Complementary Transistors In Wells Of Opposite Conductivity Types More Heavily Doped Than The Substrate Region In Which They Are Formed, E.g., Twin Wells Patents (Class 257/371)
  • Publication number: 20110266632
    Abstract: A semiconductor device includes a semiconductor substrate, an nMISFET formed on the substrate, the nMISFET including a first dielectric formed on the substrate and a first metal gate electrode formed on the first dielectric and formed of one metal element selected from Ti, Zr, Hf, Ta, Sc, Y, a lanthanoide and actinide series and of one selected from boride, silicide and germanide compounds of the one metal element, and a pMISFET formed on the substrate, the pMISFET including a second dielectric formed on the substrate and a second metal gate electrode formed on the second dielectric and made of the same material as that of the first metal gate electrode, at least a portion of the second dielectric facing the second metal gate electrode being made of an insulating material different from that of at least a portion of the first dielectric facing the first metal gate electrode.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 3, 2011
    Inventors: Reika ICHIHARA, Yoshinori Tsuchiya, Masato Koyama, Akira Nishiyama
  • Patent number: 8049283
    Abstract: Disclosed herein is a semiconductor device with a deep trench structure for effectively isolating heavily doped wells of neighboring elements from each other at a high operating voltage.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: November 1, 2011
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Do Hyung Kim, Yong Gyu Lim
  • Publication number: 20110248354
    Abstract: A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, the devices have hybrid material, GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, prevent polysilicon gate depletion and short channel effects.
    Type: Application
    Filed: February 11, 2010
    Publication date: October 13, 2011
    Applicant: Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences
    Inventors: Deyuan Xiao, Xi Wang, Miao Zhang, Jing Chen, Zhongying Xue
  • Patent number: 8030711
    Abstract: A method of manufacturing a semiconductor device, comprises: forming a high dielectric gate insulating film in an nMIS formation region and a pMIS formation region of a semiconductor substrate; forming a first metal film on the high dielectric gate insulating film, the first metal film; removing the first metal film in the nMIS formation region; forming a second metal film on the high dielectric gate insulating film of the nMIS formation region and on the first metal film of the pMIS formation region; and processing the first metal film and the second metal film. The high dielectric gate insulating film has a dielectric constant higher than a dielectric constant of silicon oxide. The first metal film does not contain silicon and germanium. The second metal film contains at least one of silicon and germanium.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuaki Nakajima
  • Patent number: 8022446
    Abstract: A semiconductor structure includes a semiconductor substrate; a first well region of a first conductivity type in the semiconductor substrate; a metal-containing layer on the first well region, wherein the metal-containing layer and the first well region form a Schottky barrier; and a first heavily doped region of the first conductivity type in the first well region, wherein the first heavily doped region is horizontally spaced apart from the metal-containing layer.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: September 20, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Hua Huang, Kuo-Ming Wu, Yi-Chun Lin, Ming Xiang Li
  • Patent number: 8013395
    Abstract: The distance between a substrate contact portion and an active region in a p-type MIS transistor is greater than the distance between a substrate contact portion and an active region in an n-type MIS transistor. Alternatively, the length of a protruding part of a gate electrode of the p-type MIS transistor that protrudes from the p-type MIS transistor's active region toward the p-type MIS transistor's substrate contact portion is shorter than the length of a protruding part of a gate electrode of the n-type MIS transistor that protrudes from the n-type MIS transistor's active region toward the n-type MIS transistor's substrate contact portion. Alternatively, a part of the p-type MIS transistor's substrate contact portion that is located opposite the p-type MIS transistor's gate electrode has a lower impurity concentration than the other part thereof.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 6, 2011
    Assignee: Panasonic Corporation
    Inventor: Naoki Kotani
  • Patent number: 8008748
    Abstract: A deep trench varactor structure compatible with a deep trench capacitor structure and methods of manufacturing the same are provided. A buried plate layer is formed on a second deep trench, while the first trench is protected from formation of any buried plate layer. The inside of the deep trenches is filled with a conductive material to form inner electrodes. At least one doped well is formed outside and abutting portions of the first deep trench and constitutes at least one outer varactor electrode. Multiple doped wells may be connected in parallel to provide a varactor having complex voltage dependency of capacitance. The buried plate layer and another doped well connected thereto constitute an outer electrode of a linear capacitor formed on the second deep trench.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: David S. Collins, Robert M. Rassel, Eric Thompson
