Antireflection Coating Patents (Class 257/437)
  • Publication number: 20130299886
    Abstract: BSI image sensors and methods. In an embodiment, a substrate is provided having a sensor array and a periphery region and having a front side and a back side surface; a bottom anti-reflective coating (BARC) is formed over the back side to a first thickness, over the sensor array region and the periphery region; forming a first dielectric layer over the BARC; a metal shield is formed; selectively removing the metal shield from over the sensor array region; selectively removing the first dielectric layer from over the sensor array region, wherein a portion of the first thickness of the BARC is also removed and a remainder of the first thickness of the BARC remains during the process of selectively removing the first dielectric layer; forming a second dielectric layer over the remainder of the BARC and over the metal shield; and forming a passivation layer over the second dielectric layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: November 14, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Keng-Yu Chou, Shuang-Ji Tsai, Min-Feng Kao
  • Patent number: 8569615
    Abstract: Provided are solar cells and methods of forming the same. The solar cell includes an anti-reflection layer on a substrate, a first electrode on the anti-reflection layer, a photo-electro conversion layer on the first electrode, and a second electrode on the photo-electro conversion layer.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mi Hee Jung, Mangu Kang
  • Patent number: 8569856
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 29, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Hsin-Chih Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes
  • Patent number: 8558335
    Abstract: A solid-state imaging device includes a photoelectric conversion unit that is formed on a semiconductor substrate, a reading unit that reads signal charges of the photoelectric conversion unit, a gate insulating film and an electrode disposed thereon that constitute the reading unit, a light shielding film that covers the electrode, and an antireflection film that is formed on the photoelectric conversion unit and is constituted by films of four or more layers. The film of the lower layer of the antireflection film is also used as a stopper film during patterning, and a gap between the end of the light shielding film and the semiconductor substrate which is defined by interposing a plurality of films of the lower layer of the antireflection film is set so as to be smaller than the thickness of the gate insulating film.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 15, 2013
    Assignee: Sony Corporation
    Inventor: Mitsuhiro Nagano
  • Publication number: 20130258154
    Abstract: A solid-state imaging element includes a light receiving unit formed on a semiconductor base, and an anti-reflection film formed on the light receiving unit. The anti-reflection film has a plurality of planar layers whose planar layer in an upper layer is narrower than the planar layer in a lower layer.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: SONY CORPORATION
    Inventors: Yoshiaki Masuda, Keita Hondo
  • Patent number: 8541860
    Abstract: Device and method for an antireflective coating to improve image quality in an image display system. A preferred embodiment comprises a first high refractive index layer overlying a reflective surface of an integrated circuit, a first low refractive index layer overlying the first high refractive index layer, a second high refractive index layer overlying the first low refractive index layer, and a second low refractive index layer overlying the second high refractive index layer. The alternating layers of high refractive index material and low refractive index material form an optical trap, allowing light to readily pass through in one direction, but not so easily in a reverse direction. The dual alternating layer topology improves the antireflective properties of the antireflective layer and permits a wide range of adjustments for manipulating reflectivity and color point.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: September 24, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Simon Joshua Jacobs, Duane Scott Dewald, Leigh A. Files, Terry A. Bartlett
  • Patent number: 8525217
    Abstract: A device for resin coating is used for producing an LED package including an LED element covered with resin containing phosphor. In a state in which a trial coating material 43 is located by a clamp unit 63, a trial coating of resin applied to the trial coating material 43 is irradiated with excitation light and light emitted from the phosphor contained in the resin is measured by an emission characteristic measuring unit 39. A deviation of the measurement result of the emission characteristic measuring unit from a prescribed emission characteristic is determined, and then a proper amount of resin to be applied to the LED element is derived for actual production based on the deviation.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Kentaro Nishiwaki, Tomonori Itoh, Masaru Nonomura
  • Patent number: 8513762
    Abstract: A backside illuminated imaging sensor includes a vertical stacked sensor that reduces cross talk by using different silicon layers to form photodiodes at separate levels within a stack (or separate stacks) to detect different colors. Blue light-, green light-, and red light-detection silicon layers are formed, with the blue light detection layer positioned closest to the backside of the sensor and the red light detection layer positioned farthest from the backside of the sensor. An anti-reflective coating (ARC) layer can be inserted in between the red and green light detection layers to reduce the optical cross talk captured by the red light detection layer. Amorphous polysilicon can be used to form the red light detection layer to boost the efficiency of detecting red light.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 20, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Hsin-Chih Tai, Duli Mao, Vincent Venezia, Howard E. Rhodes
  • Patent number: 8513587
    Abstract: An image sensor the image sensor comprising an absorption layer disposed on a silicon substrate, the absorption layer having at least one of SiGe or Ge, and an antireflection layer disposed directly thereon.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 20, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Jui Wang, Hsiao-Hui Tseng, Wei-Cheng Hsu, Dun-Nian Yaung, Jen-Cheng Liu
