate transistor, such as a flash transistor, or may be another type of non-volatile transistor such as a floating charge-trapping SONOS, MONOS transistor, or a nano-crystal transistor. A volatile MOS transistor, an inverter, or a buffer may be driven by coupling its gate or input to the common connection between the non-volatile MOS transistor and the volatile MOS transistor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 21, 2014
    Assignee: Microsemi SoC Corporation
    Inventors: Fethi Dhaoui, John McCollum, Frank Hawley, Leslie Richard Wilkinson
  • Patent number: 8629506
    Abstract: A CMOS structure and a method for fabricating the CMOS structure include within a semiconductor substrate a first gate located over a first active region of a first polarity and a second gate located over a second active region of a second polarity different than the first polarity. The first active region and the second active region are separated by an isolation region. The first gate and the second gate are co-linear, with facing endwalls that terminate over the isolation region. The facing endwalls do not have a spacer located or formed adjacent or adjoining thereto, although sidewalls of the first gate and the second gate do. The CMOS structure may be fabricated using a sequential replacement gate method.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Haining S. Yang
  • Patent number: 8610220
    Abstract: A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a metal oxide device. The metal oxide device includes first and second doped regions disposed within the substrate and interfacing in a channel region. The first and second doped regions are doped with a first type dopant. The first doped region has a different concentration of dopant than the second doped region. The metal oxide device further includes a gate structure traversing the channel region and the interface of the first and second doped regions and separating source and drain regions. The source region is formed within the first doped region and the drain region is formed within the second doped region. The source and drain regions are doped with a second type dopant. The second type dopant is opposite of the first type dopant.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yue-Der Chih, Jam-Wem Lee, Cheng-Hsiung Kuo, Tsung-Che Tsai, Ming-Hsiang Song, Hung-Cheng Sung, Roger Wang
  • Patent number: 8610209
    Abstract: An ultra-high voltage n-type-metal-oxide-semiconductor (UHV NMOS) device with improved performance and methods of manufacturing the same are provided. The UHV NMOS includes a substrate of P-type material; a first high-voltage N-well (HVNW) region disposed in a portion of the substrate; a source and bulk p-well (PW) adjacent to one side of the first HVNW region, and the source and bulk PW comprising a source and a bulk; a gate extended from the source and bulk PW to a portion of the first HVNW region, and a drain disposed within another portion of the first HVNW region that is opposite to the gate; a P-Top layer disposed within the first HVNW region, the P-Top layer positioned between the drain and the source and bulk PW; and an n-type implant layer formed on the P-Top layer.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: December 17, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chieh-Chih Chen, Cheng-Chi Lin, Chen-Yuan Lin, Shih-Chin Lien, Shyi-Yuan Wu
  • Patent number: 8604552
    Abstract: A method for fabricating a semiconductor device, comprising: forming n-channel field-effect transistors on a silicon substrate; forming a first insulating film covering the field-effect transistors; shrinking the first insulating film; forming a second insulating film over the first insulating film; and shrinking the second insulating film, wherein the forming an insulating film covering the field-effect transistors and the shrinking the insulating film are repeated a plurality of time.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: December 10, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tamotsu Owada, Hirofumi Watatani
  • Patent number: 8592915
    Abstract: The embodiments described provide methods and structures for doping oxide in the STIs with carbon to make etch rate in the narrow and wide structures equal and also to make corners of wide STIs strong. Such carbon doping can be performed by ion beam (ion implant) or by plasma doping. The hard mask layer can be used to protect the silicon underneath from doping. By using the doping mechanism, the even surface topography of silicon and STI enables patterning of gate structures and ILD0 gapfill for advanced processing technology.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: November 26, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Chun Hsiung Tsai, Chii-Ming Wu, Ziwei Fang
  • Patent number: 8563377
    Abstract: Exemplary power semiconductor devices with features providing increased breakdown voltage and other benefits are disclosed.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 22, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph A. Yedinak, Daniel Calafut, Dean E. Probst
  • Patent number: 8557653
    Abstract: A method of manufacturing a junction-field-effect-transistor (JFET) device, the method includes the steps of providing a substrate of a first-type impurity; forming a first well region of a second-type impurity in the substrate; forming a second well region and a third well region of the first-type impurity separated from each other in the first well region; forming a fourth well region of the first-type impurity between the second well region and the third well region; forming a first diffused region of the second-type impurity between the second well region and the fourth well region; forming a second diffused region of the second-type impurity between the third well region and the fourth well region; forming a pair of first doped regions of the second-type impurity in the first well region, and a pair of second doped regions of the first-type impurity in the second well region and the third well region respectively; forming a third doped region of the second-type impurity in the first well region between t