  • Patent number: 8008724
    Abstract: In producing complementary sets of metal-oxide-semiconductor (CMOS) field effect transistors, including nMOS and pMOS transistors), carrier mobility is enhanced or otherwise regulated through the use of layering various stressed films over either the nMOS or pMOS transistor (or both), depending on the properties of the layer and isolating stressed layers from each other and other structures with an additional layer in a selected location. Thus both types of transistors on a single chip or substrate can achieve an enhanced carrier mobility, thereby improving the performance of CMOS devices and integrated circuits.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Haining Yang, Huilong Zhu
  • Patent number: 8008733
    Abstract: Disclosed herein is a semiconductor device having a power cutoff transistor including a semiconductor substrate of a first conductivity type; and first and second wells of the first conductivity type formed to be spaced from each other in the semiconductor substrate.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: August 30, 2011
    Assignee: Sony Corporation
    Inventor: Masakatsu Nakai
  • Patent number: 8004047
    Abstract: A first gate dielectric of a first transistor is disposed over a workpiece in a first region, and a second gate dielectric of a second transistor is disposed over the workpiece in a second region. The second gate dielectric comprises a different material than the first gate dielectric. A first dopant-bearing metal comprising a first dopant is disposed in recessed regions of the workpiece proximate the first gate dielectric, and a second dopant-bearing metal comprising a second dopant is disposed in recessed regions of the workpiece proximate the second gate dielectric. A first doped region comprising the first dopant is disposed in the workpiece adjacent the first dopant-bearing metal. A second doped region comprising the second dopant is disposed in the workpiece adjacent the second dopant-bearing metal. The dopant-bearing metals and the doped regions comprise source and drain regions of the first and second transistors.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 23, 2011
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Patent number: 7999327
    Abstract: In a semiconductor substrate having a first well of a conductivity type opposite to that of the semiconductor substrate, formed on part of a main surface of the semiconductor substrate, a second well of the same conductivity type as the semiconductor substrate, formed on part of a surface region of the first well shallower than the first well, and a third well of a conductivity type opposite to that of the semiconductor substrate, formed in a surface region of the first well, in a region where the second well is not formed and shallower than the first well, by having a fourth well, formed in a region of the main surface of the semiconductor substrate where the first well is not formed and doped with impurities of the same conductivity type as the semiconductor substrate at a lower concentration than the third well, and controlling a reference voltage to be low, it is possible suppress the occurrence of a latch up phenomenon.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 16, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Akinao Kitahara
  • Patent number: 7999323
    Abstract: The present invention is directed to CMOS structures that include at least one nMOS device located on one region of a semiconductor substrate; and at least one pMOS device located on another region of the semiconductor substrate. In accordance with the present invention, the at least one nMOS device includes a gate stack comprising a gate dielectric, a low workfunction elemental metal having a workfunction of less than 4.2 eV, an in-situ metallic capping layer, and a polysilicon encapsulation layer and the at least one pMOS includes a gate stack comprising a gate dielectric, a high workfunction elemental metal having a workfunction of greater than 4.9 eV, a metallic capping layer, and a polysilicon encapsulation layer. The present invention also provides methods of fabricating such a CMOS structure.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: August 16, 2011
    Assignee: International Business Machines Corporation
    Inventors: Eduard A. Cartier, Matthew W. Copel, Bruce B. Doris, Rajarao Jammy, Young-Hee Kim, Barry P. Linder, Vijay Narayanan, Vamsi K. Paruchuri, Keith Kwong Hon Wong
  • Patent number: 7994584
    Abstract: A semiconductor device includes first and second MOSFETs corresponding to at least first power source voltage and second power source voltage lower than the first power source voltage, and non-silicide regions formed in drain portions of the first and second MOSFETs and having no silicide formed therein. The first MOSFET includes first diffusion layers formed in source/drain portions, a second diffusion layer formed below a gate portion and formed shallower than the first diffusion layer and a third diffusion layer formed with the same depth as the second diffusion layer in the non-silicide region, and the second MOSFET includes fourth diffusion layers formed in source/drain portions, a fifth diffusion layer formed below a gate portion and formed shallower than the fourth diffusion layer and a sixth diffusion layer formed shallower than the fourth diffusion layer and deeper than the fifth diffusion layer in the non-silicide region.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: August 9, 2011
