High Power Or High Voltage Device Extends Completely Through Semiconductor Substrate (e.g., Backside Collector Contact) Patents (Class 257/502)
  • Patent number: 7319264
    Abstract: A semiconductor device has a structure capable of connecting a lead terminal directly to an electrode on a front surface thereof. The semiconductor device includes a first main electrode provided on the front surface, a second main electrode provided on a back surface, and a metal film provided so as to cover at least a portion of a surface of the first main electrode and for soldering the lead terminal thereto. Here, the metal film includes a plurality of opening portions through which the surface of the first main electrode is exposed.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: January 15, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Atsushi Narazaki
  • Patent number: 7309622
    Abstract: An integrated circuit package system includes providing a substrate. An integrated circuit is attached to the substrate. A plurality of support bars is formed on the substrate. A plurality of adhesive structures is formed. A heat sink is attached to the plurality of adhesive structures. The integrated circuit is encapsulated. The support bars are removed.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: December 18, 2007
    Assignee: Stats Chippac Ltd.
    Inventors: Minseok Kim, Tae Keun Lee
  • Patent number: 7291894
    Abstract: In accordance with an embodiment of the present invention, a MOSFET includes at least two insulation-filled trench regions laterally spaced in a first semiconductor region to form a drift region therebetween, and at least one resistive element located along an outer periphery of each of the two insulation-filled trench regions. A ratio of a width of each of the insulation-filled trench regions to a width of the drift region is adjusted so that an output capacitance of the MOSFET is minimized.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: November 6, 2007
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Peter H. Wilson
  • Patent number: 7253492
    Abstract: A semiconductor device may comprise a semiconductor substrate having a top and a bottom surface, first and second insulating layer deposited on the top surface of the substrate, a runner arranged on top of the second insulator layer, a backside metal layer deposited on the bottom surface of the substrate, a first via structure extending from the bottom surface of the substrate to the top of the first insulating layer between the backside layer and the runner, and a second via extending from the top of the first insulating layer to the top of the second insulating layer between the first via and the runner.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 7, 2007
    Assignee: Infineon Technologies AG
    Inventors: Gordon Ma, Carsten Ahrens
  • Patent number: 7244993
    Abstract: A driving circuit and a data-line driver is provided which are capable of improving the tolerance to noise between adjacent terminals by using a conventional CMOS process while keeping the chip size small, because a high-density N-diffusion layer (116) is provided in an isolation region (115) to minimize a collector current of a parasitic NPN transistor (102).
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: July 17, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mamoru Seike, Yukihiro Inoue
  • Patent number: 7230314
    Abstract: A semiconductor device having an active region is formed in a layer provided on a semiconductor substrate. At least a portion of the semiconductor substrate below at least a portion of the active region is removed such that the portion of the active region is provided in a membrane defined by that portion of the layer below which the semiconductor substrate has been removed. A heat conducting and electrically insulating layer is applied to the bottom surface of the membrane. The heat conducting and electrically insulating layer has a thermal conductivity that is higher than the thermal conductivity of the membrane so that the heat conducting and electrically insulating layer allows heat to pass from the active region into the heat conducting and electrically insulating layer during normal operation of the device.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: June 12, 2007
    Assignee: Cambridge Semiconductor Limited
    Inventors: Florin Udrea, Gehan A. J. Amaratunga
  • Patent number: 7221034
    Abstract: A semiconductor device may comprise a semiconductor substrate having a top and a bottom surface, first and second insulating layer deposited on the top surface of the substrate, a runner arranged on top of the second insulator layer, a backside metal layer deposited on the bottom surface of the substrate, a first via structure extending from the bottom surface of the substrate to the top of the first insulating layer between the backside layer and the runner, and a second via extending from the top of the first insulating layer to the top of the second insulating layer between the first via and the runner.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: May 22, 2007
    Assignee: Infineon Technologies AG
    Inventors: Gordon Ma, Carsten Ahrens
  • Patent number: 7196393