  • Patent number: 8482009
    Abstract: A method of forming a SOI substrate, diodes in the SOI substrate and electronic devices in the SOI substrate and an electronic device formed using the SOI substrate. The method of forming the SOI substrate includes forming an oxide layer on a silicon first substrate; ion-implanting hydrogen through the oxide layer into the first substrate, to form a fracture zone in the substrate; forming a doped dielectric bonding layer on a silicon second substrate; bonding a top surface of the bonding layer to a top surface of the oxide layer; thinning the first substrate by thermal cleaving of the first substrate along the fracture zone to form a silicon layer on the oxide layer to formed a bonded substrate; and heating the bonded substrate to drive dopant from the bonding layer into the second substrate to form a doped layer in the second substrate adjacent to the bonding layer.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Thomas Walter Dyer, Junedong Lee, Dominic J. Schepis
  • Patent number: 8476725
    Abstract: The present invention is a front-side contact, back-side illuminated (FSC-BSL) photodiode arrays and front-side illuminated, back-side contact (FSL-BSC) photodiode arrays having improved characteristics, including high production throughput, low-cost manufacturing via implementation of batch processing techniques; uniform, as well as high, photocurrent density owing to presence of a large continuous homogeneous, heavily doped layer; and back to front intrachip connections via the homogenous, heavily doped layers on the front and back sides of the substrate.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 2, 2013
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Publication number: 20130161777
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Application
    Filed: February 22, 2013
    Publication date: June 27, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International Business Machines Corporation
  • Patent number: 8471350
    Abstract: A very high transmittance, back-illuminated, silicon-on-thin sapphire-on-fused silica wafer substrate design is presented for enabling high quantum efficiency and high resolution, silicon or silicon-germanium avalanche photodiode detector arrays with improved indirect optical crosstalk suppression. The wafer substrate incorporates a stacked antireflective bilayer between the sapphire and silicon, comprised of single crystal aluminum nitride (AlN) and non-stoichiometric, silicon rich, amorphous silicon nitride (a-SiNX<1.33), as well as a one quarter wavelength, magnesium fluoride (?/4-MgF2) back-side antireflective layer which is bonded to a fused silica wafer. The fused silica provides mechanical support, allowing the sapphire to be thinned to optimal thickness below 50 ?m, for improved optical transmittance and in conjunction with monolithic sapphire microlenses, suppression of indirect optical crosstalk from multiple reflections of APD emitted light.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: June 25, 2013
    Inventor: Alvin Gabriel Stern
  • Patent number: 8471311
    Abstract: An anti-reflective image sensor and method of fabrication are provided, the sensor including a substrate; first color sensing pixels disposed in the substrate; second color sensing pixels disposed in the substrate; third color sensing pixels disposed in the substrate; a first layer disposed directly on the first, second and third color sensing pixels; a second layer disposed directly on the first layer overlying the first, second and third color sensing pixels; and a third layer disposed directly on portions of the second layer overlying at least one of the first or second color sensing pixels, wherein the first layer has a first refractive index, the second layer has a second refractive index greater than the first refractive index, and the third layer has a third refractive index greater than the second refractive index.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Ho Lee, Sang-Il Jung
  • Publication number: 20130134542
    Abstract: Provided is a semiconductor image sensor device that includes a non-scribe-line region and a scribe-line region. The image sensor device includes a first substrate portion disposed in the non-scribe-line region. The first substrate portion contains a doped radiation-sensing region. The image sensor device includes a second substrate portion disposed in the scribe-line region. The second substrate portion has the same material composition as the first substrate portion. Also provided is a method of fabricating an image sensor device. The method includes forming a plurality of radiation-sensing regions in a substrate. The radiation-sensing regions are formed in a non-scribe-line region of the image sensor device. The method includes forming an opening in a scribe-line region of the image sensor device by etching the substrate in the scribe-line region. A portion of the substrate remains in the scribe-line region after the etching. The method includes filling the opening with an organic material.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shou-Shu Lu, Hsun-Ying Huang, Hsin-Jung Huang, Chun-Mao Chiu, Chia-Chi Hsiao, Yung-Cheng Chang
  • Publication number: 20130113065
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Yin Qian, Hsin-Chih Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes
  • Publication number: 20130105928
    Abstract: A structure and method of manufacture is disclosed for a backside thinned imager that incorporates a conformal, Al2O3, low thermal budget, surface passivation. This passivation approach facilitates fabrication of backside thinned, backside illuminated, silicon image sensors with thick silicon absorber layer patterned with vertical trenches that are formed by etching the exposed back surface of a backside-thinned image sensor to control photo-carrier diffusion and optical crosstalk. A method of manufacture employing conformal, Al2O3, surface passivation approach is shown to provide high quantum efficiency and low dark current while meeting the thermal budget constraints of a finished standard foundry-produced CMOS imager.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 2, 2013
    Applicant: INTEVAC, INC.
