With Active Region Having Effective Impurity Concentration Less Than 10 12 Atoms/cm 3 Patents (Class 257/430)
  • Patent number: 11177306
    Abstract: Among other things, one or more support structures for integrated circuitry and techniques for forming such support structures are provided. A support structure comprises one or more trench structures, such as a first trench structure and a second trench structure formed around a periphery of integrated circuitry. In some embodiments, one or more trench structures are formed according to partial substrate etching, such that respective trench structures are formed into a region of a substrate. In some embodiments, one or more trench structures are formed according to discontinued substrate etching, such that respective trench structures comprise one or more trench portions separated by separation regions of the substrate. The support structure mitigates stress energy from reaching the integrated circuitry, and facilitates process-induced charge release from the integrated circuitry.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Volume Chien, Yun-Wei Cheng, I-I Cheng, Shiu-Ko JangJian, Chi-Cherng Jeng, Chih-Mu Huang
  • Patent number: 10340301
    Abstract: Among other things, one or more support structures for integrated circuitry and techniques for forming such support structures are provided. A support structure comprises one or more trench structures, such as a first trench structure and a second trench structure formed around a periphery of integrated circuitry. In some embodiments, one or more trench structures are formed according to partial substrate etching, such that respective trench structures are formed into a region of a substrate. In some embodiments, one or more trench structures are formed according to discontinued substrate etching, such that respective trench structures comprise one or more trench portions separated by separation regions of the substrate. The support structure mitigates stress energy from reaching the integrated circuitry, and facilitates process-induced charge release from the integrated circuitry.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: July 2, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Volume Chien, Yun-Wei Cheng, I-I Cheng, Shiu-Ko JangJian, Chi-Cherng Jeng, Chih-Mu Huang
  • Patent number: 9640456
    Abstract: Among other things, one or more support structures for integrated circuitry and techniques for forming such support structures are provided. A support structure comprises one or more trench structures, such as a first trench structure and a second trench structure formed around a periphery of integrated circuitry. In some embodiments, one or more trench structures are formed according to partial substrate etching, such that respective trench structures are formed into a region of a substrate. In some embodiments, one or more trench structures are formed according to discontinued substrate etching, such that respective trench structures comprise one or more trench portions separated by separation regions of the substrate. The support structure mitigates stress energy from reaching the integrated circuitry, and facilitates process-induced charge release from the integrated circuitry.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: May 2, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Volume Chien, Yun-Wei Cheng, I-I Cheng, Shiu-Ko JangJian, Chi-Cherng Jeng, Chih-Mu Huang
  • Patent number: 8928101
    Abstract: A semiconductor device includes: a first semiconductor layer of a first conductivity type; an insulation layer on the first semiconductor layer; a second semiconductor layer in the insulation layer; an active element in the second semiconductor layer; a first semiconductor region on the first semiconductor layer and of a second conductivity type; a second semiconductor region in the first semiconductor region and of the second conductivity type with a higher impurity concentration than the first semiconductor region; a first conductor in a through hole in the insulation layer and connected to the second semiconductor region; a second conductor above or within the insulation layer, the second conductor surrounding the first conductor such that an outside edge thereof is outside the second semiconductor region; a third conductor connecting the first and second conductors; and a fourth conductor connected to the first semiconductor layer.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: January 6, 2015
    Assignees: LAPIS Semiconductor Co., Ltd., RIKEN
    Inventors: Hiroki Kasai, Yasuo Arai, Takaki Hatsui
  • Patent number: 8796794
    Abstract: The present disclosure relates to the fabrication of spin transfer torque memory elements for non-volatile microelectronic memory devices. The spin transfer torque memory element may include a magnetic tunneling junction connected with specifically sized and/or shaped fixed magnetic layer that can be positioned in a specific location adjacent a free magnetic layer. The shaped fixed magnetic layer may concentrate current in the free magnetic layer, which may result in a reduction in the critical current needed to switch a bit cell in the spin transfer torque memory element.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Dmitri E. Nikonov, Robert S. Chau
  • Patent number: 8541852
    Abstract: A diaphragm for sensing sound pressure faces a back plate including a plate portion and a fixed electrode film to form a capacitance type acoustic sensor. The back plate is opened with acoustic holes for passing vibration, and is arranged with a plurality of stoppers in a projecting manner on a surface facing the diaphragm. The stopper arranged in an outer peripheral area of the back plate has a small diameter, and the stopper arranged in an internal area has a large diameter. Thus, sticking of the diaphragm is prevented, and the diaphragm is less likely to break by impact when the sensor is dropped.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: September 24, 2013