    Abstract: A drain diffusion layer 11b includes a low impurity concentration region 5a and a high impurity concentration region 5b, and the low impurity concentration region 5a is located on the channel region side. An impurity layer 7 having an opposite conductivity type to the drain diffusion layer 11b is formed in the channel region, at a position away from the low impurity concentration region 5a by a distance T. Alternatively, the low impurity concentration region 5a and the impurity layer 7 are located so as to contact each other. Still alternatively, a border impurity layer is provided between the low impurity concentration region 5a and the impurity layer 7. Thus, a semiconductor device including a high voltage transistor capable of suppressing the reduction of the electric current driving capability and performing stable driving, and a method for fabricating the same, can be provided.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 27, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuhiro Suzuki, Minoru Morinaga, Yukihiro Inoue
  • Patent number: 7192810
    Abstract: An electronic component and a method for making an electronic component are disclosed. The electronic component has a silicon package. The silicon package has a recess formed thereon in which a conductive region is placed. A bare die electronic device is disposed in the recess. The device has a top, a bottom, sides and a plurality of terminals, including a non-top terminal. The non-top terminal is electrically coupled to the conductive region. The electronic component is constructed by first creating a recess in a silicon wafer to a depth substantially equal to the first dimension of the bare die electronic device. A conductive material is applied to the recess. The electronic device is inserted into the recess so that the bottom terminal is coupled to the conductive material. A dielectric or other planarizing material is applied into the recess. Top and bottom contacts are then applied to form the electronic component so that it may be used as a ball grid array package.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: March 20, 2007
    Assignee: Skyworks Solutions, Inc.
    Inventor: Behnam Tabrizi
  • Patent number: 7176578
    Abstract: The present invention comprises a processed thin film substrate (10) and a method therefore, in order to produce a flexible printed circuit card, having a plurality of microvias going or passing through the thin film substrate and electrically connected along faced-away surfaces, in order to form an electric circuit. A first a number of real nano-tracks are filled with a first material (M1), having good electric properties, for the formation of a first number of, here denominated, first vias (V10, V30, V 50), that a second number of real nano-tracks are filled with a second material (M2), having good electric properties, for the formation of a second number of, here denominated, second vias (V20, V40, V60). The first material (M1) and the second material (M2) of said first and second vias (V10–V60) are chosen having mutually different thermoelectric properties.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: February 13, 2007
    Assignee: Senseair AB
    Inventors: Hans Evald Goran Martin, Klas Anders Hjort, Mikael Peter Erik Lindberg
  • Patent number: 7170109
    Abstract: A technique enabling to improve element isolation characteristic of a semiconductor device is provided. An element isolation structure is provided in a semiconductor substrate in which a silicon layer, a compound semiconductor layer and a semiconductor layer are laminated in this order. The element isolation structure is composed of a trench, a semiconductor film, and first and second insulating films. The trench extends through the semiconductor layer and extends to the inside of the compound semiconductor layer. The semiconductor film is provided on the surface of the trench, and the first insulating film is provided on the semiconductor film. The second insulting film is provided on the first insulating film and fills the trench.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: January 30, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Kohei Sugihara, Kazunobu Ota, Hidekazu Oda, Takahashi Hayashi
  • Patent number: 7154168
    Abstract: A chip device that includes a leadframe, a die and a mold compound. The backside of the die is metallized and exposed through a window defined within a mold compound that encapsulates the die when it is coupled to the leadframe. Leads on the leadframe are coupled to source and gate terminals on the die while the metallized backside of the die serves as the drain terminals.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: December 26, 2006
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Rajeev Joshi, Consuelo N. Tangpuz, Romel N. Manatad
  • Patent number: 7126173
    Abstract: An electronic power device of improved structure is fabricated with MOS technology to have a gate finger region and corresponding source regions on either sides of the gate region. This device has a first-level metal layer arranged to independently contact the gate region and source regions, and has a protective passivation layer arranged to cover the gate region. Advantageously, a wettable metal layer, deposited onto the passivation layer and the first-level metal layer, overlies said source regions. In this way, the additional wettable metal layer is made to act as a second-level metal.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: October 24, 2006