    Inventors: Kenneth A. COSTELLO, Edward YIN, Michael Wayne PELCZYNSKI, Verle W. AEBI
  • Publication number: 20130105930
    Abstract: A semiconductor light detection device fabrication technique is provided in which the cap etch and anti-reflection coating steps are performed in a single, self-aligned lithography module.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicant: Solar Junction Corporation
    Inventors: Lan Zhang, Ewelina N. Lucow, Onur Fidaner, Michael W. Wiemer
  • Publication number: 20130099346
    Abstract: This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 25, 2013
    Applicant: The Regents of the University of California
    Inventor: The Regents of the University of California
  • Publication number: 20130065064
    Abstract: A low-index silica coating may be made by forming silica sol comprising a silane and/or a colloidal silica. The silica precursor may be deposited on a substrate (e.g., glass substrate) to form a coating layer. The coating layer may then be cured and/or fired using temperature(s) of from about 550 to 700° C. A capping layer composition comprising an antifog composition including a siloxane and/or hydrofluororether may be formed, deposited on the coating layer, then cured and/or fired to form a capping layer The capping layer improves the durability of the coating. The low-index silica based coating may be used as an antireflective (AR) film on a front glass substrate of a photovoltaic device (e.g., solar cell) or any other suitable application in certain example instances.
    Type: Application
    Filed: November 7, 2012
    Publication date: March 14, 2013
    Applicant: GUARDIAN INDUSTRIES CORP.
    Inventor: Guardian Industries Corp.
  • Patent number: 8395228
    Abstract: A method of improving the focus leveling response of a semiconductor wafer is described. The method includes combining organic and inorganic or metallic near infrared (NIR) hardmask on a semiconductor substrate; forming an anti-reflective coating (ARC) layer on the combined organic NIR-absorption and the inorganic or metallic NIR-absorption hardmask; and forming a photoresist layer on the ARC layer. A semiconductor structure is also described including a substrate, a resist layer located over the structure; and an absorptive layer located over the substrate. The absorptive layer includes an inorganic or metallic NIR-absorbing hardmask layer.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Wai-Kin Li, Wu-Song Huang, Dario Leonardo Goldfarb, Martin Glodde, Edward Engbrecht, Yiheng Xu
  • Publication number: 20130049154
    Abstract: An optoelectronic device including at least one of a solar device, a semiconductor device, and an electronic device. The device includes a semiconductor unit. A plurality of metal fingers is disposed on a surface of the semiconductor unit for electrical conduction. Each of the metal fingers includes a pad area for forming an electrical contact. The optoelectronic device includes a plurality of pad areas that is available for connection to a bus bar, wherein each of the metal fingers is connected to a corresponding pad area for forming an electrical contact.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventor: Andreas HEGEDUS
  • Patent number: 8384133
    Abstract: In a solid state imaging device, and a method of manufacture thereof, the efficiency of the transfer of available photons to the photo-receiving elements is increased beyond that which is currently available. Enhanced anti-reflection layer configurations, and methods of manufacture thereof, are provided that allow for such increased efficiency. They are applicable to contemporary imaging devices, such as charge-coupled devices (CCDs) and CMOS image sensors (CISs). In one embodiment, a photosensitive device is formed in a semiconductor substrate. The photosensitive device includes a photosensitive region. An anti-reflection layer comprising silicon oxynitride is formed on the photosensitive region. The silicon oxynitride layer is heat treated to increase a refractive index of the silicon oxynitride layer, and to thereby decrease reflectivity of incident light at the junction of the photosensitive region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang Rok Moon
  • Patent number: 8377733
    Abstract: The present disclosure provides an image sensor device that exhibits improved quantum efficiency. For example, a backside illuminated (BSI) image sensor device is provided that includes a substrate having a front surface and a back surface; a light sensing region disposed at the front surface of the substrate; and an antireflective layer disposed over the back surface of the substrate. The antireflective layer has an index of refraction greater than or equal to about 2.2 and an extinction coefficient less than or equal to about 0.05 when measured at a wavelength less than 700 nm.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hui Huang, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai, Dun-Nian Yaung, Jen-Cheng Liu