    Assignee: OMRON Corporation
    Inventor: Takashi Kasai
  • Patent number: 8541775
    Abstract: A schottky diode, a resistive memory device including the schottky diode and a method of manufacturing the same. The resistive memory device includes a semiconductor substrate including a word line, a schottky diode formed on the word line, and a storage layer formed on the schottky diode. The schottky diode includes a first semiconductor layer, a conductive layer formed on the first semiconductor layer and having a lower work function than the first semiconductor layer, and a second semiconductor layer formed on the to conductive layer.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 24, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seung Beom Baek, Young Ho Lee, Jin Ku Lee, Mi Ri Lee
  • Patent number: 8501573
    Abstract: An X-ray image sensor having scintillating material embedded into wave-guide structures fabricated in a CMOS image sensor (CIS). After the CIS has been fabricated, openings (deep pores) are formed in the back side of the CIS wafer. These openings terminate at a distance of about 1 to 5 microns below the upper silicon surface of the wafer. The depth of these openings can be controlled by stopping on a buried insulating layer, or by stopping on an epitaxial silicon layer having a distinctive doping concentration. The openings are aligned with corresponding photodiodes of the CIS. The openings may have a shape that narrows as approaching the photodiodes. A thin layer of a reflective material may be formed on the sidewalls of the openings, thereby improving the efficiency of the resulting waveguide structures. Scintillating material (e.g., CsI(Tl)) is introduced into the openings using a ForceFill™ technology or by mechanical pressing.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: August 6, 2013
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Amos Fenigstein, Avi Strum, Alexey Heiman, Doron Pardess
  • Patent number: 8492862
    Abstract: One object is to provide a deposition technique for forming an oxide semiconductor film. By forming an oxide semiconductor film using a sputtering target including a sintered body of a metal oxide whose concentration of hydrogen contained is low, for example, lower than 1×1016 atoms/cm3, the oxide semiconductor film contains a small amount of impurities such as a compound containing hydrogen typified by H2O or a hydrogen atom. In addition, this oxide semiconductor film is used as an active layer of a transistor.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 23, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Keiji Sato
  • Patent number: 8445982
    Abstract: A polysilicon structure and method of forming the polysilicon structure are disclosed, where the method includes a two-step deposition and planarization process. The disclosed process reduces the likelihood of defects such as voids, particularly where polysilicon is deposited in a trench having a high aspect ratio. A first polysilicon structure is deposited that includes a trench liner portion and a first upper portion. The trench liner portion only partially fills the trench, while the first upper portion extends over the adjacent field isolation structures. Next, at least a portion of the first upper portion of the first polysilicon structure is removed. A second polysilicon structure is then deposited that includes a trench plug portion and a second upper portion. The trench is filled by the plug portion, while the second upper portion extends over the adjacent field isolation structures. The second upper portion is then removed.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 21, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chin-Tsan Yeh, Chun-Fu Chen, Yung-Tai Hung, Chin-Ta Su
  • Patent number: 7999246
    Abstract: A semiconductor memory device includes a first resistance change element having a first portion and a second portion, the first portion and the second portion having a first space in a first direction, and a second resistance change element formed to have a distance to the first resistance change element in the first direction, and having a third portion and a fourth portion, the third portion and the fourth portion having a second space in the first direction, and the first space and the second space being shorter than the distance.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masayoshi Iwayama
  • Patent number: 7863704
    Abstract: A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in this invention allows to achieve mass production of photosensors without the use of wire bonding.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 4, 2011
    Assignee: Xerox Corporation
    Inventors: JengPing Lu, James B. Boyce, Kathleen Dore Boyce, legal representative
  • Patent number: 7863703
    Abstract: A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in this invention allows to achieve mass production of photosensors without the use of wire bonding.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: January 4, 2011
    Assignee: Xerox Corporation
    Inventors: JengPing Lu, James B. Boyce, Kathleen Dore Boyce, legal representative
  • Patent number: 7692258
    Abstract: A photosensitive device for enabling high speed detection of electromagnetic radiation. The device includes recessed electrodes for providing a generally homogeneous electric field in an active region. Carriers generated in the active region are detected using the recessed electrodes.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: April 6, 2010
    Assignee: Intel Corporation
    Inventors: Miriam R. Reshotko, Shaofeng Yu, Bruce A. Block
  • Patent number: 7687780
    Abstract: A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI2 or II-IV-V2 where the “I” component is from column 1A or 1B of the periodic table, the “II” component is from column 2B, the “III” component is from column 3A, the “IV” component is from column 4A, the “V” component is from column 5A, and the “VI” component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: March 30, 2010