    Assignee: Kabsuhiki Kaisha Toshiba
    Inventors: Takayuki Hiraoka, Kuniaki Utsumi, Tsutomu Kojima, Kenji Honda
  • Patent number: 7989912
    Abstract: The semiconductor device includes a lower device isolation structure formed in a semiconductor substrate to define an active region. The lower device isolation structure has a first compressive stress. An upper device isolation structure is disposed over the lower device isolation structure. The upper device isolation structure has a second compressive stress greater than the first compressive stress. A gate structure is disposed over the active region between the neighboring upper device isolation structures.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: August 2, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Yun Yl
  • Publication number: 20110180881
    Abstract: Optimizing carrier mobilities in MOS transistors in CMOS ICs requires forming (100)-oriented silicon regions for NMOS and (110) regions for PMOS. Boundary regions between (100) and (110) regions must be sufficiently narrow to support high gate densities and SRAM cells appropriate for the technology node. This invention provides a method of forming an integrated circuit (IC) substrate containing regions with two different silicon crystal lattice orientations. Starting with a (110) direct silicon bonded (DSB) layer on a (100) substrate, regions in the DSB layer are amorphized and recrystallized on a (100) orientation by solid phase epitaxy (SPE). Lateral templating by the DSB layer is reduced by amorphization of the upper portion of the (110) regions through a partially absorbing amorphization hard mask. Boundary morphology is less than 40 nanometers wide. An integrated circuit formed with the inventive method is also disclosed.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Angelo Pinto, Frank S. Johnson
  • Patent number: 7986014
    Abstract: A semiconductor device includes a semiconductor substrate, an nMISFET formed on the substrate, the nMISFET including a first dielectric formed on the substrate and a first metal gate electrode formed on the first dielectric and formed of one metal element selected from Ti, Zr, Hf, Ta, Sc, Y, a lanthanoide and actinide series and of one selected from boride, silicide and germanide compounds of the one metal element, and a pMISFET formed on the substrate, the pMISFET including a second dielectric formed on the substrate and a second metal gate electrode formed on the second dielectric and made of the same material as that of the first metal gate electrode, at least a portion of the second dielectric facing the second metal gate electrode being made of an insulating material different from that of at least a portion of the first dielectric facing the first metal gate electrode.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Reika Ichihara, Yoshinori Tsuchiya, Masato Koyama, Akira Nishiyama
  • Publication number: 20110175173
    Abstract: In one embodiment, a semiconductor device includes a well region of a second conductivity type, a control electrode, a first main electrode and a second main electrode. The well region has a source region and a drain region of a first conductivity type selectively formed in a surface of the well region. The control electrode is configured to control a current path between the source region connected to the first main electrode and the drain region connected to the second main electrode. With respect to a reference defined as a position of the well region at an identical depth to a portion of the source region or the drain region with maximum curvature, a peak of impurity concentration distribution of the second conductivity type is in a range of 0.15 micrometers on a side of the surface of the well region and on a side opposite to the surface.
    Type: Application
    Filed: January 17, 2011
    Publication date: July 21, 2011
    Inventors: MASATAKA TAKEBUCHI, Kazuhiro Utsunomiya, Noriyasu Ikeda
  • Patent number: 7982271
    Abstract: There is provided a technology which allows improvements in manufacturing yield and product reliability in a semiconductor device having a triple well structure. A shallow p-type well is formed in a region different from respective regions in a p-type substrate where a deep n-type well, a shallow p-type well, and a shallow n-type well are formed. A p-type diffusion tap formed in the shallow p-type well is wired to a p-type diffusion tap formed in a shallow n-type well in the deep n-type well using an interconnection in a second layer. The respective gate electrodes of an nMIS and a pMIS each formed in the deep n-type well are coupled to the respective drain electrodes of an nMIS and a pMIS each formed in the substrate using an interconnection in a second or higher order layer.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: July 19, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Naozumi Morino, Atsushi Hiraiwa, Kazutoshi Oku, Toshiaki Ito, Motoshige Igarashi, Takayuki Sasaki, Masao Sugiyama, Hiroshi Yanagita, Shinichi Watarai