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Ferruccio Frisina, Antonio Pinto, Angelo Magri
  • Patent number: 7115973
    Abstract: A dual-sided semiconductor device is formed on a wafer with a resistive element that is formed through the wafer. By forming the resistive element through the wafer, a resistive element, such as a large resistive element, can be formed on the wafer that requires very little silicon surface area.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: October 3, 2006
    Assignee: National Semiconductor Corporation
    Inventor: Abdalla Aly Naem
  • Patent number: 7067870
    Abstract: A semiconductor element of this invention includes a drift layer of a first conductivity type formed on a semiconductor substrate of the first conductivity type, a well layer of a second conductivity type selectively formed in the surface of the drift layer, a source layer of the first conductivity type selectively formed in the surface of the well layer, a trench formed to reach at least the inside of the drift layer from the surface of the source layer through the well layer, a buried electrode formed in the trench through a first insulating film, and a control electrode formed on the drift layer, the well layer, and the source layer through a second insulating film.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: June 27, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Wataru Saito, Tsuneo Ogura, Hiromichi Ohashi, Yoshihiko Saito, Kenichi Tokano
  • Patent number: 7030426
    Abstract: In a power semiconductor component produced in a planar technique, a near-surface structure having at least one depression is formed in a surface region of an edge termination adjacent a main surface of the semiconductor body. The structure lies inside a space charge region formed when a voltage is applied at a junction between semiconductor regions of opposite conduction type. Dielectric material may fill the depression and form a passivation layer on the surface region. The depression may be an annular trench having a width to depth ratio ?1. Alternatively, the structure may be waffle-shaped with multiple depressions.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: April 18, 2006
    Assignee: IXYS Semiconductor GmbH
    Inventor: Arno Neidig
  • Patent number: 7019358
    Abstract: A semiconductor device includes a substrate layer having a first dopant density, an epitaxial layer comprising a second dopant density formed on the substrate layer and a semiconductor switch formed on the epitaxial layer, wherein the semiconductor switch comprises an active region of the semiconductor device. A first thickness of the epitaxial layer in the active region is less than a second thickness of the epitaxial layer in a termination region formed peripherally to the active region. The increased thickness of the epitaxial layer in the termination region enables the semiconductor device to have a relatively higher breakdown voltage without increasing the on-resistance of the semiconductor switch.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 28, 2006
    Assignee: Clare, Inc.
    Inventor: Michael Amato
  • Patent number: 7015561
    Abstract: A switching circuit has an active switch, a controller, and at least two terminals. The at least two terminals include two current control terminals for connection at two locations in another circuit. The controller is configured to turn the active switch off to block current between the two locations when the voltage between the two locations is of a first polarity and otherwise to turn the active switch on to conduct current between the two locations, whether or not the two current control terminals are the only ones of the at least two terminals that are connected to the other circuit.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: March 21, 2006
    Assignee: VLT, Inc.
    Inventors: John Saxelby, Jay Prager, Patrizio Vinciarelli, Estia Eichten
  • Patent number: 7015562
    Abstract: A high-voltage diode has a dopant concentration of an anode region and a cathode region optimized in terms of basic functions static blocking and conductivity. Dopant concentrations range from 1×1017 to 3×1018 dopant atoms per cm3 for the anode emitter, especially on its surface 1019 dopant atoms per cm3 or more for the cathode emitter and approximately 1016 dopant atoms per cm3 for the blocking function of an anode-side zone.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: March 21, 2006
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Alfred Porst
  • Patent number: 7002210
    Abstract: On a semiconductor substrate, a well is formed. In the well, one MOS transistor including a gate electrode, a source region, a source field limiting layer and a source/drain region, and another MOS transistor including a gate electrode, a drain electrode, a drain field limiting layer and a source/drain region are formed. The one and another MOS transistors are connected in series through the source/drain region common to the two transistors. Accordingly, a semiconductor device can be provided in which increase in pattern layout area is suppressed when elements including a high-breakdown voltage MOS transistor are to be connected in series.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: February 21, 2006
    Assignee: Renesas Technology Corp.