  • Patent number: 8373241
    Abstract: The invention includes new organic-containing compositions that can function as an antireflective layer for an overcoated photoresist. Compositions of the invention also can serve effectively as a hard mask layer by exhibiting a sufficient plasma etch selectivity from an undercoated layer. Preferred compositions of the invention have a high Si content and comprise a blend of distinct resins.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: February 12, 2013
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Dana A. Gronbeck, Amy M. Kwok, Chi Q. Truong, Michael K. Gallagher, Anthony Zampini
  • Patent number: 8361834
    Abstract: A method of forming an ohmic contact on a substrate is described. The method includes depositing a set of silicon particles on the substrate surface. The method also includes heating the substrate in a baking ambient to a baking temperature and for a baking time period in order to create a densified film ink pattern. The method further includes exposing the substrate to a dopant source in a diffusion furnace with a deposition ambient, the deposition ambient comprising POCl3, a carrier N2 gas, a main N2 gas, and a reactive O2 gas at a deposition temperature and for a deposition time period, wherein a PSG layer is formed on the substrate surface. The method also includes heating the substrate in a drive-in ambient to a drive-in temperature and for a drive-in time period; and depositing a silicon nitride layer. The method further includes depositing a set of metal contacts on the set of silicon particles; and heating the substrate to a firing temperature and for a firing time period.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: January 29, 2013
    Assignee: Innovalight, Inc.
    Inventors: Dmitry Poplavskyy, Malcolm Abbott
  • Patent number: 8355072
    Abstract: A solid-state image capture device includes: at least one photoelectric converter provided at an image capture surface of a substrate to receive incident light at a light-receiving surface of the photoelectric converter and photoelectrically convert the incident light to thereby generate signal charge; at least one on-chip lens provided at the image capture surface of the substrate and above the light-receiving surface of the photoelectric converter to focus the incident light onto the light-receiving surface; and an antireflection layer provided on an upper surface of the on-chip lens at the image capture surface of the substrate. The antireflection layer contains a binder resin having a lower refractive index than the on-chip lens and low-refractive-index particles having a lower refractive index than the binder resin.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: January 15, 2013
    Assignee: Sony Corporation
    Inventors: Akiko Ogino, Yukihiro Sayama, Takayuki Shoya, Masaya Shimoji, Yoshikazu Tanaka
  • Publication number: 20130009129
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Inventors: Edward Sargent, Jason Clifford, Gerasimos Kanstantatos, Ian Howard, Ethan J.D. Klem, Larissa Levina
  • Patent number: 8350350
    Abstract: In an infrared sensor (1) having a bolometer element (11) and a reference element (21), the reference element (21) comprises a bolometer film (22), a substrate-side insulating film (31) formed on the substrate-side surface of the bolometer film (22), a heat dissipation film (23) made of amorphous silicon formed on the substrate-side surface of the bolometer film (22) with the substrate-side insulating film (31) interposed therebetween, and a plurality of heat dissipation columns (25) made of amorphous silicon thermally connected to the heat dissipation film (23) and a substrate (10), while the bolometer film (22) and substrate-side insulating film (31) are formed such as to extend over a side face of the heat dissipation film (23) intersecting a surface of the substrate (10). Thus configured infrared sensor (1) can efficiently reduce the influence of temperature changes in the environment in use, while being made smaller.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: January 8, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Jun Suzuki, Fumikazu Ojima, Ryusuke Kitaura
  • Patent number: 8344396
    Abstract: A anti-reflection film includes a light phase delay film which changes a phase of incident light, a polarizing film on the light phase delay film and transmitting light with a polarization component in a particular direction, and a protective film on the polarizing film and protecting the polarizing film. All of the polarizing film, the light phase delay film, and the protective film include flexible materials.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 1, 2013
    Assignees: Samsung Electronics Co., Ltd., Samsung Display Co., Ltd.