  • Publication number: 20110169099
    Abstract: A cell includes a plurality of diffusion region pairs, each of the diffusion region pairs being formed by a first impurity diffusion region which is a constituent of a transistor and a second impurity diffusion region such that the first and second impurity diffusion regions are provided side-by-side in a gate length direction with a device isolation region interposed therebetween. In each of the diffusion region pairs, the first and second impurity diffusion regions have an equal length in the gate width direction and are provided at equal positions in the gate width direction, and a first isolation region portion, which is part of the device isolation region between the first and second impurity diffusion regions, has a constant separation length. In the diffusion region pairs, the first isolation region portions have an equal separation length.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 14, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Kazuyuki NAKANISHI
  • Patent number: 7974103
    Abstract: A signal transfer member for a liquid crystal display (LCD) apparatus includes a power line for receiving power from an external source and for driving a semiconductor chip disposed on the transfer member or the display apparatus. The power line is bent so as to incorporate a serpentine structure, which enables the length of the power line to be easily adjusted and results in the line being longer than a power line formed with a relatively straight structure. Accordingly, the length of the power line can be adjusted to take into account the respective impedances of the chip and the external source so as to suppress electromagnetic waves in the power line. This prevents the creation of noise, distortion of signals, damage to the semiconductor chip, and disconnection of the input interconnection thereof that are caused by the electromagnetic waves, so that product yields are thereby improved.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myong-Bin Lim, Jae-Han Lee, Sun-Kyu Son, In-Yong Hwang
  • Patent number: 7968947
    Abstract: This invention provides a semiconductor device that can prevent a deviation of work function by adopting a gate electrode having a uniform composition and exhibits excellent operating characteristics by virtue of effective control of a Vth. The semiconductor device is characterized by comprising a PMOS transistor, an NMOS transistor, a gate insulating film comprising an Hf-containing insulating film with high permittivity, a line electrode comprising a silicide region (A) and a silicide region (B), one of the silicide regions (A) and (B) comprising a silicide (a) of a metal M, which serves as a diffusing species in a silicidation reaction, the other silicide region comprising a silicide layer (C) in contact with a gate insulating film, the silicide layer (C) comprising a silicide (b) of a metal M, which has a smaller atom composition ratio of the metal M than the silicide (a), and a dopant which can substantially prevent diffusion of the metal M in the silicide (b).
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: June 28, 2011
    Assignee: NEC Corporation
    Inventor: Takashi Hase
  • Patent number: 7968921
    Abstract: An asymmetric insulated-gate field-effect transistor (100) has a source (240) and a drain (242) laterally separated by a channel zone (244) of body material (180) of a semiconductor body. A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. A more heavily doped pocket portion (250) of the body material extends largely along only the source. Each of the source and drain has a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E). The drain extension is more lightly doped than the source extension. The maximum concentration of the semiconductor dopant defining the two extensions occurs deeper in the drain extension than in the source extension. Additionally or alternatively, the drain extension extends further laterally below the gate electrode than the source extension. These features enable the threshold voltage to be highly stable with operational time.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: June 28, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, William D. French, Sandeep R. Bahl, Jeng-Jiun Yang, D. Courtney Parker, Peter B. Johnson, Donald M. Archer
  • Patent number: 7968910
    Abstract: A method is provided of fabricating complementary stressed semiconductor devices, e.g., an NFET having a tensile stressed channel and a PFET having a compressive stressed channel. In such method, a first semiconductor region having a lattice constant larger than silicon can be epitaxially grown on an underlying semiconductor region of a substrate. The first semiconductor region can be grown laterally adjacent to a second semiconductor region which has a lattice constant smaller than that of silicon. Layers consisting essentially of silicon can be grown epitaxially onto exposed major surfaces of the first and second semiconductor regions after which gates can be formed which overlie the epitaxially grown silicon layers. Portions of the first and second semiconductor regions adjacent to the gates can be removed to form recesses. Regions consisting essentially of silicon can be grown within the recesses to form embedded silicon regions. Source and drain regions then can be formed in the embedded silicon regions.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Thomas W. Dyer, Haining S. Yang