    Inventor: Masatoshi Taya
  • Patent number: 6979863
    Abstract: Silicon carbide semiconductor devices and methods of fabricating silicon carbide semiconductor devices have a silicon carbide DMOSFET and an integral silicon carbide Schottky diode configured to at least partially bypass a built in diode of the DMOSFET. The Schottky diode may be a junction barrier Schottky diode and may have a turn-on voltage lower than a turn-on voltage of a built-in body diode of the DMOSFET. The Schottky diode may have an active area less than an active area of the DMOSFET.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: December 27, 2005
    Assignee: Cree, Inc.
    Inventor: Sei-Hyung Ryu
  • Patent number: 6940144
    Abstract: Semiconductor equipment includes a semiconductor substrate with a semiconductor layer embedded therein and a vertical type transistor. The substrate has a principal side, a rear side opposite to the principal side, and a trench disposed in the rear side of the substrate. The vertical type transistor has a first electrode disposed in the principal side of the substrate, a second electrode disposed in the rear side, and a diffusion region disposed in the principal side. The first electrode connects to the diffusion region through an interlayer insulation film. The second electrode is disposed in the trench and connects to the semiconductor layer exposed in the trench. This vertical transistor has a low ON-state resistance.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: September 6, 2005
    Assignee: Denso Corporation
    Inventor: Yoshiaki Nakayama
  • Patent number: 6936908
    Abstract: A power device includes a gate electrode, a source electrode, and a drain electrode provided within an active region of a semiconductor substrate of first conductivity type. A vertical diffusion region of second conductivity is provided at a periphery the active region. The vertical diffusion region extends continuously from a top surface of the substrate to a bottom surface of the substrate. The vertical diffusion region includes an upper portion having a first depth and a lower portion having a second depth that is substantially greater than the first depth.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: August 30, 2005
    Assignee: IXYS Corporation
    Inventors: Ulrich Kelberlau, Peter Ingram, Nathan Zommer
  • Patent number: 6917091
    Abstract: A high power semiconductor device including gate electrodes also includes an active region of an approximately rectangular shape, located on a semiconductor substrate; a drain electrode located on the active region; and first and second source electrodes which are disposed on opposite sides to the drain electrode so that the first and second source electrodes face each other across at least some of the gate electrodes. The directions of currents carried by the first and second source electrodes are opposite to each other.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: July 12, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Akira Inoue, Seiki Gotou
  • Patent number: 6914321
    Abstract: It is an object to provide a semiconductor device having an improved heat dissipation characteristic. A power element is mounted on and jointed and to a metal block through a jointing material. An insulating substrate includes a ceramic substrate and metal layers formed on both surfaces of the ceramic substrate and having thicknesses equal to each other. The metal block and the insulating substrate are provided per insulation unit of the power element. The metal layer of the insulating substrate is joined to a surface of the metal block through a jointing material opposite to a surface thereof for forming the power element. An electrode terminal is attached to a surface of the metal block having a power element joined thereto through ultrasonic junction and the like. Electrode terminals are connected to electrodes of the power element through aluminum wires.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: July 5, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Toshiaki Shinohara
  • Patent number: 6903434
    Abstract: A system for and a method of integrating SRAM cells and flash EPROM cells onto a single silicon substrate includes an area on the silicon substrate where a local oxidation of silicon (LOCOS) isolation technique is implemented and another area on the same silicon substrate where a shallow trench isolation (STI) technique is implemented. Further, this system and method also include flash EPROM cells implemented within the area of the substrate utilizing the LOCOS isolation technique and SRAM cells implemented within the area of the substrate utilizing the STI technique. Preferably, the LOCOS isolation technique is first implemented to define a flash area of the silicon substrate on which the flash EPROM cell is implemented. Before the LOCOS isolation technique is implemented, an SRAM area is masked.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: June 7, 2005