    Assignees: Babcock & Wilcox Technical Services Y-12, LLC, Fisk University
    Inventors: Zane W. Bell, Arnold Burger
  • Patent number: 7679662
    Abstract: Disclosed herein is a solid-state imaging element which includes a plurality of drive signal inputs, a plurality of bus lines, and a plurality of vertical transfer register electrodes. In the solid-state imaging element, a charge accumulated in light-receiving elements in a pixel region is vertically transferred by the drive signals input to the electrodes. Each of the electrodes has a contact part connected to the second contact and having a width smaller than a width of the electrodes in the pixel region, and a blank region is formed between predetermined adjacent two of the contact parts so that a width of the blank region is larger than a distance between respective two of the contact parts other than the predetermined adjacent two of the contact parts. The first contact is disposed on the blank region.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: March 16, 2010
    Assignee: Sony Corporation
    Inventors: Sadamu Suizu, Masaaki Takayama
  • Patent number: 7312507
    Abstract: A dye-sensitized solar cell with high conversion efficiency is provided. The dye-sensitized solar cell according to the present invention has, between an electrode (2) formed on a surface of a transparent substrate (1) and a counter electrode (6), a light-absorbing layer (3) containing light-absorbing particles carrying dye and an electrolyte layer (5), characterized in that the light-absorbing layer (3) containing light-scattering particles (4) different in size from the light-absorbing particles. In such a dye-sensitized solar cell according to the present invention, the energy of light, which passes through a light-absorbing layer in a conventional cell structure, can be strongly absorbed by the dye in the light-absorbing layer of the present invention. This will increase the conversion efficiency and output current of the dye-sensitized solar cell.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: December 25, 2007
    Assignee: Sony Corporation
    Inventor: Takashi Tomita
  • Patent number: 7259381
    Abstract: The Grunn equation: Depth = 0.046 ? ? ( V acc ) n ? is modified to accurately predict depth of electron beam penetration into a target material. A two-layer stack is formed comprising a thickness of the target material overlying a detection material exhibiting greater sensitivity to the electron beam than the target material. The target material is exposed to electron beam radiation of different energies, with the threshold energy resulting in a changed physical property of the detection material below a predetermined value marking a penetration depth corresponding to the target material thickness. Utilizing the threshold energy (Vacc), the target material thickness (Depth), and the known target material density (?), the numerical power “n” of the Grunn equation is calculated to fit experimental results. So modified, the Grunn equation accurately predicts the depth of penetration of electron beams of varying energies into the target material.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: August 21, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Josephine J. Liu, Alexandros T. Demos, Hichem M'Saad
  • Patent number: 7045833
    Abstract: An avalanche photodiode including a multiplication layer is provided. The multiplication layer may include a well region and a barrier region. The well region may include a material having a higher carrier ionization probability than a material used to form the barrier region.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: May 16, 2006
    Assignee: Board of Regents, The University of Texas System
    Inventors: Joe C. Campbell, Ping Yuan
  • Patent number: 6903432
    Abstract: A photosensitive device for enabling high speed detection of electromagnetic radiation. The device includes recessed electrodes for providing a generally homogeneous electric field in an active region. Carriers generated in the active region are detected using the recessed electrodes.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: June 7, 2005
    Assignee: Intel Corporation
    Inventors: Miriam R. Reshotko, Shaofeng Yu, Bruce A. Block
  • Patent number: 6720206
    Abstract: A method for manufacturing a semiconductor package is disclosed. A wafer including a plurality of semiconductor chips is provided. Each chip has one or more mirrors mounted thereon. Further, a plurality of bond pads formed on a periphery of the chip. Next, a photoresist is formed over the one or more mirrors. Then, the semiconductor chips are singulated from the wafer. One ore more semiconductor chips are mounted on a base substrate. The bond pads of the semiconductor chip are electrically connected with the base substrate. The photoresist is then removed from the semiconductor chips.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: April 13, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-Kon Choi
  • Patent number: 6670657
    Abstract: An integrated circuit is provided that includes a substrate incorporating a semiconductor photodiode device having a p-n junction. The photodiode device includes at least one capacitive trench buried in the substrate and connected in parallel with the junction. In a preferred embodiment, the substrate is formed from silicon, and the capacitive trench includes an internal doped silicon region partially enveloped by an insulating wall that laterally separates the internal region from the substrate. Also provided is a method for fabricating an integrated circuit including a substrate that incorporates a semiconductor photodiode device having a p-n junction.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: December 30, 2003
    Assignee: STMicroelectronics S.A.
    Inventors: Olivier Menut, Yvon Gris
  • Patent number: 6627973
    Abstract: A method of eliminating voids in the interlayer dielectric material of 0.18-&mgr;m flash memory semiconductor devices and a semiconductor device formed by the method. The present invention provides a method for eliminating voids in the interlayer dielectric of a 0.18-&mgr;m flash memory semiconductor device by providing a first BPTEOS layer, using a very low deposition rate and having a thickness in a range of approximately 3 kÅ; and providing a second BPTEOS layer, using a standard deposition rate and having a thickness in a range of approximately 13 kÅ, wherein both layers have an atomic dopant concentration of approximately 4.5% B and approximately 5% P. This two-step deposition process completely eliminates voids in the ILD for a 0.5-&mgr;m distance (gate-to-gate) as well as 0.38-&mgr;m distance (gate-to-gate) which is the future flash technology.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: September 30, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Minh Van Ngo, Robert A. Huertas, Lu You, King Wai Kelwin Ko, Pei-Yuan Gao
  • Publication number: 20030137012
    Abstract: A higher-performance short channel MOS transistor with enhanced resistance to soft errors caused by exposure to high-energy rays is realized. At the time of forming a deep source/drain diffusion layer region at high density, an intermediate region of a density higher than that of impurity of a semiconductor substrate is formed between the source/drain diffusion layer and the semiconductor substrate of a conduction type opposite to that of the source/drain diffusion layer. The intermediate region is formed with a diffusion window for forming the source/drain, an intermediate layer of uniform concentration and uniform width can be realized at low cost.
    Type: Application
    Filed: November 26, 2002
    Publication date: July 24, 2003
    Inventors: Ken Yamaguchi, Yoshiaki Takemura, Kenichi Osada, Masatada Horiuchi, Takashi Uchino
  • Publication number: 20030062581
    Abstract: The invention is a diode having at least one trench in the semiconductor substrate and insulation configured on the surface of the semiconductor substrate so that the trench limits the depletion region of the diode and the area over which an electrode is in direct contact with the diffusion region of the diode is limited by the insulation. The diode has the advantage that the extent of the depletion region, and thus the area capacitance of the diode, and the size of the electrode are decoupled from one another. The lateral extent of the depletion region can be chosen independently of the size of the electrode.
    Type: Application
    Filed: October 15, 2002
    Publication date: April 3, 2003
    Inventors: Carsten Ahrens, Raimund Peichl, Reinhard Gabl
  • Patent number: 6525386
    Abstract: An optoelectronic component has a lens that is formed in the surface of an encapsulant surrounding a semiconductor diode element. With respect to emitters, the lens reduces internal reflection and reduces dispersion to increase overall efficiency. With respect to detectors, the lens focuses photons on the active area of the detector, increasing detector sensitivity, which allows a detector having a reduced size and reduced cost for a given application. The lens portion of the encapsulant is generally non-protruding from the surrounding portions of the encapsulant reducing contact surface pressure caused by the optoelectronic component. This non-protruding lens is particularly useful in pulse oximetry sensor applications. The lens is advantageously formed with a contoured-tip ejector pin incorporated into the encapsulant transfer mold, and the lens shape facilitates mold release.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: February 25, 2003
    Assignee: Masimo Corporation
    Inventors: Michael A. Mills, James P. Coffin, IV
  • Patent number: 6215164
    Abstract: An image pixel sensor array. The image pixel sensor array includes a substrate. An interconnect structure is formed adjacent to the substrate. A plurality of image pixel sensors are formed adjacent to the interconnect structure. Each image pixel sensor includes a pixel electrode, and an I-layer formed adjacent to the pixel electrode. The I-layer includes a first surface adjacent to the pixel electrode, and a second surface opposite the first surface. The first surface includes a first surface area which is less than a second surface area of the second surface. The image pixel sensor array further includes an insulating material between each image pixel sensor, and a transparent electrode formed over the image pixel sensors. The transparent electrode electrically connects the image pixel sensors and the interconnect structure.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: April 10, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Min Cao, Jeremy A Theil, Gary W Ray, Dietrich W Vook, Shawming Ma
  • Patent number: 6177710
    Abstract: A semiconductor waveguide type photo detector capable of preventing leak current from occurring and excellent in dark current characteristics, and a manufacturing method thereof are provided.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: January 23, 2001
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kazuaki Nishikata, Koji Hiraiwa
  • Patent number: 5808349
    Abstract: A strong magnetic field is applied to a photoconductive semiconductor switch to make the opening time of the switch independent of the recombination time of the photoionized semiconductor. As a result, the switch is capable of shaping current pulses with the fidelity of an illuminating optical pulse used to activate the switch. The strong magnetic field applied to the photoconductive semiconductor switch has a strength satisfying the relationship .mu.B>1, where .mu. is the mobility of the semiconductor (in m.sup.2 /Volt Sec) and B the magnetic field (in Tesla). Such a switch acts as an insulator (magnetic insulation) to an applied electric field except during the time that the light incident thereon generates electron-hole pairs. During that time, a polarization current, proportional to the externally induced pair production rate, flows and the magnetic insulation is broken. The minimal system response time is controlled by the gyrofrequency of the carriers.
    Type: Grant
    Filed: December 5, 1995
    Date of Patent: September 15, 1998
    Assignee: APTI Inc.
    Inventor: Konstantinos Papadopoulos