    Inventors: Hong-shik Shim, In-seo Kee, Hyuk-jun Kwon
  • Patent number: 8338901
    Abstract: Certain embodiments provide a solid-state imaging device including: a photoelectric converting unit that includes a semiconductor layer of a second conductivity type provided on a semiconductor substrate of a first conductivity type, converts incident light entering a first surface of the semiconductor substrate into signal charges, and stores the signal charges; a readout circuit that reads the signal charges stored by the photoelectric converting unit; an antireflection structure that is provided on the first surface of the semiconductor substrate to cover the semiconductor layer of the photoelectric converting unit, includes a fixed charge film that retains fixed charges being non-signal charges, and prevents reflection of the incident light; and a hole storage region that is provided between the photoelectric converting unit and the antireflection structure, and stores holes being non-signal charges.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: December 25, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Risako Ueno, Kazuhiro Suzuki, Hideyuki Funaki, Yoshinori Iida, Tatsuo Shimizu, Masamichi Suzuki
  • Patent number: 8330243
    Abstract: A semiconductor light-detecting element includes: a semiconductor substrate of a first conductivity type having a band gap energy, a first principal surface, and a second principal surface opposed to the first principal surface; a first semiconductor layer of the first conductivity type on the first principal surface and having a band gap energy smaller than the band gap energy of the semiconductor substrate; a second semiconductor layer of the first conductivity type on the first semiconductor layer; an area of a second conductivity type on a part of the second semiconductor layer; a first electrode connected to the second semiconductor layer; a second electrode connected to the area; and a low-reflection film on the second principal surface. The second principal surface is a light-detecting surface detecting incident light, and no substance or structure having a higher reflection factor, with respect to the incident light, than the low-reflection film, is located on the second principal surface.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 11, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Matobu Kikuchi
  • Publication number: 20120299143
    Abstract: A very high transmittance, back-illuminated, silicon-on-thin sapphire-on-fused silica wafer substrate design is presented for enabling high quantum efficiency and high resolution, silicon or silicon-germanium avalanche photodiode detector arrays with improved indirect optical crosstalk suppression. The wafer substrate incorporates a stacked antireflective bilayer between the sapphire and silicon, comprised of single crystal aluminum nitride (AlN) and non-stoichiometric, silicon rich, amorphous silicon nitride (a-SiNX<1.33), as well as a one quarter wavelength, magnesium fluoride (?/4-MgF2) back-side antireflective layer which is bonded to a fused silica wafer. The fused silica provides mechanical support, allowing the sapphire to be thinned to optimal thickness below 50 ?m, for improved optical transmittance and in conjunction with monolithic sapphire microlenses, suppression of indirect optical crosstalk from multiple reflections of APD emitted light.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Inventor: Alvin Gabriel Stern
  • Patent number: 8288176
    Abstract: The disclosure relates to a method of aligning a set of patterns on a substrate, which includes depositing on the substrate's surface a set of silicon nanoparticles, which includes a set of ligand molecules including a set of carbon atoms. The method involves forming a first set of regions where the nanoparticles are deposited, while the remaining portions of the substrate surface define a second set of regions. The method also includes densifying the set of nanoparticles into a thin film to form a set of silicon-organic zones on the substrate's surface, wherein the first and the second set of regions have respectively first and second reflectivity values, such that the ratio of the second reflectivity value to the first reflectivity value is greater than about 1.1.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 16, 2012
    Assignee: Innovalight, Inc.