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: October 15, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chih-Min Hu, Chung Yu Hung, Wing Chor Chan, Jeng Gong
  • Patent number: 8558318
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Methods such as amorphization and templated recrystallization (ATR) have disadvantages for fabrication of deep submicron CMOS. This invention is a method of forming an integrated circuit (IC) which has (100) and (110)-oriented regions. The method forms a directly bonded silicon (DSB) layer of (110)-oriented silicon on a (100)-oriented substrate. The DSB layer is removed in the NMOS regions and a (100)-oriented silicon layer is formed by selective epitaxial growth (SEG), using the substrate as the seed layer. NMOS transistors are formed on the SEG layer, while PMOS transistors are formed on the DSB layer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: October 15, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Angelo Pinto, Frank S Johnson, Benjamin P McKee, Shaofeng Yu
  • Patent number: 8559230
    Abstract: A non-volatile memory device and a row decoder, the non-volatile memory device including: a memory cell array comprising a plurality of memory cells and each memory cell includes a first cell transistor and a second cell transistor; and a row decoder comprising a first driver and a second driver for generating first and second control signals. The first cell transistor is connected to the row decoder to receive the first control signal and the second cell transistor is connected to the row decoder to receive the second control signal. The first driver includes a first NMOS transistor and a first PMOS transistor formed adjacent to the first NMOS transistor. The second driver includes a second NMOS transistor and a second PMOS transistor formed adjacent to the second NMOS transistor. The first and second NMOS transistors are disposed between the first PMOS transistor and the second PMOS transistor.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ki-bum Nam
  • Patent number: 8552506
    Abstract: A method of manufacturing a semiconductor device includes forming a first and a second isolation insulating film to define a first, a second, a third and a fourth region, forming a first insulating film, implanting a first impurity of a first conductivity type through the first insulating film into the first, the second and the fourth region at a first depth, forming a second insulating film thinner than the first insulating film, implanting a second impurity of a second conductivity type through the second insulating film into the third region at a second depth in the semiconductor substrate, implanting a third impurity of the second conductivity type into the third region at a third depth shallower than the second depth, forming a first transistor of the first conductivity type in the third region, and forming a second transistor of the second conductivity type in the fourth region.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 8, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Akihiro Usujima, Shigeo Satoh
  • Patent number: 8546920
    Abstract: A semiconductor-on-insulator structure includes a buried dielectric layer interposed between a base semiconductor substrate and a surface semiconductor layer. The buried dielectric layer comprises an oxide material that includes a nitrogen gradient that peaks at the interface of the buried dielectric layer with at least one of the base semiconductor substrate and surface semiconductor layer. The interface of the buried dielectric layer with the at least one of the base semiconductor substrate and surface semiconductor layer is abrupt, providing a transition in less than about 5 atomic layer thickness, and having less than about 10 angstroms RMS interfacial roughness. A second dielectric layer comprising an oxide dielectric material absent nitrogen may be located interposed between the buried dielectric layer and the surface semiconductor layer.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Toshiharu Furukawa, Wilfried Haensch, Zhibin Ren, Dinkar V. Singh, Jeffrey W. Sleight
  • Patent number: 8536634
    Abstract: Method and device embodiments are described for fabricating MOSFET transistors in a semiconductor also containing non-volatile floating gate transistors. MOSFET transistor gate dielectric smiling, or bird's beaks, are adjustable by re-oxidation processing. An additional re-oxidation process is performed by opening a poly-silicon layer prior to forming an inter-poly oxide dielectric provided for the floating gate transistors.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: September 17, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Patent number: 8536654
    Abstract: A CMOS device having an NMOS transistor with a metal gate electrode comprising a mid-gap metal with a low work function/high oxygen affinity cap and a PMOS transistor with a metal gate electrode comprising a mid gap metal with a high work function/low oxygen affinity cap and method of forming.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: September 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Hiroaki Niimi
  • Patent number: 8519483
    Abstract: The semiconductor device includes a semiconductor substrate of a first type. A layer of semiconductor material of a second type is disposed on the semiconductor substrate. A first well and a second well are disposed on the layer. A third well is disposed on the layer between the first and second wells. A memory cell, including a first and a second plurality of transistors of the second type and a third plurality of transistors of the first type, is formed in the first, second, and third wells. The first plurality of transistors is formed in the first well, the second plurality of transistors is formed in the second well, and the third plurality of transistors is formed in the third well. The layer and the third well are configured to isolate the first and second wells from each other and from the semiconductor substrate.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: August 27, 2013
    Assignee: Xilinx, Inc.