  • Patent number: 7964918
    Abstract: A gate electrode of one of an nFET and a pFET includes a metal-containing layer in contact with a gate insulating film and a first silicon-containing layer formed on the metal-containing layer, and a gate electrode of the other FET includes a second silicon-containing layer in contact with a gate insulating film and a third silicon-containing layer formed on the second silicon-containing layer. The first silicon-containing layer and the third silicon-containing layer are formed by the same silicon-containing material film.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Kenshi Kanegae, Takayuki Yamada
  • Patent number: 7964894
    Abstract: An integrated circuit system that includes: a substrate including a source/drain region defined by a spacer; a gate over the substrate; a gate dielectric between the gate and the substrate; a recrystallized region within the gate and the source/drain region; and a channel exhibiting the characteristics of stress memorization.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: June 21, 2011
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Elgin Kiok Boone Quek, Pradeep Ramachandramurthy Yelehanka
  • Patent number: 7964460
    Abstract: A CMOS device includes high k gate dielectric materials. A PMOS device includes a gate that is implanted with an n-type dopant. The NMOS device may be doped with either an n-type or a p-type dopant. The work function of the CMOS device is set by the material selection of the gate dielectric materials. A polysilicon depletion effect is reduced or avoided.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: June 21, 2011
    Assignee: Infineon Technologies AG
    Inventor: Hong-Jyh Li
  • Publication number: 20110140202
    Abstract: A flash memory device, including a cell array region where a plurality of memory cells are connected in series to a single cell string, the cell array region including a pocket p-well configured to accommodate the plurality of memory cells and an n-well configured to surround the pocket p-well, a first peripheral region where low-voltage (LV) and high-voltage (HV) switches are connected to the memory cells through a word line, and a second peripheral region where bulk voltage switches are connected to bulk regions of the LV and HV switches.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 16, 2011
    Inventors: Yoon-Moon PARK, Se-Jun Park, Suk-Kang Sung, Keon-Soo Kim, Jung-Dal Choi, Choong-Ho Lee, Jin-Hyun Shin, Seung-Wook Choi, Dong-Hoon Jang
  • Patent number: 7960802
    Abstract: A process is disclosed of forming metal replacement gates for PMOS transistors with oxygen in the metal gates such that the PMOS gates have effective work functions above 4.85. Metal work function layers in the PMOS gates are oxidized at low temperature to increase their effective work functions to the desired PMOS range. Hydrogen may also be incorporated at an interface between the metal gates and underlying gate dielectrics. Materials for the metal work function layers and processes for the low temperature oxidation are disclosed.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 14, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Hiroaki Niimi, James Joseph Chambers
  • Patent number: 7956422
    Abstract: A semiconductor device, a method for fabricating the same, and a transformer circuit using the same are disclosed. The semiconductor device includes a trench metal oxide semiconductor (MOS) transistor for switching a load of current supplied from a power source, and a boost controller for controlling driving of the trench MOS transistor, the boost controller being formed with the trench MOS transistor on a single semiconductor device to form an integrated structure. In this structure, the physical space of the semiconductor device is reduced, thereby reducing the size of a DC-DC transformer circuit using the semiconductor device. It is possible to obtain finely-adjusted output values by controlling values of the ripple current and ripple voltage. A desired operational stability according to a variation in temperature can also be secured.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: June 7, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Byung Tak Jang
  • Publication number: 20110089497
    Abstract: A method for manufacturing a semiconductor device includes: forming an isolation region for defining a plurality of active regions in a silicon substrate; doping p-type impurities in at least one of the plurality of active regions to form a p-type well; forming an NMOS gate electrode traversing the p-type well via a gate insulating film; implanting n-type impurity ions into the p-type well on both sides of the NMOS gate electrode to form n-type extension regions; forming an NMOS gate side wall spacer on side walls of the NMOS gate electrode; implanting n-type impurity ions into the p-type well outside the NMOS gate side wall spacers to form n-type source/drain regions; forming a nickel silicide layer in surface regions of the n-type source/drain regions; and implanting Al ions the said n-type source/drain regions to dope Al in the nickel silicide layer surface regions.