    Inventors: Andreas Meisel, Michael Burrows, Homer Antoniadis
  • Publication number: 20120241895
    Abstract: Disclosed herein is a solid-state imaging device including: an opto-electrical conversion section provided inside a semiconductor substrate to receive incident light coming from one surface of the semiconductor substrate; a wiring layer provided on the other surface of the semiconductor substrate; and a light absorption layer provided between the other surface of the semiconductor substrate and the wiring layer to absorb transmitted light passing through the opto-electrical conversion section as part of the incident light.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 27, 2012
    Applicant: Sony Corporation
    Inventor: Syogo Kurogi
  • Patent number: 8274122
    Abstract: A photoelectric conversion device comprises a plurality of photoelectric conversion units, a first antireflection portion including a first insulation film which has a first refractive index and a second insulation film which has a second refractive index, and a second antireflection portion including an element isolation portion which includes an insulator having a third refractive index and a third insulation film which has the second refractive index, wherein the first antireflection portion reduces reflection of light entering the photoelectric conversion unit in the photoelectric conversion unit, and the second antireflection portion reduces reflection of light entering the element isolation portion in the element isolation portion.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: September 25, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Mineo Shimotsusa
  • Patent number: 8263489
    Abstract: A method for the deposition of an anti-reflection film on a substrate is disclosed. A substrate including a plurality of solar cell structures is provided and placed in a vacuum chamber with a target including silicon. A flow of a nitrogen-containing reactive gas into the vacuum chamber is set to a first value while a voltage between the target and ground is switched off and then increased to a second value. A voltage is applied between the target and ground, whereby a film of silicon and nitrogen is deposited on the substrate in a flow of the nitrogen-containing reactive gas which is higher than the first value.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 11, 2012
    Assignee: OC Oerlikon Balzers AG
    Inventors: Oliver Rattunde, Stephan Voser
  • Patent number: 8247881
    Abstract: A device that includes a signal generating unit having a surface that can receive photons, a first metal structure located on the surface of the signal generating unit, and a second metal structure located on the surface of the signal generating unit. The second metal structure being spaced apart from the first metal structure.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: August 21, 2012
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Doyeol Ahn
  • Patent number: 8237237
    Abstract: A solid-state imaging device includes a light-receiving portion, which serves as a pixel, and a waveguide, which is disposed at a location in accordance with the light-receiving portion and which includes a clad layer and a core layer embedded having a refractive index distribution in the wave-guiding direction.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 7, 2012
    Assignee: Sony Corporation
    Inventors: Hiromi Wano, Takamasa Tanikuni, Shinichi Yoshida
  • Patent number: 8222708
    Abstract: An image sensor and a method of fabricating the same are provided. A pad region is disposed on a substrate. The pad region has a higher concentration of impurity ions than the substrate. The pad region is selectively removed using the substrate as an etch mask, thereby forming a hole. A conductive pad is formed in the hole of the substrate.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yun-Ki Lee
  • Publication number: 20120175636
    Abstract: According to example embodiments, a photodiode system may include a substrate, and at least one photodiode in the substrate, and a wideband gap material layer on a first surface of the substrate. The at least one photodiode may be between an insulating material in a horizontal plane. According to example embodiments, a back-side-illumination (BSI) CMOS image sensor and/or a solar cell may include a photodiode device. The photodiode device may include a substrate, at least one photodiode in the substrate, a wide bandgap material layer on a first surface of the substrate, and an anti-reflective layer (ARL) on the wide bandgap material layer.
    Type: Application
    Filed: November 21, 2011
    Publication date: July 12, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Hisanori Ihara
  • Publication number: 20120168891
    Abstract: High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.
    Type: Application
    Filed: October 25, 2011
    Publication date: July 5, 2012
    Applicant: California Institute of Technology
    Inventors: Frank Greer, Todd J. Jones, Shouleh Nikzad, Michael E. Hoenk
  • Patent number: 8212250
    Abstract: The absorption coefficient of silicon for infrared light is very low and most solar cells absorb very little of the infrared light energy in sunlight. Very thick cells of crystalline silicon can be used to increase the absorption of infrared light energy but the cost of thick crystalline cells is prohibitive. The present invention relates to the use of less expensive microcrystalline silicon solar cells and the use of backside texturing with diffusive scattering to give a very large increase in the absorption of infrared light. Backside texturing comprises a plurality of cusped features providing diffusive scattering. Constructing the solar cell with a smooth front surface results in multiple internal reflections, light trapping, and a large enhancement of the absorption of infrared solar energy.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: July 3, 2012
    Inventor: Leonard Forbes
  • Publication number: 20120153419
    Abstract: A semiconductor device, which is configured as a backside illuminated solid-state imaging device, includes a stacked semiconductor chip which is formed by bonding two or more semiconductor chip units to each other and in which, at least, a pixel array and a multi-layer wiring layer are formed in a first semiconductor chip unit and a logic circuit and a multi-layer wiring layer are formed in a second semiconductor chip unit; a semiconductor-removed region in which a semiconductor section of a part of the first semiconductor chip unit is completely removed; and a plurality of connection wirings which is formed in the semiconductor-removed region and connects the first and second semiconductor chip units to each other.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 21, 2012
    Applicant: SONY CORPORATION
    Inventors: Kazuichiroh Itonaga, Machiko Horiike
  • Patent number: 8198120
    Abstract: An optical article and method of making the same are provided. The optical article has optical multi-aperture operation. The optical article has one or more electrically conductive and selectively passivated patterns.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: June 12, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Jitendra S. Goela, Michael A. Pickering, Neil D. Brown, Angelo Chirafisi, Mark Lefebvre, Jamie L. Triba
  • Patent number: 8193599
    Abstract: A fabricating method includes adhering an exposed surface of a first solid adhesive film to a first substrate. The second surface of the first solid adhesive film is exposed and adhered to a second substrate. A third substrate is adhered to a second substrate via a patterned second solid adhesive film, and a diaphragm layer is adhered to the third substrate via a patterned third solid adhesive film. A fourth solid adhesive film with a removable release film is adhered to the first substrate covered, followed by slicing to form wafer level lens modules.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 5, 2012
    Assignee: Himax Semiconductor, Inc.
    Inventors: Hsin-Chang Hsiung, Chih-Wei Tan, Po-Lin Su
  • Patent number: 8188561
    Abstract: An integrated vacuum package having an added volume on a perimeter within the perimeter of a bonding seal between two wafers. The added volume of space may be an etching of material from the inside surface of the top wafer. This wafer may have vent holes that may be sealed to maintain a vacuum within the volume between the two wafers after the pump out of gas and air. The inside surface of the top wafer may have an anti-reflective pattern. Also, an anti-reflective pattern may be on the outside surface of the top wafer. The seal between the two wafers may be ring-like and have a spacer material. Also, it may have a malleable material such as solder to compensate for any flatness variation between the two facing surfaces of the wafers.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 29, 2012
    Assignee: Honeywell International Inc.
    Inventors: Robert E. Higashi, Karen M. Newstrom-Peitso, Jeffrey A. Ridley
  • Publication number: 20120120294
    Abstract: An solid-state imaging device includes a pixel region formed on a semiconductor substrate, an effective pixel region and a shielded optical black region in the pixel region, a multilayer wiring layer formed on a surface of the side opposite to a light incident side of the semiconductor substrate, a supporting substrate bonded to a surface of the multilayer wiring layer side, and an antireflection structure that is formed on the bonding surface side of the supporting substrate.
    Type: Application
    Filed: October 19, 2011
    Publication date: May 17, 2012
    Applicant: Sony Corporation
    Inventors: Kenju Nishikido, Kazunori Nagahata
  • Publication number: 20120112302
    Abstract: A method of improving the focus leveling response of a semiconductor wafer is described. The method includes combining organic and inorganic or metallic near infrared (NIR) hardmask on a semiconductor substrate; forming an anti-reflective coating (ARC) layer on the combined organic NIR-absorption and the inorganic or metallic NIR-absorption hardmask; and forming a photoresist layer on the ARC layer. A semiconductor structure is also described including a substrate, a resist layer located over the structure; and an absorptive layer located over the substrate. The absorptive layer includes an inorganic or metallic NIR-absorbing hardmask layer.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wai-Kin Li, Wu-Song Huang, Dario Leonardo Goldfarb, Martin Glodde, Edward Engbrecht, Yiheng Xu
  • Publication number: 20120104531
    Abstract: Provided are an avalanche photodiode and a method of fabricating the same. The method of fabricating the avalanche photodiode includes sequentially forming a compound semiconductor absorption layer, a compound semiconductor grading layer, a charge sheet layer, a compound semiconductor amplification layer, a selective wet etch layer, and a p-type conductive layer on an n-type substrate through a metal organic chemical vapor deposition process.
    Type: Application
    Filed: July 27, 2011
    Publication date: May 3, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Mi-Ran PARK, O-Kyun Kwon