    Inventor: Michael J. Hart
  • Patent number: 8513122
    Abstract: A method forms an integrated circuit structure. The method patterns a protective layer over a first-type field effect transistor and removes a stress liner from above a second-type field effect transistors. Then, the method removes a first-type silicide layer from source and drain regions of the second-type field effect transistor, but leaves at least a portion of the first-type silicide layer on the gate conductor of the second-type field effect transistor. The method forms a second-type silicide layer on the gate conductor and the source and drain regions of the second-type field effect transistor. The second-type silicide layer that is formed is different than the first-type silicide layer. For example, the first-type silicide layer and the second-type silicide layer can comprise different materials, different thicknesses, different crystal orientations, and/or different chemical phases, etc.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Christian Lavoie, Viorel C. Ontalus, Ahmet S. Ozcan
  • Patent number: 8507998
    Abstract: A semiconductor device can output a reference voltage for an arbitrary potential and can detect the voltage of each cell in a battery including multiple cells very precisely. The device includes a depletion-type MOSFET 21 and an enhancement type MOSFET 22, and has a floating structure that isolates depletion-type MOSFET 21 and enhancement type MOSFET 22 from a ground terminal. The depletion-type MOSFET 21 and enhancement type MOSFET 22 are connected in series to each other, wherein the depletion-type MOSFET 21 is connected to high-potential-side terminal and the enhancement type MOSFET 22 is connected to low-potential-side terminal. The semiconductor device having the configuration described above is disposed in a voltage detecting circuit section in a control IC for a battery including multiple cells.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: August 13, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Masaharu Yamaji, Akio Kitamura
  • Patent number: 8507993
    Abstract: Various aspects of the technology are directed to integrated circuit manufacturing methods and integrated circuits. In one method, a first charge type buried layer in a semiconductor material of an integrated circuit by implanting first charge type dopants of the first charge type buried layer through a sacrificial oxide over the semiconductor material and through an intermediate region of the semiconductor material transited by the implanted first charge type dopants. When the implanted dopants pass through the sacrificial oxide, damage to the semiconductor crystalline lattice is averted. If the sacrificial oxide were absent, the implanted dopants would have passed through and damaged the semiconductor crystalline lattice instead. Later, a pre-anneal oxide is grown and removed.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: August 13, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Yin-Fu Huang, Ming Rong Chang, Shih-Chin Lien
  • Patent number: 8492849
    Abstract: A high side semiconductor structure is provided. The high side semiconductor structure includes a substrate, a first deep well, a second deep well, a first active element, a second active element and a doped well. The first deep well and the second deep well are formed in the substrate, wherein the first deep well and the second deep well have identical type of ion doping. The first active element and the second active element are respectively formed in the first deep well and the second deep well. The doped well is formed in the substrate and is disposed between the first deep well and the second deep well. The doped well, the first deep well and the second deep well are interspaced, and the type of ion doping of the first deep well and the second deep well is complementary with that of the doped well.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: July 23, 2013
    Assignee: System General Corp.
    Inventors: Han-Chung Tai, Hsin-Chih Chiang
  • Patent number: 8487383
    Abstract: A flash memory device, including a cell array region where a plurality of memory cells are connected in series to a single cell string, the cell array region including a pocket p-well configured to accommodate the plurality of memory cells and an n-well configured to surround the pocket p-well, a first peripheral region where low-voltage (LV) and high-voltage (HV) switches are connected to the memory cells through a word line, and a second peripheral region where bulk voltage switches are connected to bulk regions of the LV and HV switches.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-Moon Park, Se-Jun Park, Suk-Kang Sung, Keon-Soo Kim, Jung-Dal Choi, Choong-Ho Lee, Jin-Hyun Shin, Seung-Wook Choi, Dong-Hoon Jang
  • Patent number: 8476706
    Abstract: A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Brian J. Greene, Yue Liang, Xiaojun Yu
  • Patent number: 8466518
    Abstract: A semiconductor device manufacturing method includes forming a first stopper film and a second stopper film over a first stress film; etching, with a first mask covering a first region and with the first stopper film, the second stopper film in a second region while side-etching the second stopper film in a part of the first region near the second region; forming a second stress film whose etching characteristic is different from the second stopper film; etching, with a second mask covering the second region and having an end face located over the second stopper film and with the second stopper film, the second stress film so that a part of the second stress film overlaps a part of the first stress film and a part of the second stopper film; and forming a contact hole down to the gate interconnect.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: June 18, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tomoyuki Kirimura
  • Patent number: RE44430
    Abstract: In accordance with an embodiment of the invention, there is an integrated circuit device having a complementary integrated circuit structure comprising a first MOS device. The first MOS device comprises a source doped to a first conductivity type, a drain extension doped to the first conductivity type separated from the source by a gate, and an extension region doped to a second conductivity type underlying at least a portion of the drain extension adjacent to the gate. The integrated circuit structure also comprises a second complementary MOS device comprising a dual drain extension structure.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 13, 2013
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom