Electromagnetic Or Particle Radiation Patents (Class 257/428)
  • Patent number: 8674358
    Abstract: There has been such a problem that radiation detecting elements using semiconductor elements have a low radiation detection efficiency, since the radiation detecting elements easily transmit radiation, even though the radiation detecting elements have merits, such as small dimensions and light weight. Disclosed are a radiation detecting element and a radiation detecting device, wherein a film formed of a metal, such as tungsten, is formed on the radiation incident surface of the radiation detecting element, and the incident energy of the radiation is attenuated. The efficiency of generating carriers by way of radiation incidence is improved by attenuating the incident energy, the thickness of the metal film is optimized, and the radiation detection efficiency is improved.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: March 18, 2014
    Inventor: Takehisa Sasaki
  • Patent number: 8675118
    Abstract: An image sensor includes an objective lens arranged on an optical axis; a substrate including a plurality of photoelectric conversion devices; and a micro lens layer including a plurality of micro lenses corresponding to each of the plurality of photoelectric conversion devices, respectively, wherein the plurality of micro lenses includes a central micro lens corresponding to a central portion of the objective lens, and an edge micro lens corresponding to an edge portion of the objective lens, and the plurality of micro lenses are configured such that focal lengths of the micro lenses increase from the central micro lens toward the edge micro lens.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Han-Sung Ryu
  • Publication number: 20140070346
    Abstract: The invention provides a radio-frequency (RF) device package and a method for fabricating the same. An exemplary embodiment of a radio-frequency (RF) device package includes a base, wherein a radio-frequency (RF) device chip is mounted on the base. The RF device chip includes a semiconductor substrate having a front side and a back side. A radio-frequency (RF) component is disposed on the front side of the semiconductor substrate. An interconnect structure is disposed on the RF component, wherein the interconnect structure is electrically connected to the RF component, and a thickness of the semiconductor substrate is less than that of the interconnect structure. A through hole is formed through the semiconductor substrate from the back side of the semiconductor substrate, and is connected to the interconnect structure. A TSV structure is disposed in the through hole.
    Type: Application
    Filed: March 8, 2013
    Publication date: March 13, 2014
    Applicant: MEDIATEK INC.
    Inventors: Ming-Tzong YANG, Cheng-Chou HUNG, Tung-Hsing LEE, Wei-Che HUANG, Yu-Hua HUANG
  • Patent number: 8669625
    Abstract: A photoelectric conversion device provided with an electron transport layer having an excellent electron transport ability and having an excellent photoelectric conversion efficiency, and electronic equipment provided with such a photoelectric conversion device and having a high reliability are provided. A solar cell, to which the photoelectric conversion device is applied, has a first electrode provided on a substrate, a second electrode arranged opposite to the first electrode and retained on a facing substrate, an electron transport layer provided between these electrodes and positioned on the side of the first electrode, a dye layer being in contact with the electron transport layer, and an electrolyte layer provided between the electron transport layer and the second electrode and being in contact with the dye layer. The electron transport layer is constituted of a monocrystalline material of multiple oxide as a main component thereof.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: March 11, 2014
    Assignees: Seiko Epson, Shinshu University
    Inventors: Yuji Shinohara, Yoshiharu Ajiki, Katsuya Teshima, Shuji Oishi
  • Patent number: 8664736
    Abstract: A semiconductor device including a device substrate having a front side and a back side. The semiconductor device further includes an interconnect structure disposed on the front side of the device substrate, the interconnect structure having a n-number of metal layers. The semiconductor device also includes a bonding pad disposed on the back side of the device substrate, the bonding pad extending through the interconnect structure and directly contacting the nth metal layer of the n-number of metal layers.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Wen-De Wang, Yueh-Chiou Lin
  • Publication number: 20140054734
    Abstract: A production method of a semiconductor element of a direct-converting x-ray detector is disclosed, wherein at least one intermediate layer is applied to a semiconductor layer and at least one contact layer is applied to an exposed intermediate layer by chemically currentless deposition of a contact material from a solution in each instance. The materials for the individual layers are selected such that the electrochemical potential of the materials of the at least one intermediate layer is greater than the electrochemical potential of at least one element of the semiconductor layer and the electrochemical potential of the contact material of the contract layer is greater than the electrochemical potential of the materials of the intermediate layers. Semiconductor elements produced in accordance with the method, an x-ray detector with semiconductor elements, an x-ray system with an x-ray detector and also a CT system with an x-ray detector are also disclosed.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Fabrice DIERRE, Peter HACKENSCHMIED, Matthias STRASSBURG
  • Publication number: 20140042575
    Abstract: Microelectronic devices and methods for manufacturing microelectronic devices are disclosed herein. In one embodiment, a method includes constructing a radiation sensitive component in and/or on a microelectronic device, placing a curable component in and/or on the microelectronic device, and forming a barrier in and/or on the microelectronic device to at least partially inhibit irradiation of the radiation sensitive component. The radiation sensitive component can be doped silicon, chalcogenide, polymeric random access memory, or any other component that is altered when irradiated with one or more specific frequencies of radiation. The curable component can be an adhesive, an underfill layer, an encapsulant, a stand-off, or any other feature constructed of a material that requires curing by irradiation.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Warren M. Farnworth, Kristy A. Campbell
  • Patent number: 8647912
    Abstract: The present invention is a solar cell 500 comprising the substrate 510 made of a crystalline semiconductor, an i-type semiconductor layer 520a and an i-type semiconductor layer 520b each made of an amorphous semiconductor, and a first-conductivity type semiconductor layer 530 and a second-conductivity type semiconductor layer 540 each made of an amorphous semiconductor, in which by catalytic chemical vapor deposition in which catalyzers decompose raw gas when being heated by receiving an electric current, the i-type semiconductor layer 520a is formed on the principle plane 515a by the catalyzer placed at the position facing the principle plane 515a, the i-type semiconductor layer 520b is formed on the principle plane 515b by the catalyzer placed at the position facing the principle plane 515b are formed on the i-type semiconductor layer 520a and the i-type semiconductor layer 520b on the substrate 510.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 11, 2014
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Shingo Okamoto
  • Publication number: 20140027730
    Abstract: An apparatus including an electronic device having a plurality of substantially collocated components, the plurality of components including an integrated circuit (IC) chip, an energy supply operable to electrically power the IC chip, and an energy harvesting (EH) device operable to convert non-electrical energy to electrical energy supplied to the energy supply. A material substantially encloses at least a portion of at least one of the IC chip, the energy supply, and the EH device.
    Type: Application
    Filed: February 11, 2013
    Publication date: January 30, 2014
    Inventor: Joseph H. McCain
  • Patent number: 8637943
    Abstract: An integrated multi-axis mechanical device and integrated circuit system. The integrated system can include a silicon substrate layer, a CMOS device region, four or more mechanical devices, and a wafer level packaging (WLP) layer. The CMOS layer can form an interface region, on which any number of CMOS and mechanical devices can be configured. The mechanical devices can include MEMS devices configured for multiple axes or for at least a first direction. The CMOS layer can be deposited on the silicon substrate and can include any number of metal layers and can be provided on any type of design rule. The integrated MEMS devices can include, but not exclusively, any combination of the following types of sensors: magnetic, pressure, humidity, temperature, chemical, biological, or inertial. Furthermore, the overlying WLP layer can be configured to hermetically seal any number of these integrated devices.
    Type: Grant
    Filed: January 2, 2011
    Date of Patent: January 28, 2014
    Assignee: mCube Inc.
    Inventor: Xiao “Charles” Yang
  • Patent number: 8633037
    Abstract: A semiconductor device includes a substrate having a main surface and a rear surface, a transistor formed over a side of the main surface, an insulator layer formed over a side of the main surface, an inductor formed over the insulator layer and a side of the main surface, a tape overlapping the inductor and formed over a side of the main surface, and a bonding pad formed over the insulating layer and a side of the main surface. The tape is selectively formed over an area without the bonding pad.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: January 21, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masayuki Furumiya, Yasutaka Nakashiba
  • Publication number: 20140015081
    Abstract: A method includes obtaining a photosensor substrate (236) having two opposing major surfaces. One of the two opposing major surfaces includes at least one photosensor row (230) of at least one photosensor element (232, 234), and the obtained photosensor substrate has a thickness equal to or greater than one hundred microns. The method further includes optically coupling a scintillator array (310) to the photosensor substrate. The scintillator array includes at least one complementary scintillator row (224) of at least one complementary scintillator element (226, 228), and the at least one complementary scintillator row is optically coupled to the at least one photosensor row (230) and the at least one complementary scintillator element is optically coupled to the at least one photosensor element.
    Type: Application
    Filed: March 19, 2012
    Publication date: January 16, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Randall Peter Luhta, Rodney Arnold Mattson
  • Patent number: 8628698
    Abstract: Disclosed is a resin composition for a protective layer of a color filter including an acrylate-based resin including a repeating unit represented by each of Chemical Formulae 1 to 3, a melamine-based resin represented by Chemical Formula 4, a thermal acid generator (TAG), and a solvent.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: January 14, 2014
    Assignee: Cheil Industries Inc.
    Inventors: Se-Young Choi, Jae-Hyun Kim, Nam-Gwang Kim, Eui-June Jeong, Sang-Kyun Kim, Kwen-Woo Han, Hyun-Hoo Sung
  • Patent number: 8629522
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: January 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Patent number: 8624340
    Abstract: In a plasma torch unit, copper rods forming a coil as a whole are disposed inside copper rod inserting holes formed in a quartz block so that the quartz block is cooled by water flowing inside the copper rod inserting holes and cooling water pipes. A plasma ejection port is formed on the lowermost portion of the torch unit. While a gas is being supplied into a space inside an elongated chamber, high-frequency power is supplied to the copper rods to generate plasma in the space inside the elongated chamber so that the plasma is applied to a substrate.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: January 7, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Okumura, Ichiro Nakayama, Hiroshi Kawaura, Tetsuya Yukimoto
  • Publication number: 20130341739
    Abstract: A package structure is provided, including: a substrate having a ground pad and an MEMS element; a lid disposed on the substrate for covering the MEMS element; a wire segment electrically connected to the ground pad; an encapsulant encapsulating the lid and the wire segment; and a circuit layer formed on the encapsulant and electrically connected to the wire segment and the lid so as to commonly ground the substrate and the lid, thereby releasing accumulated electric charges on the lid so as to improve the reliability of the MEMS system and reduce the number of I/O connections.
    Type: Application
    Filed: October 25, 2012
    Publication date: December 26, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Hong-Da Chang, Cheng-Hsiang Liu, Kuang-Wei Huang, Chun-Hung Lin, Hsin-Yi Liao
  • Publication number: 20130341520
    Abstract: A radiation detector comprises a piece of semiconducting material. On its surface, a number of consecutive electrode strips are configured to assume electric potentials of sequentially increasing absolute value. A field plate covers the most of a separation between a pair of adjacent electrode strips and is isolated from the most of said separation by an electric insulation layer. A bias potential is coupled to said field plate so that attracts surface-generated charge carriers.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Inventor: Pasi KOSTAMO
  • Patent number: 8610048
    Abstract: A method for producing a photosensitive integrated circuit including producing circuit control transistors, producing, above the control transistors, and between at least one upper electrode and at least one lower electrode, at least one photodiode, by amorphous silicon layers into which photons from incident electromagnetic radiation are absorbed, producing at least one passivation layer, between the lower electrode and the control transistors, and producing, between the control transistors and the external surface of the integrated circuit, a reflective layer capable of reflecting photons not absorbed by the amorphous silicon layers.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 17, 2013
    Assignee: STMicroelectronics S.A.
    Inventors: Jerome Alieu, Simon Guillaumet, Christophe Legendre, Hughes Leininger, Jean-Pierre Oddou, Marc Vincent
  • Patent number: 8610989
    Abstract: A microcavity-controlled two-dimensional carbon lattice structure device selectively modifies to reflect or to transmit, or emits, or absorbs, electromagnetic radiation depending on the wavelength of the electromagnetic radiation. The microcavity-controlled two-dimensional carbon lattice structure device employs a graphene layer or at least one carbon nanotube located within an optical center of a microcavity defined by a pair of partial mirrors that partially reflect electromagnetic radiation. The spacing between the mirror determines the efficiency of elastic and inelastic scattering of electromagnetic radiation inside the microcavity, and hence, determines a resonance wavelength of electronic radiation that is coupled to the microcavity. The resonance wavelength is tunable by selecting the dimensional and material parameters of the microcavity. The process for manufacturing this device is compatible with standard complementary metal oxide semiconductor (CMOS) manufacturing processes.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: December 17, 2013
    Assignees: International Business Machines Corporation, Karlsruher Institut Fuer Technologie (KIT), Cambridge Enterprise Limited
    Inventors: Phaedon Avouris, Mathias B. Steiner, Michael Engel, Ralph Krupke, Andrea C. Ferrari, Antonio Lombardo
  • Patent number: 8610225
    Abstract: A radiation-receiving semiconductor component is specified. A semiconductor body is formed with silicon and has a radiation entrance surface and also an absorption zone. Electromagnetic radiation passes into the semiconductor body through the radiation entrance surface and is absorbed. The absorption zone has a thickness of at most 10 ?m. A filter layer is formed with a dielectric material. The filter layer covers the radiation entrance surface of the semiconductor body. A potting body covers the semiconductor body at least at the radiation entrance surface thereof. The potting body contains a radiation-absorbing material.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: December 17, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Christian Müller, Werner Kuhlmann
  • Patent number: 8605466
    Abstract: A radiation hardened motor drive stage utilizes a non-radiation hardened P-channel FET switch. The radiation hardened motor drive stage includes a non-radiation hardened P-channel FET switch that is connected three (3) pairs of upper and lower switch blocks or legs wherein the output of each pair is connected to a motor winding switch terminal. The upper switch blocks or legs are connected the P-channel switch a. The lower switch block or legs are connected to a negative power bus. The negative power bus permits the N-channel FETS or IGTS within the switch blocks or legs exposed to ionized radiation to be controlled, even when their gate threshold voltage has dropped below zero volts.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: December 10, 2013
    Inventor: Steven E. Summer
  • Patent number: 8604574
    Abstract: The transparent photodetector includes a substrate; a waveguide on the substrate; a displaceable structure that can be displaced with respect to the substrate, the displaceable structure in proximity to the waveguide; and a silicon nanowire array suspended with respect to the substrate and mechanically linked to the displaceable structure, the silicon nanowire array comprising a plurality of silicon nanowires having piezoresistance. In operation, a light source propagating through the waveguide results in an optical force on the displaceable structure which further results in a strain on the nanowires to cause a change in electrical resistance of the nanowires. The substrate may be a semiconductor on insulator substrate.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventor: Tymon Barwicz
  • Publication number: 20130313666
    Abstract: A radiation image capturing device includes scan lines, signal lines, radiation detection elements and switch elements. With respect to each of the radiation detection elements, a first distance between an edge of the radiation detection element and an edge of a scan line and/or a second distance between an edge of the radiation detection element and an edge of a signal line is set within a range acceptable as a manufacturing error. The center of the range is a value which maximizes a ratio obtained by dividing the area of the radiation detection element by a first parasitic capacitance between the radiation detection element and the scan line and/or a second parasitic capacitance between the radiation detection element and the signal line.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Applicant: Konica Minolta, Inc.
    Inventors: Tetsuo NISHI, Kenji OKAJIMA
  • Publication number: 20130313667
    Abstract: According to one embodiment, a radiation detector includes a substrate, a scintillator layer, a moisture-proof body and an adhesive layer. The substrate is partitioned into at least an active area and a bonding area. The substrate includes a photoelectric conversion element located in the active area and configured to convert fluorescence to an electrical signal, an organic resin protective layer located at an outermost layer in the active area, and an inorganic protective film located at an outermost layer of the bonding area. The scintillator layer is formed on the organic resin protective layer so as to cover the photoelectric conversion element and configured to convert radiation to the fluorescence. The moisture-proof body is formed so as to cover the scintillator layer. The adhesive layer is formed on the inorganic protective film and bonds the moisture-proof body to the substrate.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicants: Toshiba Electron Tubes & Devices Co., Ltd., Kabushiki Kaisha Toshiba
    Inventor: Katsuhisa Homma
  • Patent number: 8586936
    Abstract: The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: November 19, 2013
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Ge Yang, Aleksey E. Bolotnikov, Giuseppe Camarda, Yonggang Cui, Anwar Hossain, Ki Hyun Kim, Ralph B. James
  • Patent number: 8574945
    Abstract: An embodiment of an array of Geiger-mode avalanche photodiodes, wherein each photodiode is formed by a body of semiconductor material, having a first conductivity type, housing a first cathode region, of the second conductivity type, and facing a surface of the body, an anode region, having the first conductivity type and a higher doping level than the body, extending inside the body, and facing the surface laterally to the first cathode region and at a distance therefrom, and an insulation region extending through the body and insulating an active area from the rest of the body, the active area housing the first cathode region and the anode region. The insulation region is formed by a mirror region of metal material, a channel-stopper region having the second conductivity type, surrounding the mirror region, and a coating region, of dielectric material, arranged between the mirror region and the channel-stopper region.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 5, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Delfo Nunziato Sanfilippo, Emilio Antonio Sciacca, Piero Giorgio Fallica, Salvatore Antonio Lombardo
  • Patent number: 8569814
    Abstract: The energy distribution in the short-side direction of a rectangular laser beam applied to an amorphous semiconductor film (amorphous silicon film) is uniformized. It is possible to the energy distribution in the short-side direction of the rectangular laser beam by the use of a cylindrical lens array or a light guide and concentrating optical systems or by the use of an optical system including a diffracting optical element. Accordingly, since the effective energy range of a laser beam applied to the amorphous semiconductor film is widened and the transport speed of a substrate can be enhanced as much, it is possible to improve the processing ability of the laser annealing.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichiro Nishida, Ryusuke Kawakami, Norihito Kawaguchi, Miyuki Masaki
  • Publication number: 20130266114
    Abstract: A radiation detector includes a semiconductor substrate having opposing front and rear surfaces, a cathode electrode located on the front surface of the semiconductor substrate configured so as to receive radiation, and a plurality of anode electrodes formed on the rear surface of said semiconductor substrate. A work function of the cathode electrode material contacting the front surface of the semiconductor substrate is lower than a work function of the anode electrode material contacting the rear surface of the semiconductor substrate.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Henry CHEN, Salah AWADALLA, Pinghe LU, Pramodha MARTHANDAM
  • Patent number: 8552519
    Abstract: In order to collect a plurality of semiconductor elements easily from a semiconductor module where a plurality of rod-like semiconductor elements for power generation or light emission are built in and to reuse or repair them, two split modules 61 are arranged in series in a containing case 62 in a semiconductor module 60. In each split module 61, power generating semiconductor elements 1 arranged in a matrix of a plurality of rows and columns, and a conductive connection mechanism for connecting the plurality of semiconductor elements 1 in each row in series and the plurality of semiconductor elements 1 in each column in parallel are molded with transparent synthetic resin, and a connection conductor 67 is allowed to project at the end. A conductive waved spring 70 and an external terminal 76 are provided on the end side of the containing case 62, and series connection of the two split modules 61 is ensured by mechanical pressing force of the conductive waved spring 70.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: October 8, 2013
    Assignee: Kyosemi Corporation
    Inventor: Josuke Nakata
  • Patent number: 8546899
    Abstract: A light receiving element includes a waveguide that includes a waveguide core, a multi-mode interference waveguide that has a width larger than a width of the waveguide, the multi-mode interference waveguide receiving a first light from the waveguide core at a first end, and a photodetection portion that includes a first semiconductor layer and an absorption layer disposed on the first semiconductor layer, the first semiconductor layer including at least one layer and receiving a second light from the multi-mode interference waveguide at a second end, the absorption layer being disposed above the first semiconductor layer and absorbing the second light. A distance from the first end of the multi-mode interference waveguide to the second end of the photodetection portion is longer than 70% of a first length and shorter than 100% of the first length, the first length being a length where self-imaging occurs in the multi-mode interference waveguide.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: October 1, 2013
    Assignee: Fujitsu Limited
    Inventor: Kazumasa Takabayashi
  • Publication number: 20130241016
    Abstract: A radioactive ray detecting apparatus for enabling to reduce the dead area or region where the radioactive rays cannot be detected, even if disposing the radioactive ray detectors to be dense or crowded, is provided.
    Type: Application
    Filed: July 15, 2011
    Publication date: September 19, 2013
    Applicant: HITACHI CONSUMER ELECTRONICS CO., LTD.
    Inventors: Juhyun Yu, Naoyuki Yamada, Shinichi Inoue, Akihiro Hiruta, Chihiro Ohkubo
  • Patent number: 8531414
    Abstract: Apparatus and methods for reducing misinterpretation of gesture-based input to portable electronic devices are described.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 10, 2013
    Assignee: Bump Technologies, Inc.
    Inventor: Andrew G Huibers
  • Patent number: 8530995
    Abstract: A high operating temperature split-off band infrared (SPIP) detector having a double and/or graded barrier on either side of the emitter is provided. The photodetector may include a first and second barrier and an emitter disposed between the first and second barriers so as to form a heterojunction at each interface between the emitter and the first and second barriers, respectively. The emitter may be of a first semiconductor material having a split-off response to optical signals, while one of the first or the second barriers may include a double barrier having a light-hole energy band level that is aligned with the split-off band energy level of the emitter. In addition, the remaining barrier may be graded.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: September 10, 2013
    Assignee: Georgia State University Research Foundation, Inc.
    Inventors: A.G. Unil Perera, Steven G. Matsik
  • Publication number: 20130228885
    Abstract: The present invention provides a thin and bendable semiconductor device utilizing an advantage of a flexible substrate used in the semiconductor device, and a method of manufacturing the semiconductor device. The semiconductor device has at least one surface covered by an insulating layer which serves as a substrate for protection. In the semiconductor device, the insulating layer is formed over a conductive layer serving as an antenna such that the value in the thickness ratio of the insulating layer in a portion not covering the conductive layer to the conductive layer is at least 1.2, and the value in the thickness ratio of the insulating layer formed over the conductive layer to the conductive layer is at least 0.2. Further, not the conductive layer but the insulating layer is exposed in the side face of the semiconductor device, and the insulating layer covers a TFT and the conductive layer.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshitaka DOZEN, Tomoyuki AOKI, Hidekazu TAKAHASHI, Daiki YAMADA, Eiji SUGIYAMA, Kaori OGITA, Naoto KUSUMOTO
  • Patent number: 8525242
    Abstract: A solid-state image pickup device including: a pixel region on a semiconductor substrate, the pixel region including: a sensor region for photoelectrically converting incident light; a vertical CCD formed on one side of the sensor region with a readout region interposed between the sensor region and the vertical CCD; and a channel stop region formed on a side opposite from the sensor region with the vertical CCD interposed between the sensor region and the channel stop region; and a vertical transfer electrode on the vertical CCD with an insulating film interposed between the vertical transfer electrode and the vertical CCD. The vertical transfer electrode is formed above the vertical CCD such that width of the vertical transfer electrode and width of a channel region of the vertical CCD are substantially equal to each other.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 3, 2013
    Assignee: Sony Corporation
    Inventor: Hideo Kanbe
  • Publication number: 20130225102
    Abstract: According to one embodiment, a wireless device includes a board, a semiconductor chip, a radiation element, a sealing resin, a conductive layer, and a first conductive wall. The semiconductor chip is mounted on the board and includes a transmission/reception circuit. The radiation element is formed on the board. The sealing resin seals the semiconductor chip. The conductive layer covers at least a portion of a surface of the sealing resin. The first conductive wall is provided between the semiconductor chip and the radiation element and is connected to the conductive layer.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 29, 2013
    Applicant: Kabushiki Kaisha TOSHIBA
    Inventors: Yukako TSUTSUMI, Koh HASHIMOTO, Takayoshi ITO, Koji AKITA, Keiju YAMADA
  • Patent number: 8508007
    Abstract: The solid-state image sensing device is provided with an interconnect substrate, a solid-state image sensing chip and an under-filling resin. The solid-state image sensing chip is flip-chip mounted on the interconnect substrate. The solid-state image sensing chip takes a picture of an object to be imaged by photoelectrically conversion converting light incident on the back surface of the solid-state image sensing chip. An under-filling resin is used to fill the gap between the interconnect substrate and the solid-state image sensing chip. The under-filling resin serves to block light which is used to take an image by the solid-state image sensing chip.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: August 13, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Publication number: 20130194239
    Abstract: An image pickup device includes a sensor substrate. The sensor substrate includes: plural photoelectric conversion elements and driving elements for the plural photoelectric conversion elements which are formed on a substrate; wirings electrically connected to the driving elements; and a shield electrode disposed in a region between the plural photoelectric conversion elements and the wirings in a layer different from that of the wirings.
    Type: Application
    Filed: January 24, 2013
    Publication date: August 1, 2013
    Applicant: JAPAN DISPLAY WEST, INC.
    Inventor: JAPAN DISPLAY WEST, INC.
  • Publication number: 20130188041
    Abstract: A detecting device which detects electromagnetic waves includes an antennal configured to receive electromagnetic waves, and a plurality of semiconductor rectifying devices serially connected to the antenna, and connected in parallel to each other such that the polarity is aligned, so as to receive electromagnetic waves propagated from the antenna, wherein the plurality of semiconductor rectifying devices are each disposed at positions where the phase of electromagnetic waves propagated from the antenna is substantially the same phase.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 25, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Canon Kabushiki Kaisha
  • Patent number: 8492861
    Abstract: In one preferred embodiment, a semiconductor diode includes a first layer formed with a p-type semiconductor, a second layer formed with an n-type semiconductor, and a third active depletion layer contained between the first and second layers. The third layer is formed with a radioisotope of the p-type and n-type semiconductors (preferably Si 32) such that initial emission of beta particles begins in the active depletion region and substantially all of the emitted beta particles are contained within the first, second and third layers during operation. The p-type and n-type layers each have sufficient depth to contain substantially all of beta particles emitted from the depletion layer. The depth of each of the p-type and n-type layers is substantially equal to or greater than the maximum beta emission depth of the radioisotope.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: July 23, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Bryan George Moosman, Richard Lee Waters
  • Patent number: 8492863
    Abstract: Optical modulator having wide bandwidth based on Fabry-Perot resonant reflection is disclosed. The optical modulator includes: a bottom Distributed Bragg Reflector (DBR) layer; a top DBR layer including at least one layer, and a modified layer; and an active layer disposed between bottom and top DBR layers, wherein the at least one layer includes at least one pair of a first refractive index layer having a first refractive index and a second refractive index layer having a second refractive index, the modified layer includes at least one pair of a third refractive index layer having a third refractive index and a fourth refractive index layer having a fourth refractive index, the third and the fourth refractive indexes being different, and at least one of the third and the fourth refractive index layers has a second optical thickness that is not ?/4 or that is not an odd multiple thereof.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 23, 2013
    Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: Yong-chul Cho, Yong-tak Lee, Yong-hwa Park, Byung-hoon Na, Kwang-mo Park, Chang-soo Park
  • Patent number: 8487392
    Abstract: To increase total power in a betavoltaic device, it is desirable to have greater radioisotope material and/or semiconductor surface area, rather than greater radioisotope material volume. An example of this invention is a high power density betavoltaic battery. In one example of this invention, tritium is used as a fuel source. In other examples, radioisotopes, such as Nickel-63, Phosphorus-33 or promethium, may be used. The semiconductor used in this invention may include, but is not limited to, Si, GaAs, GaP, GaN, diamond, and SiC. For example (for purposes of illustration/example, only), tritium will be referenced as an exemplary fuel source, and SiC will be referenced as an exemplary semiconductor material. Other variations and examples are also discussed and given.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 16, 2013
    Assignee: Widetronix, Inc.
    Inventors: Michael Spencer, MVS Chandrashekhar
  • Patent number: 8482089
    Abstract: Embodiments of the invention relate to a silicon semiconductor device, and a conductive paste for use in the front side of a solar cell device.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: July 9, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Hideki Akimoto, Takuya Konno, Giovanna Laudisio, Patricia J. Ollivier, Michael Rose, Jerome David Smith, Richard John Sheffield Young
  • Patent number: 8476730
    Abstract: An embodiment of a Geiger-mode avalanche photodiode, having: a body made of semiconductor material of a first type of conductivity, provided with a first surface and a second surface and forming a cathode region; and an anode region of a second type of conductivity, extending inside the body on top of the cathode region and facing the first surface. The photodiode moreover has: a buried region of the second type of conductivity, extending inside the body and surrounding an internal region of the body, which extends underneath the anode region and includes the internal region and defines a vertical quenching resistor; a sinker region extending through the body starting from the first surface and in direct contact with the buried region; and a contact region made of conductive material, overlying the first surface and in direct contact with the sinker region.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: July 2, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Delfo Nunziato Sanfilippo, Massimo Cataldo Mazzillo, Piero Giorgio Fallica
  • Publication number: 20130161772
    Abstract: Disclosed is a flexible radiation detector including a substrate, a switching device on the substrate, an energy conversion layer on the switching device, a top electrode layer on the energy conversion layer, a first phosphor layer on the top electrode layer, and a second phosphor layer under the substrate.