    Type: Application
    Filed: December 9, 2010
    Publication date: April 21, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Hidenobu Fukutome
  • Patent number: 7928512
    Abstract: A semiconductor device is provided herein, which includes a substrate having a first-type MOS transistor, an input/output (I/O) second-type MOS transistor, and a core second-type MOS transistor formed thereon. The semiconductor device further includes a first stress layer and a second stress layer. The first stress layer is disposed on the first-type MOS transistor, or on the first-type MOS transistor and the I/O second-type MOS transistor. The second stress layer is disposed on the core second-type MOS transistor.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: April 19, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Chia-Wen Lang
  • Patent number: 7929321
    Abstract: A DC-to-DC converter includes a high-side transistor and a low-side transistor wherein the high-side transistor is implemented with a high-side enhancement mode MOSFET. The low side-transistor further includes a low-side enhancement MOSFET shunted with a depletion mode transistor having a gate shorted to a source of the low-side enhancement mode MOSFET. A current transmitting in the DC-to-DC converter within a time-period between T2 and T3 passes through a channel region of the depletion mode MOSFET instead of a built-in diode D2 of the low-side MOSFET transistor. The depletion mode MOSFET further includes trench gates surrounded by body regions with channel regions immediately adjacent to vertical sidewalls of the trench gates wherein the channel regions formed as depletion mode channel regions by dopant ions having electrical conductivity type opposite from a conductivity type of the body regions.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: April 19, 2011
    Assignee: Force-Mos Technology Corp
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7923805
    Abstract: Methods and devices for forming both high-voltage and low-voltage transistors on a common substrate using a reduced number of processing steps are disclosed. An exemplary method includes forming at least a first high-voltage transistor well and a first low-voltage transistor well on a common substrate separated by an isolation structure extending a first depth into the substrate, using a first mask and first implantation process to simultaneously implant a doping material of a first conductivity type into a channel region of the low-voltage transistor well and a drain region for the high-voltage transistor well.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: ChanSam Chang, Shigenobu Maeda, HeonJong Shin, ChangBong Oh
  • Patent number: 7923786
    Abstract: A first aspect of the present invention is a method of forming an isolation structure including: (a) providing a semiconductor substrate; (b) forming a buried N-doped region in the substrate; (c) forming a vertical trench in the substrate, the trench extending into the N-doped region; (d) removing the N-doped region to form a lateral trench communicating with and extending perpendicular to the vertical trench; and (e) at least partially filling the lateral trench and filling the vertical trench with one or more insulating materials.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: An L. Steegen, Maheswaran Surendra, Hsing-Jen Wann, Ying Zhang, Franz Zach, Robert Wong
  • Patent number: 7911003
    Abstract: A semiconductor integrated circuit device including a semiconductor substrate and a MOS transistor having a source diffusion region and a drain diffusion region formed in the semiconductor substrate. A well is formed in the semiconductor substrate. A back gate diffusion region is defined in the vicinity of the source diffusion region or the drain diffusion region. The back gate diffusion region is of a conductivity type that is the same as that of the source diffusion region or the drain diffusion region. A potential control layer, arranged in the semiconductor substrate or under the well, controls the potential at the semiconductor substrate or the well.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: March 22, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kazutaka Takeuchi
  • Patent number: 7910957
    Abstract: A semiconductor device has a first and a second active regions of a first conductivity type disposed on a semiconductor substrate, a third and a fourth active regions of a second conductivity type disposed on the semiconductor substrate, the second and the fourth active regions having sizes larger than those of the first and the third active regions respectively, a first electroconductive pattern disposed adjacent to the first active region and having a first width, a second electroconductive pattern disposed adjacent to the second active region and having a second width larger than the first width, a third electroconductive pattern disposed adjacent to the third active region and having a third width; and a fourth electroconductive pattern disposed adjacent to the fourth active region and having a fourth width smaller than the third width.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: March 22, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Junichi Mitani, Satoshi Nakai, Kazushi Fujita
  • Patent number: 7911005
    Abstract: A semiconductor device having a DRAM region and a logic region embedded together therein, including a first transistor formed in a DRAM region, and having a first source/drain region containing arsenic and phosphorus as impurities; and a second transistor formed in a logic region, and having a second source/drain region containing at least arsenic as an impurity, wherein each of the first source/drain region and the second source/drain region has a silicide layer respectively formed in the surficial portion thereof, and the first source/drain region has a junction depth which is determined by phosphorus and is deeper than the junction depth of the second source/drain region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: March 22, 2011
    Assignee: RENESAS Electronics Corporation
    Inventor: Hiroki Shirai
  • Patent number: 7906800
    Abstract: A semiconductor integrated circuit has a first substrate of a first polarity to which a first substrate potential is given, a second substrate of the first polarity to which a second substrate potential different from the first substrate potential is given, and a third substrate of a second polarity different from the first polarity. The first substrate is insulated from a power source or ground to which a source of a MOSFET formed on the substrate is connected. The third substrate is disposed between the first and second substrates in adjacent relation to the first and second substrates. A circuit element is formed on the third substrate.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: March 15, 2011
    Assignee: Panasonic Corporation
    Inventor: Masaya Sumita
  • Patent number: 7902020
    Abstract: A semiconductor device includes a first conductivity-type deep well formed in a substrate, a plurality of device isolation layers formed in the substrate in which the first conductivity-type deep well is formed, a second conductivity-type well formed on a portion of the first conductivity-type deep well between two of the device isolation layers, a first gate pattern formed over a portion of the second conductivity-type well, a second gate pattern formed over one of the device isolation layers, a source region formed in an upper surface of the second conductivity-type well to adjoin a first side of the first gate pattern, a first drain region formed to include the interface between an upper surface of the second conductivity-type well adjoining a second side of the first gate pattern and an upper surface of the first conductivity-type deep well adjoining the second side of the first gate pattern, and a second drain region formed in an upper surface of the first conductivity-type deep well to be spaced from th
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 8, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Il-Yong Park
  • Patent number: 7888200
    Abstract: In some aspects, a method of forming a memory circuit is provided that includes (1) forming a two-terminal memory element on a substrate between a gate layer and a first metal layer of the memory circuit; and (2) forming a CMOS transistor on the substrate, the CMOS transistor for programming the two-terminal memory element. Numerous other aspects are provided.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: February 15, 2011
    Assignee: Sandisk 3D LLC
    Inventor: Christopher J. Petti
  • Patent number: 7888745
    Abstract: An improved bipolar transistor with dual shallow trench isolation for reducing the parasitic component of the base to collector capacitance Ccb and base resistance Rb is provided. The structure includes a semiconductor substrate having at least a pair of neighboring first shallow trench isolation (STI) regions disposed therein. The pair of neighboring first STI regions defines an active area in the substrate. The structure also includes a collector disposed in the in the active area of the semiconductor substrate, a base layer disposed atop a surface of the semiconductor substrate in the active area, and a raised extrinsic base disposed on the base layer. In accordance with the present, the raised extrinsic base has an opening to a portion of the base layer. An emitter is located in the opening and extending on a portion of the patterned raised extrinsic base; the emitter is spaced apart and isolated from the raised extrinsic base.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Marwan H. Khater, Andreas D. Stricker, Bradley A. Orner, Mattias E. Dahlstrom
  • Patent number: 7884426
    Abstract: Design time (TAT) is reduced in a layout design of a semiconductor integrated circuit having a well supplied with a potential different from a substrate potential. A layout design method of the present invention includes preparing a first cell pattern placed on a semiconductor substrate of a first conductive type, preparing a second cell pattern having a deep well of a second conductive type, placing the first cell pattern in a first circuit region, and placing the second cell pattern in a second region different from the first circuit region. This reduces TAT in chip design.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: February 8, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Kenichi Yoda
  • Patent number: 7884424
    Abstract: An architecture of the layout of the MTCMOS standard cell designed for low power consumption is supplemented so that the pick-up cells are included in the power line of the MTCMOS cell. Therefore, when the logic circuit is constructed using the library layout of the MTCMOS cell in which the related pick-up cells are not included, pick-up cells consisting of only the ends of the pick-up cells are not needed every 50 ?m during the placement of the MTCMOS standard cell. The flexibility of the cell placement may thereby be improved. In addition, since additional space for the pick-up cells is not required, the size of the MTCMOS may be reduced, saving space on the semiconductor substrate.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 8, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Dong-Hun Kim
  • Publication number: 20110024847
    Abstract: There is provided a technology which allows improvements in manufacturing yield and product reliability in a semiconductor device having a triple well structure. A shallow p-type well is formed in a region different from respective regions in a p-type substrate where a deep n-type well, a shallow p-type well, and a shallow n-type well are formed. A p-type diffusion tap formed in the shallow p-type well is wired to a p-type diffusion tap formed in a shallow n-type well in the deep n-type well using an interconnection in a second layer. The respective gate electrodes of an nMIS and a pMIS each formed in the deep n-type well are coupled to the respective drain electrodes of an nMIS and a pMIS each formed in the substrate using an interconnection in a second or higher order layer.