    Assignee: Alliance Semiconductors
    Inventor: Ritu Shrivastava
  • Patent number: 6888211
    Abstract: A high-voltage diode has a dopant concentration of an anode region and a cathode region optimized in terms of basic functions static blocking and conductivity. Dopant concentrations range from 1×1017 to 3×1018 dopant atoms per cm3 for the anode emitter, especially on its surface 1019 dopant atoms per cm3 or more for the cathode emitter and approximately 1016 dopant atoms per cm3 for the blocking function of an anode-side zone.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: May 3, 2005
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Alfred Porst
  • Patent number: 6882024
    Abstract: A dummy active region is formed in which abrading processes are averaged. A semiconductor device is characterized in that an active region for forming an actual device, a device separation region being formed by a trench, and a dummy active region formed substantially in a rectangular shape are included, and the length of the short side of the dummy active region is less than 1 ?m.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: April 19, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Kenji Sawamura
  • Patent number: 6858869
    Abstract: An ultraviolet type white color light emitting device (Q) including a 340 nm-400 nm ultraviolet InGaN-LED, a first fluorescence plate of ZnS doped with more than 1×1017 cm?3 Al, In, Ga, Cl, Br or I for absorbing ultraviolet rays and producing blue light (fluorescence), a second fluorescence plate of ZnSSe or ZnSe doped with more than 1×1017 cm?3 Al, In, Ga, Cl, Br or I for absorbing the blue light, producing yellow light (fluorescence) and synthesizing white color light by mixing the yellow light with the blue light. A blue light type white color light emitting device (R) including a 410 nm-470 nm blue light InGaN-LED, a fluorescence plate of ZnSxSe1-x (untreated 0.2?x?0.6; heat-treated 0.3?x?0.67) doped with more than 1×1017 cm?3 Al, In, Ga, Cl, Br or I for absorbing the blue light, producing 568 nm-580 nm yellow light (fluorescence) and synthesizing white color light by mixing the yellow light with the blue LED light.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: February 22, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Shinsuke Fujiwara
  • Patent number: 6831338
    Abstract: A power component formed in an N-type silicon substrate delimited by a P-type wall, having a lower surface including a first P-type region connected to the wall, and an upper surface including a second P-type region, a conductive layer extending above the substrate between the second region and the wall. The component includes a third N-type region of high doping level formed in the substrate under the portion of the layer substantially halfway between the external periphery of the second region and the internal periphery of the wall. This third region is contacted by a field plate extending on either side of the third region in the direction of the wall and of the third region.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: December 14, 2004
    Assignee: STMicroelectronics S.A.
    Inventor: Mathieu Roy
  • Publication number: 20040222484
    Abstract: A switching circuit has an active switch, a controller, and at least two terminals. The at least two terminals include two current control terminals for connection at two locations in another circuit. The controller is configured to turn the active switch off to block current between the two locations when the voltage between the two locations is of a first polarity and otherwise to turn the active switch on to conduct current between the two locations, whether or not the two current control terminals are the only ones of the at least two terminals that are connected to the other circuit.
    Type: Application
    Filed: June 9, 2004
    Publication date: November 11, 2004
    Applicant: VLT Corporation, a Texas corporation
    Inventors: John Saxelby, Jay Prager, Patrizio Vinciarelli, Estia Eichten
  • Publication number: 20040212034
    Abstract: The gist of the present invention is as follows: In a monolithic microwave integrate circuit (MMIC) using a heterojunction bipolar transistor (HBT), via holes are respectively formed from the bottom of the MMIC for the emitter, base and collector. Of the via holes, one is located so as to face the HBT. The respective topside electrodes for the other via holes located so as not to face the HBT are provided in contact with the MMIC substrate.
    Type: Application
    Filed: March 1, 2004
    Publication date: October 28, 2004
    Inventors: Kazuhiro Mochizuki, Isao Ohbu, Tomonori Tanoue, Chisaki Takubo, Kenichi Tanaka
  • Patent number: 6809410
    Abstract: A power semiconductor module with a connection structure in which an electrode terminal whose one end is connected with an electric power semiconductor device which is resin sealed inside of the case, is exposed along an outer surface of a case for taking out electrode from the semiconductor device, and is electrically connected to an electrode for external connection disposed on the electrode terminal, wherein a female screw hole for screwing is provided on side of the outer surface of the case, a male screw member formed at its opposite ends with screw threads is threadedly engaged with the female screw hole through the electrode terminal.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: October 26, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Junji Yamada
  • Patent number: 6784493
    Abstract: A power integrated circuit architecture (10) having a high side transistor (100) interposed between a control circuit (152) and a low side transistor (100) to reduce the effects of the low side transistor on the operation of the control circuit. The low side transistor has a heavily p-doped region (56) designed to reduce minority carrier lifetime and improve minority carrier collection to reduce the minority carriers from disturbing the control circuit. The low side transistor has a guardring (16) tied to an analog ground, whereby the control circuit is tied to a digital ground, such that the collection of the minority carriers into the analog ground does not disturb the operation of the control circuit. The low side transistor is comprised of multiple transistor arrays (90) partitioned by at least one deep n-type region (16), which deep n-type region forms a guardring about the respective transistor array.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: August 31, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Dale Skelton, David D. Briggs, Chin-Yu Tsai
  • Patent number: 6773995
    Abstract: A method of manufacturing a semiconductor device, such as a double-diffused metal oxide semiconductor (DMOS) transistor, where a first layer may be formed on a semiconductor substrate, with isolation trenches formed in the first layer and semiconductor substrate, and with the trenches being filled with an isolation layer. A second layer may be formed on the first layer and semiconductor substrate, and a plurality of drain trenches may be formed therein. A pair of plug-type drains may be formed in the trenches, to be separated from the isolation layer by a dielectric spacer. Gates and source areas may be formed on a resultant structure containing the plug-type drains. Accordingly, current may be increased with a reduction in drain-source on resistance, and an area of the isolation layer can be reduced, as compared to an existing isolation layer, potentially resulting in a reduction in chip area.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: August 10, 2004
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Hwa-Sook Shin, Soo-Cheol Lee
  • Patent number: 6750525
    Abstract: A non-volatile memory device having a MONOS (Metal-oxide-nitride-oxide-semiconductor) gate structure is provided. This device includes a selection transistor and a cell transistor including a cell gate insulation layer formed in a cell array area and a low-voltage MOS transistor having a low-voltage gate insulation layer and a high-voltage MOS transistor having a high-voltage gate insulation layer formed in a peripheral circuit area. The low-voltage gate insulation layer is thinner than the high-voltage gate insulation layer. The low-voltage gate insulation layer can also be thinner than the equivalent thickness of the cell gate insulation layer.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 15, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Sik Yim, Jung-Dal Choi, Hong-Suk Kwack, You-Cheol Shin
  • Publication number: 20040094820
    Abstract: A semiconductor integrated circuit device includes a circuit block with a plurality of components. At least one of the components is supplied with a voltage having a value different from that supplied to the other components. This allows reduction in power consumption in the semiconductor integrated circuit device.
    Type: Application
    Filed: October 7, 2003
    Publication date: May 20, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Ryota Nishikawa, Akimitsu Shimamura
  • Patent number: 6737721
    Abstract: A semiconductor device has an isolation area having a shallow trench isolation (STI) structure for isolating device areas for transistor elements. The isolation area for a bipolar transistor has a first annular trench encircling a n-type collector well, a second annular trench encircling the first annular trench and an annular p-type diffused region disposed between the first annular trench and the second annular trench while in contact with the annular trenches. The plurality of isolation trenches in a single isolation area prevents a dishing portion of the substrate after a CMP process without causing a short-circuit failure.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: May 18, 2004
    Assignee: NEC Electronics Corporation
    Inventor: Hisamitsu Suzuki
  • Patent number: 6734065
    Abstract: Embodiments of the invention provide a method that includes forming a selection transistor and a cell transistor that includes a cell gate insulation layer in a cell array area. The method also includes forming a low-voltage MOS transistor having a low-voltage gate insulation layer and a high-voltage MOS transistor having a high-voltage gate insulation layer in a peripheral circuit area. The low-voltage gate insulation layer is formed thinner than the high-voltage gate insulation layer. The low voltage gate insulation layer may also be formed thinner than the equivalent thickness of the cell gate insulation layer.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: May 11, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Sik Yim, Jung-Dal Choi, Hong-Suk Kwack, You-Cheol Shin
  • Patent number: 6720642
    Abstract: A chip device that includes a leadframe, a die and a mold compound. The backside of the die is metallized and exposed through a window defined within a mold compound that encapsulates the die when it is coupled to the leadframe. Leads on the leadframe are coupled to source and gate terminals on the die while the metallized backside of the die serves as the drain terminals.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: April 13, 2004
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Rajeev Joshi, Consuelo N. Tangpuz, Romel N. Manatad
  • Patent number: 6710427
    Abstract: A distributed power device (100) including a plurality of tank regions (90) separated from one another by a deep n-type region (16), and having formed in each tank region a plurality of transistors (50). The plurality of transistors (50) in each tank region are interconnected to transistors in other tank regions to form a large power FET, whereby the deep n-type regions isolate the tank regions from one another. A first parasitic diode (D5) is defined from each tank region to a buried layer, and a second parasitic diode (D4) is defined between the buried layer and a substrate. The deep n-type regions distribute the first and second parasitic diodes with respect to the plurality of tank regions, preferably comprised of a P-epi tank. The deep n-type regions also distribute the resistance of an NBL layer (14) formed under the tank regions.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: March 23, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, David A. Grant, Ramanathan Ramani, Chin-Yu Tsai, David D. Briggs, Dale Skelton
  • Publication number: 20040041230
    Abstract: Two series-connected diodes which are housed in a power package (such as but not limited to TO220, TO220FP, D2pak, TO247, etc.).
    Type: Application
    Filed: February 28, 2003
    Publication date: March 4, 2004
    Applicant: International Rectifier Corporation
    Inventors: Stephen Oliver, Hugh D. Richard
  • Publication number: 20040036140
    Abstract: A semiconductor device including an N-type semiconductor substrate which includes arsenic as an impurity, a first electrode formed on a main surface of the N-type semiconductor substrate, a ground surface formed on another surface of the N-type semiconductor substrate, a second electrode formed on the ground surface and ohmically-contacted with the N-type semiconductor substrate, a semiconductor element formed in the N-type semiconductor substrate and flowing current between the first electrode and the second electrode during ON-state thereof. The device has a reduced ON-resistance thereof.
    Type: Application
    Filed: August 28, 2003
    Publication date: February 26, 2004
    Inventors: Yoshifumi Okabe, Masami Yamaoka, Akira Kuroyanagi
  • Patent number: 6696711
    Abstract: A semiconductor device comprising a plurality of heterojunction bipolar transistors with their base layer made of GaAsSb or InGaAs, a GaAs substrate, and a buffer layer placed between the base layer and the substrate is fabricated. The substrate and the buffer layer that lie directly under the intrinsic regions of a part or all of the plurality of heterojunction bipolar transistors are removed. Thereby, a semiconductor device using HBTs that can operate with a power supply voltage of 2 V or below can be provided at reduced cost as a well-reliable product, and a power amplifier with high power conversion efficiency can be provided.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: February 24, 2004
    Assignee: Renesas Technology Corporation
    Inventors: Kazuhiro Mochizuki, Tohru Oka, Isao Ohbu, Kiichi Yamashita
  • Publication number: 20030222354
    Abstract: The process for manufacturing a through insulated interconnection is performed by forming, in a body of semiconductor material, a trench extending from the front (of the body for a thickness portion thereof; filling the trench with dielectric material; thinning the body starting from the rear until the trench, so as to form an insulated region surrounded by dielectric material; and forming a conductive region extending inside said insulated region between the front and the rear of the body and having a higher conductivity than the first body. The conductive region includes a metal region extending in an opening formed inside the insulated region or of a heavily doped semiconductor region, made prior to filling of the trench.
    Type: Application
    Filed: April 2, 2003
    Publication date: December 4, 2003
    Applicant: STMicroelectronics S.r.I.
    Inventors: Ubaldo Mastromatteo, Paolo Ferrari
  • Patent number: 6617661
    Abstract: A high-voltage component and a method for its manufacture. The component functions to switch currents at high voltages. The component is composed of partial components that are connected in series and are laterally supported on a self-supporting semiconductor wafer. The partial components switch through, for example, at a given voltage applied between a first bridge cathode and an anodic metallization.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: September 9, 2003
    Assignee: Robert Bosch GmbH
    Inventors: Hartmut Michel, Bernd Bireckoven, Dirk Hoheisel, Ning Qu
  • Publication number: 20030151110
    Abstract: A high-voltage transistor with a low specific on-state resistance and that supports high voltage in the off-state includes one or more source regions disposed adjacent to a multi-layered extended drain structure which comprises extended drift regions separated from field plate members by one or more dielectric layers. With the field plate members at the lowest circuit potential, the transistor supports high voltages applied to the drain in the off-state. The layered structure may be fabricated in a variety of orientations. A MOSFET structure may be incorporated into the device adjacent to the source region, or, alternatively, the MOSFET structure may be omitted to produce a high-voltage transistor structure having a stand-alone drift region.
    Type: Application
    Filed: February 10, 2003
    Publication date: August 14, 2003
    Applicant: Power Integrations, Inc.
    Inventors: Donald Ray Disney, Mohamed Darwish
  • Publication number: 20030122210
    Abstract: A photodetector (and method for producing the same) includes a semiconductor substrate, a buried insulator formed on the substrate, a buried mirror formed on the buried insulator, a semiconductor-on-insulator (SOI) layer formed on the conductor, alternating n-type and p-type doped fingers formed in the semiconductor-on-insulator layer, and a backside contact to one of the p-type doped fingers and the n-type doped fingers.
    Type: Application
    Filed: January 3, 2002
    Publication date: July 3, 2003
    Applicant: International Business Machines Corporation
    Inventors: Guy Moshe Cohen, Kern Rim, Dennis L. Rogers, Jeremy Daniel Schaub, Min Yang
  • Patent number: 6580142
    Abstract: A monolithic assembly includes vertical power semiconductor components formed throughout the thickness of a low doped semiconductive wafer of a first conductivity type, whose bottom surface is uniformly coated with a metallization. At least some of these components, so-called autonomous components, are formed in insulated sections of the substrate, whose lateral insulation is provided by a diffused wall of the second conductivity type and whose bottom is insulated through a dielectric layer interposed between the bottom surface of the substrate and the metallization.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: June 17, 2003
    Assignee: SGS-Thomson Microelectronics S.A.
    Inventor: Robert Pezzani
  • Patent number: 6576995
    Abstract: A housing for semiconductor chips includes a plastic base substrate having a region for accommodating a chip and substrate sides having a patterned metallization layer. One of the sides contacts a chip and another contacts an external electrical connection. Each chip has front and rear sides and at least one chip contact on each side. Two or more pads are formed in the patterned metallization layer on one of the base substrate sides. One of the pads is connected to a front side chip contact and another is connected to a rear side chip contact. At least one pad is formed in the patterned metallization layer on the other base substrate side and is connected to the external electrical connection. One of the two pads is connected to a chip contact through the bonding wire, and another of the two pads is directly applied to another chip contact.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: June 10, 2003
    Assignee: Infineon Technologies AG
    Inventors: Jürgen Högerl, Stefan Paulus