    Type: Application
    Filed: April 26, 2012
    Publication date: June 27, 2013
    Applicant: Industrial Technology Research Institute
    Inventors: Issac Wing-Tak Chan, Chao-Chiun Liang, Heng-Yin Chen, Ming-Hua Yeh
  • Publication number: 20130161773
    Abstract: A detector element is disclosed, including a semiconducting converter element and a number of pixilated contacts arranged thereon. A radiation detector is also disclosed including such a detector element, along with a medical device having one or more such radiation detectors. Finally, a method for producing a detector element is disclosed, which includes forming pixelated contacts by way of a photolithographic process on the semiconducting converter element using a lithographic mask arranged on a converter element protective layer.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Inventors: Fabrice DIERRE, Peter HACKENSCHMIED, Hiroshi KATAKABE, Noriyuki KISHI, Christian SCHRÖTER, Hiroyuki SHIRAKI, Matthias STRASSBURG, Mitsuru TAMASHIRO
  • Publication number: 20130154039
    Abstract: The present invention provides a production method of a radiation image detector, comprising a scintillator panel preparation step, a composite rigid plate preparation step of bonding a flexible polymer film to a rigid plate with an adhesive to prepare the composite rigid plate, a preparation step of a scintillator panel provided with a composite rigid plate of bonding the composite rigid plate to a scintillator panel to prepare the scintillator panel provided with a composite rigid plate, and a preparation step of a radiation image detection member of opposing the surface of the photoelectric conversion base plate in which the photoelectric conversion elements are disposed to the surface of the side of the scintillator layer of the scintillator panel provided with the composite rigid plate and bonding the photoelectric conversion base plate to the scintillator panel to prepare a radiation image detection member; whereby there arc provided a production method of a radiation image detector which can he easily
    Type: Application
    Filed: February 18, 2011
    Publication date: June 20, 2013
    Applicant: KONICA MINOLTA MEDICAL & GRAPHIC, INC.
    Inventors: Koji Furui, Yoko Hirai
  • Patent number: 8450820
    Abstract: The invention discloses a process for manufacturing a radiation detector for detecting e.g. 200 eV electrons. This makes the detector suited for e.g. use in an Scanning Electron Microscope. The detector is a PIN photodiode with a thin layer of pure boron connected to the p+-diffusion layer. The boron layer is connected to an electrode with an aluminium grid to form a path of low electrical resistance between each given point of the boron layer and the electrode. The invention addresses forming the aluminium grid on the boron layer without damaging the boron layer.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: May 28, 2013
    Inventors: Lis Karen Nanver, Thomas Ludovicus Maria Scholtes, Agata {hacek over (S)}akić, Cornelis Sander Kooijman, Gerard Nicolaas Anne van Veen
  • Patent number: 8450819
    Abstract: In a plasma torch unit, a conductor rod having a spiral shape is disposed inside a quartz pipe having a surface coated with boron glass, and a brass block is disposed on the periphery thereof. While a gas is being supplied into a cylindrical chamber, a high-frequency power is supplied to the conductor rod and a plasma is generated in the cylindrical chamber, so that a base material is irradiated with the plasma.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 28, 2013
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Okumura, Mitsuo Saitoh, Ichiro Nakayama, Taro Kitaoka
  • Publication number: 20130126998
    Abstract: Radiation detectors and methods of fabricating radiation detectors are provided. One method includes mechanically polishing at least a first surface of a semiconductor wafer using a polishing sequence including a plurality of polishing steps, wherein a last polishing step of the polishing sequence includes polishing with a slurry having a grain size smaller than about 0.1 ?m to create a polished first surface. The method also includes applying (i) an encapsulation layer on a top of the polished first surface to seal the polished first surface and (ii) a photoresist layer on top of the encapsulation layer on the polished first surface. The method further includes creating undercuts of the encapsulation layer under the photoresist layer. The method additionally includes partially etching the polished first surface of the semiconductor via the openings in the photoresist layer and in the encapsulation layer to partially etch the semiconductor creating etched regions.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: General Electric Company
    Inventors: Arie Shahar, Eliezer Traub, Diego Sclar, Peter Rusian