    Type: Application
    Filed: October 11, 2010
    Publication date: February 3, 2011
    Inventors: NAOZUMI MORINO, Atsushi Hiraiwa, Kazutoshi Oku, Toshiaki Ito, Motoshige Igarashi, Takayuki Sasaki, Masao Sugiyama, Hiroshi Yanagita, Shinichi Watarai
  • Patent number: 7882476
    Abstract: Standard cells without a well potential fixing active region (4T-11 to 4T-14, 4T-21 to 4T-24, 4T-31 to 4T-34, 4T-41 to 4T-44) are read from a library and a circuit is temporarily designed by automatic layout wiring. Then, a change in the substrate potential is estimated from at least one of the number of transistors to be switched at the same timing in the temporarily designed circuit, the sizes of transistors, the transition probability, and the appearance probability. It is determined whether the estimated change in the substrate potential is within a reference value. If the estimated change in the substrate potential has exceeded the reference value, standard cells with a well potential fixing active region (2T-11, 2T-21, 2T-31 and 2T-41) are read from the library and placed in a region where the estimated change in the substrate potential exceeds the reference value. Thereafter, automatic layout wiring is done again, thereby forming a circuit.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: February 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhito Itaka, Koichi Kinoshita, Takeshi Sugahara
  • Patent number: 7875511
    Abstract: A CMOS structure includes an n-FET device comprising an n-FET channel region and a p-FET device comprising a p-FET channel region. The n-FET channel region includes a first silicon material layer located upon a silicon-germanium alloy material layer. The p-FET channel includes a second silicon material layer located upon a silicon-germanium-carbon alloy material layer. The silicon-germanium alloy material layer induces a desirable tensile strain within the n-FET channel. The silicon-germanium-carbon alloy material layer suppresses an undesirable tensile strain within the p-FET channel region. A silicon-germanium-carbon alloy material from which is comprised the silicon-germanium-carbon alloy material layer may be formed by selectively incorporating carbon into a silicon-germanium alloy material from which is formed the silicon-germanium alloy material layer.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Liu Yaocheng, Ricardo A. Donaton, Kern Rim
  • Patent number: 7872312
    Abstract: A semiconductor device includes a first gate electrode formed in a first region on a semiconductor substrate with a first gate insulating film sandwiched therebetween; and a second gate electrode formed in a second region on the semiconductor substrate with a second gate insulating film sandwiched therebetween. The first gate insulating film includes a first high dielectric constant insulating film with a first nitrogen concentration and the second gate insulating film includes a second high dielectric constant insulating film with a second nitrogen concentration higher than the first nitrogen concentration.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventor: Hisashi Ogawa
  • Patent number: 7868391
    Abstract: A 3-D (Three Dimensional) inverter having a single gate electrode. The single gate electrode has a first gate dielectric between the gate electrode and a body of a first FET (Field Effect transistor) of a first doping type, the first FET having first source/drain regions in a semiconductor substrate, or in a well in the semiconductor substrate. The single gate electrode has a second gate dielectric between the gate electrode and a body of a second FET of opposite doping to the first FET. Second source/drain regions of the second FET are formed from epitaxial layers grown over the first source/drain regions.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Phil Christopher Felice Paone, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
  • Patent number: 7868390
    Abstract: First, a semiconductor substrate having a first active region and a second active region is provided. The first active region includes a first transistor and the second active region includes a second transistor. A first etching stop layer, a stress layer, and a second etching stop layer are disposed on the first transistor, the second transistor and the isolation structure. A first etching process is performed by using a patterned photoresist disposed on the first active region as a mask to remove the second etching stop layer and a portion of the stress layer from the second active region. The patterned photoresist is removed, and a second etching process is performed by using the second etching stop layer of the first active region as a mask to remove the remaining stress layer and a portion of the first etching stop layer from the second active region.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: January 11, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Pei-Yu Chou, Shih-Fang Tzou, Jiunn-Hsiung Liao
  • Patent number: RE42776
    Abstract: An integrated circuit biases the substrate and well using voltages other than those used for power and ground. Tap cells inside the standard cell circuits are removed. New tap cells used to bias the substrate and well reside outside the standard cell circuits. The location of the new voltage power rails is designated prior to placement of the tap cells in the integrated circuit. The tap cells are then strategically placed near the power rails such that metal connections are minimized. Circuit density is thus not adversely impacted by the addition of the new power rails. Transistors are also placed inside the tap cells to address electrostatic discharge issues during fabrication.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: October 4, 2011
    Assignee: Marvell International Ltd.
    Inventors: Lawrence T. Clark, Vikas R. Amrelia, Raphael A. Soetan, Eric J. Hoffman, Tuan X. Do